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Power networks as an example of dynamical distribution

networks

• Dynamical distribution networks appear in many areas of engineering
and natural sciences:
power networks, gas and heat distribution networks, metabolic
reaction networks, ...
’Classical’ examples like electrical circuits, mechanical networks, ...

• Sometimes with additional dynamical network layers: control and
communication networks, gene-regulatory networks, ..

• Dynamical distribution networks typically operate under non-zero
inflow and outflow, ’out of equilibrium’, ...
As a result, natural candidates for stability analysis such as total
energy cannot be used as Lyapunov function.

• They are often large-scale: scalable theory is needed.

• Underlying geometry is determined by network (’incidence’) structure.
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Basic background on graphs

Directed graph with N nodes, and M edges.

Specified by its N ×M incidence matrix D,
each column corresponds to an edge, with −1 for tail node and 1 for head
node; 0 otherwise.

Basic property
1
TD = 0 ,

where 1 is the vector of all ones.

kerDT = span1 if and only if the graph is connected
(which will be assumed, without loss of generality, throughout).

On the other hand, kerD is the space of cycles.
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Associate masses to nodes, and springs and dampers to edges.

(a)

(b)

mass 1 mass 2 mass 3

damper 1

damper 2spring 1

spring 2

D =
[
Ds | Dd

]
=



−1 −1 | −1 0
1 0 | 1 −1
0 1 | 0 1
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Dynamics is Hamiltonian plus energy-dissipation:

[
q̇

ṗ

]
=

([
0 DT

s

−Ds 0

]
−

[
0 0

0 DdRD
T
d

])


∂H
∂q

(q, p)

∂H
∂p

(q, p)




DdRD
T
d is Laplacian matrix, with R diagonal matrix of damping constants.

Hamiltonian in the linear case

H(q, p) =
1

2
pTM−1p +

1

2
qTKq

M mass matrix, K spring matrix.

Compositional point of view !
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Some analysis

Proposition

Set of equilibria E is

E = {(q, p) |
∂H

∂q
(q, p) ∈ kerDs , v =

∂H

∂p
(q, p) ∈ span1}

Proposition

Casimir functions (conserved quantities independent of H) are all functions
C (q, p) satisfying

∂C

∂p
(q, p) ∈ span1,

∂C

∂q
(q, p) ∈ kerDs ,

which can be expressed as functions of elementary Casimirs

C (p) = 1
Tp, C (q) = cTq, c ∈ kerDs (cycles)
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Hence, starting from any initial position (q0, p0) the solution will be
contained in

A(q0,p0) :=

[
q0
p0

]
+

[
0

ker 1T

]
+

[
imDT

s

0

]

Theorem

Define the spring Laplacian matrix Ls := DsKD
T
s .

Then for every (q0, p0) there exists a unique equilibrium point

(q∞, p∞) ∈ E ∩ A(q0,p0),

to which the system converges exponentially if and only if the largest
M−1Ls -invariant subspace contained in ker Ld equals span1.

Can be extended to nonlinear case.
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Mass-spring-damper systems with external forces

Port-Hamiltonian system

[
q̇

ṗ

]
=

[
0 DT

s

−Ds −DdRD
T
d

]


∂H
∂q

(q, p)

∂H
∂p

(q, p)


+

[
0

E

]
u

y =
[
0 ET

]
[
∂H
∂q

(q, p)

∂H
∂p

(q, p)

]

with u the external forces acting on the actuated masses, and y their
velocities.
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Steady-state analysis for constant ū

Assume existence of q̄ s.t.

Ds
∂H

∂q
(q̄, 0) = ū

(spring forces can compensate for external forces)
Define shifted Hamiltonian (or availability function)

Ĥ(q, p) := H(q, p) −
∂H

∂qT
(q̄, 0)(q − q̄)− H(q̄, 0)

System can be rewritten as

[
q̇

ṗ

]
=

[
0 DT

s

−Ds −DdRD
T
d

]


∂Ĥ
∂q

(q, p)

∂Ĥ
∂p

(q, p)




If H is convex then Ĥ has minimum at (q̄, 0).
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Operation of electricity network is changing:

from a top-down network, distributing power from a few large generators
to many loads, towards a multi-agent distribution network; with additional
communication layers.

• Increasing share of renewable energy sources with large variability;
consumers becoming ’prosumers’; distributed control instead of
’top-down’; ...

• All kinds of possibilities and needs for communication between
generating and consuming units; ’smart grids’.

• Fundamental open stability questions; some classical, others by
changing operation near limits of capacity, and caused by additional
communication and market dynamics.
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Simplest dynamical model: swing equation model

Underlying assumptions:

• All voltages and currents across/through the transmission lines
(edges) are pure sinusoids with same frequency ω̂ (50 Hz).
Hence, any voltage (or, current) signal

V (t) = V sin(ω̂t + φ), t ∈ R,

can be represented by its phasor

Ve jφ ∈ C

• Amplitudes Vi of voltage potentials at all n nodes are constant.

• All lines are purely inductive (phase shift of 90 degrees).
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Power networks modeled by swing equations

Model any i -th generator (or synchronous machine) as a voltage source
with voltage angle δi , with its reactance included into the transmission line.
Average power (’active power’) flow through the k-th line from node i to
node j is

Γk sin(δi − δj)

with Γk = SkViVj , Sk susceptance of the line.
Define phase differences across the k-th line between node i and j

qk := δj − δi , i.e., q = DT δ,

with D the n ×m incidence matrix of the network:
Vector of power flows through the lines is

P = −DΓSinDT δ = −DΓSin q

where Sin : Rm → R
m is the element-wise sin function.

Arjan van der Schaft (Univ. of Groningen) Power networks 14 / 63



Let ωi be frequency deviation with respect to ω̂ (50Hz) of node i .
Balance between mechanical and electrical nodal power flows

Mω̇ = −Aω + P + u = −Aω − DΓSin q + u, ω = (ω1, · · · , ωn)
T

where u ∈ R
n is vector of produced/consumed power at nodes, and Aω is

vector of damping torques, with A positive diagonal matrix.

Vector of phase differences q = DT δ satisfies

q̇ = DT δ̇ = DTω

Together, we obtain the swing equation network model

q̇ = DTω

Mω̇ = −Aω − DΓSin q + u

Favorite equations in the control literature on power networks.
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Swing equation model is port-Hamiltonian:

[
q̇

ṗ

]
=

[
0 DT

−D −A

][
∂H
∂q

(q, p)

∂H
∂p

(q, p)

]
+

[
0

I

]
u, p = Mω

y =
[
0 I

]
[
∂H
∂q

(q, p)

∂H
∂p

(q, p)

]
= ω

with q phase differences across the lines, ω frequency deviations, p = Mω

momentum deviations at the nodes, and u generated/consumed power.

Hamiltonian

H(q, p) =
1

2
pTM−1p −

∑

k

γk cos qk

with γk constant of k-th line
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Stability analysis for constant power in/outflow

Let ū be a constant input, yielding steady state values (q̄, p̄ = Mω̄).

Then DT ω̄ = 0 and thus by connectivity

ω̄ = 1ω∗, ω∗ ∈ R common frequency deviation

Furthermore

1
TA1ω∗ = 1

T ū, hence ω∗ =
1
T ū

1TA1
,

and

D
∂H

∂q
(q̄) = −A1ω∗ + ū

In particular ω∗ = 0 (zero frequency deviation) if and only if 1T ū = 0

(total consumed power = total generated power).

Similar to mass-spring-damper case; however, all edges correspond to
’nonlinear springs’, and ’dampers’ are at the nodes.
Consequently, unique steady state (if any).
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Define again availability function

Ĥ(q, p) :=
1

2
(p − p̄)TM−1(p − p̄)−

∑

k

γk cos qk +
∑

k

γk sin q̄k (qk − q̄k)

having strict minimum at (q̄, p̄), whenever q̄ ∈ (−π
2 ,

π
2 )

n.

Then the system can be rewritten as

[
q̇

ṗ

]
=

[
0 DT

−D −A

]


∂Ĥ
∂q

(q, p)

∂Ĥ
∂p

(q, p)


+

[
0

I

]
(u − ū)

y − ȳ = ∂Ĥ
∂p

(q, p)

and satisfies shifted energy balance

d

dt
Ĥ(x(t)) ≤ (u(t)− ū)T (y(t)− ȳ)

Hence for u = ū steady state (q̄, p̄ = Mω∗) is asymptotically stable.
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Write u = ug − ud , with ug generated power and ud consumed power.

Maximize the social welfare function

U(ud )− C (ug ),

with concave utility function U(ud ) of the consumers ud ,
and convex generation cost C (ug ) of the producers ug ,
under the constraint of zero frequency deviation.

Recall ’iff’ condition for zero frequency deviation:

1
Tud = 1

Tug

Furthermore, (ug , ud ) satisfies this equation iff there exists v ∈ R
mc such

that
Dcv − ug + ud = 0,

where Dc ∈ R
n×mc is the incidence matrix of an arbitrary connected

communication graph with same nodes.
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Leads to convex minimization problem:

min
ug ,ud ,v

C (ug )− U(ud )

s.t. Dcv − ug + ud = 0

Corresponding Lagrangian is

L = C (ug )− U(ud ) + λT (Dcv − ug + ud )

with Lagrange multipliers λ ∈ R
n. The KKT optimality conditions

(∇L = 0) are
∇C (ūg )− λ̄ = 0

−∇U(ūd) + λ̄ = 0

DT
c λ̄ = 0

Dc v̄ − ūg + ūd = 0.

λi represents price at i -th node, and elements of v represent information
exchange of the differences of the prices along the edges the
communication graph.
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Dynamic pricing controller

A continuous-time algorithm to converge to saddle-point described by the
KKT conditions is steepest descent/ascent gradient dynamics

τg u̇g = −∇C (ug ) + λ+ wg

τd u̇d = ∇U(ud )− λ+ wd

τv v̇ = −DT
c λ

τλλ̇ = Dcv − ug + ud

with time-scale matrices
τg , τd , τv , τλ > 0

Admits natural port-Hamiltonian formulation: define new state variables

xg = τgug , xd = τdud , xv = τvv , xλ = τλλ

with quadratic Hamiltonian (see Arrow & Hurwicz, 1958)

Hm(x) =
1

2
xTg τ−1

g xg +
1

2
xTd τ−1

d xd +
1

2
xTv τ−1

v xv +
1

2
xTλ τ−1

λ xλ
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ẋ=




0 0 0 I 0
0 0 0 0 −I
0 0 0 −DT

c −DT
c

−I 0 Dc 0 0
0 I Dc 0 0



∇Hm(x) +

∂W
∂z

(∇Hm(x)) +




I 0
0 I
0 0
0 0



[
vg
vl

]

[
wg

wl

]
=

[
I 0 0 0
0 I 0 0

]
∇Hm(x)

Result: dynamic pricing controller. To be connected to the power network.

Using the sum of the shifted versions of H (power network) and Hm

(market dynamics) leads to overall asymptotic stability of combined
dynamics.
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CRN theory; Horn, Jackson, Feinberg, Othmer, · · ·

Dynamics of r reactions among m chemical species with concentrations
x ∈ R

m
+ is

ẋ = Sv(x)

with reaction rate v(x), and S the m × r stoichiometric matrix, which can
be factorized as

S = ZD

with Z the m × c complex composition matrix and D the incidence matrix
of the graph of complexes. For example

X1 + 2X2 ⇋ X3 ⇋ 2X1 + X2

S =



−1 2
−2 1
1 −1


 , Z =



1 0 2
2 0 1
0 1 0


 D =



−1 0
1 −1
0 1
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Mass action kinetics of j-th reaction, from substrate complex S to product
complex P, prescribes

vj(x) = k+j

m∏

i=1

xZiS

i − k−j

m∏

i=1

xZiP

i ,

where ZiS is the (i , ρ)-th element of the complex composition matrix Z ,
and k+j , k−j are the forward/backward reaction constants.
Can be rewritten as

vj(x) = k+j exp
(
ZT
S Ln(x)

)
− k−j exp

(
ZT
P Ln(x)

)

Network is detailed balanced if there exists x∗ satisfying

v(x∗) = 0

that is,

k+j exp
(
ZT
S Ln(x∗)

)
= k−j exp

(
ZT
P Ln(x∗)

)
, j = 1, · · · , r
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Defining equilibrium constants

K eq
j :=

k+j

k−j

this means

K eq = Exp
(
DTZTLn (x∗)

)
= Exp

(
STLn (x∗)

)
,

where K eq is the r -dimensional vector with j-th element K eq
j .

Hence, the network is detailed balanced, if and only if

Ln (K eq) ∈ imST

(generalized Wegscheider conditions)
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Port-Hamiltonian formulation

Define conductance of j-th reaction as

κj (x
∗) := k+j exp

(
ZT
S Ln(x∗)

)
= k−j exp

(
ZT
P Ln(x∗)

)

Then

vj(x) = κj (x
∗)
[
exp

(
ZT
S Ln

( x

x∗

))
− exp

(
ZT
P Ln

( x

x∗

))]

Defining the r × r diagonal matrix of conductances K it follows that

v(x) = −KDTExp
(
ZTLn

( x

x∗

))
,

and thus the dynamics takes the form

ẋ = −ZLExp
(
ZTLn

( x

x∗

))

with L := DKDT Laplacian matrix of the graph of complexes.
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Fundamental property: for any γ ∈ R
c

γTLExp γ ≥ 0,

with equality if and only if DTγ = 0.

Yields easy proofs for a number of key results in CRN theory:

Property 1:
All positive equilibria are in fact detailed-balanced equilibria, and given one
detailed-balanced equilibrium x∗ the set of all positive equilibria is

E := {x∗∗ ∈ R
m
+ | STLn x∗∗ = STLn x∗}

Property 2:
There exists for any initial condition x0 ∈ R

m
+ unique steady state x∗∗ ∈ E

such that x∗∗ − x0 ∈ imS .
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Property 3:
Define

G (x) := xTLn
( x

x∗

)
+ (x∗ − x)T 1m

Since ∂G
∂x

(x) = Ln
(

x
x∗

)
=: µ(x), it follows that the dynamics can be also

written as

ẋ = −ZLExp

(
ZT ∂G

∂x
(x)

)

Hence

d

dt
G = −µT (x)ZTLExp (ZTµ(x)) = −γT (x)LExp γ(x) ≤ 0

It follows that the vector of concentrations x(t) starting from x0 will
converge for t → ∞ to x∗∗ if the reaction network is assumed to be
persistent (no convergence to the boundary of the positive orthant Rm

+).
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Up to a constant G equals the Gibbs’ free energy, while

∂G

∂x
(x) = Ln

( x

x∗

)

equals the vector of chemical potentials. The dynamics

ẋ = −ZLExp

(
ZT ∂G

∂x
(x)

)

can be interpreted as arising from terminating the auxiliary i/o system

ẋ = Zu

y = ZT ∂G
∂x

(x)

with the energy-dissipating relation

u = −LExp y ,

and thus defines a port-Hamiltonian system with Hamiltonian G
(’nonlinear mass-damper system’).
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Mass action networks with non-zero inflows and outflows

Metabolic reaction networks always have inflows and outflows of chemical
species. Typically no constant outflows of species.

Horn: add extra zero complex: edges from the zero complex model the
constant inflows into the network, while the edges towards the zero
complex model mass action kinetics outflows.

Theorem

Assume x∗ is complex-balanced equilibrium of extended reaction network:

Deve(x
∗) = 0

If each component is connected to zero complex, then set of steady states

E = {x∗∗ ∈ R
m
+ | ZTLn x∗∗ = ZTLn x∗}

For every x0 ∈ R
m
+, there exists unique x1 ∈ E with x1 − x0 ∈ imS,

asymptotically stable with respect to those initial conditions x0.
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• Dynamical distribution networks are naturally modeled as
port-Hamiltonian systems, with geometry determined by network.

• Distribution networks typically have non-zero inflows and outflows.

• Shifted Hamiltonian can be used as Lyapunov function for constant
in/outflows in case of mass-spring-damper systems and swing
equation model of power networks.
Holds in general, if Poisson structure is constant, energy dissipation is
linear and constant, and Hamiltonian is convex.

• Dynamic pricing controller combines stable physical network dynamics
with optimization; all within a port-Hamiltonian framework.

• Closed chemical reaction networks are typically detailed-balanced, in
which case the dynamics is like non-linear mass-damper system.

◦ General picture for chemical reaction networks with inflows and
outflows unclear !

◦ How to combine the dynamical distribution network with other
dynamical layers ?
E.g., metabolic reaction network catalyzed by enzymes controlled by
gene regulatory network.
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Famous quote on classical, macroscopic, thermodynamics taken from
Albert Einstein’s autobiographical notes:

A theory is more impressive the greater the simplicity of its premises, the
more different things it relates, and the more extended its area of
applicability. Hence the deep impression that classical thermodynamics
made upon me.
It is the only physical theory of universal content concerning which I am
convinced that, within the framework of the applicability of its basic
concepts, it will never be overthrown.

Thermodynamics is especially interesting for systems and control,
since it directly originates in engineering (maximal efficiency of steam
engines, ..), and always considers systems in interaction with others.

At the same time, thermodynamics is a somewhat confusing subject; and
not always clearly presented ...
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Consider two heat compartments with conducting wall. The two systems,
indexed by 1 and 2, exchange heat flow q given by Fourier’s law

q = λ(T1 − T2),

with temperatures

Ti =
∂Ui

∂Si
(Si), i = 1, 2,

with U1(S1),U2(S2) internal energies of two compartments.

Leads to pseudo port-Hamiltonian system



Ṡ1

Ṡ2


 =



− q

T1

q
T2


 =



−λT1−T2

T1

λT1−T2
T2


 =

[
0 λ( 1

T1
− 1

T2
)

−λ( 1
T1

− 1
T2
) 0

]


∂U
∂S1

∂U
∂S2




with total energy U(S1,S2) := U1(S1) + U1(S2).
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Pseudo port-Hamiltonian, since the skew-symmetric map

[
0 λ( 1

T1
− 1

T2
)

−λ( 1
T1

− 1
T2
) 0

]

does not depend on S1,S2 directly, but through Ti =
∂Ui

∂Si
(Si ).

Therefore does not define Dirac structure on state space R
2 with

coordinates S1,S2: mixing of interconnection and constitutive relations.

Instead, example of the type

ẋ = J(e)e, J(e) = −JT (e), e =
∂H

∂x
(x)

As a consequence

Ṡ1 + Ṡ2 =
(T1 − T2)

2

T1T2
≥ 0

Total entropy is non-decreasing; irreversibility.
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Port-Hamiltonian framework is not general enough !

Next:

to formulate a geometric theory of thermodynamic systems, generalizing
the port-Hamiltonian formulation of multi-physics systems.

1 From Gibbs’ relation to contact geometry

2 From contact geometry to homogeneous symplectic geometry

3 Definition of port-thermodynamic systems
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Consider a simple thermodynamic system:

extensive variables V ,S ,E

intensive variables −P ,T

Its state properties are formalized by Gibbs’ relation

dE = TdS − PdV

(More generally; in case of chemical reactions :

extensive variables, V ,N1, · · · ,Nm,S ,E

intensive variables −P , µ1, · · · , µm,T

Gibbs’ relation extends to

dE = TdS − PdV + µ1dN1 + · · · + µmdNm )
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What does Gibbs’ relation dE = TdS − PdV mean?

Answer: If E is expressed as function of the other extensive variables V ,S

E = E (V ,S),

then the two intensive variables −P ,T are determined as

−P =
∂E

∂V
(V ,S), T =

∂E

∂S
(V ,S)
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Another quote:

Every mathematician knows that it is impossible to understand any
elementary course in thermodynamics.
The reason is that the thermodynamics is based,
- as Gibbs has explicitly proclaimed -,
on a rather complicated mathematical theory,
on the contact geometry.

Vladimir I. Arnold,
Contact geometry: the geometrical method of Gibbs’s thermodynamics,

(Proc. of the Gibbs Symposium, American Mathematical Society, 1989)
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Basic contact geometry

Consider on the space R
5 ∋ (V ,S ,E ,−P ,T ) of extensive and intensive

variables the contact form

θ := dE − TdS + PdV ,

State properties are given by maximal submanifolds L ⊂ R
5 restricted to

which θ is zero; i.e., on L

0 = dE − TdS + PdV Gibbs’ relation

Any such L is 2-dimensional.

L is called a Legendre submanifold of (R5, θ).
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Since the 1970’s contact geometry has been recognized as appropriate
geometric framework for thermodynamics.

On the other hand, contact geometry does not intrinsically distinguish
between extensive and intensive variables, and state properties may also be
written in entropy representation

S = S(V ,E ),

together with accompanying relations

1

T
=

∂S

∂E
(V ,E ),

P

T
=

∂S

∂V
(V ,E )

This results from rewriting Gibbs’ relation as

dS =
1

T
dE +

P

T
dV ,

leading to different intensive variables 1
T
, P
T
, and different contact form

θ̃ = dS −
1

T
dE −

P

T
dV
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From contact to homogeneous symplectic geometry

(Balian & Valentin, 2001)

Multiply the contact form

θ = dE − TdS + PdV

on R
5 by an extra variable pE to obtain the Liouville form

α := pEdE + pSdS + pV dV , pS := −pET , pV := pEP

on the cotangent bundle T ∗
R
3 = R

6.
Energy representation corresponds to intensive variables

pS
−pE

=: T ,
pV
−pE

=: −P

Entropy representation corresponds to intensive variables

pE
−pS

=
1

T
,

pV
−pS

=
P

T

Thus: (pV , pS , pE ) are homogeneous coordinates for intensive variables.
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General geometric picture

Start with (n + 1)-dimensional manifold Qe of extensive variables:
qe = (E ,S ,V , · · · ).

Coordinates for the cotangent space T ∗
qeQ

e are homogeneous coordinates
for the intensive variables T ,−P , · · · .

Define the contact manifold P(T ∗Qe) as the projectivization of T ∗Qe :
the (2n + 1)-dimensional fiber bundle over Qe with fiber at any point
qe ∈ Qe given by the n-dimensional projective space P(T ∗

qeQ
e).

This unifies energy and entropy representations, and is crucial for
definition of power and entropy flow ports !

Furthermore, objects on odd-dimensional P(T ∗Qe) translate into easier
homogeneous objects on even-dimensional T ∗Qe !
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Objects on P(T ∗Qe) from homogeneous objects on T ∗Qe

Homogeneity of functions:

Definition

K : T ∗Qe → R is homogeneous of degree r in pe if

K (qe , λpe) = λrK (qe , pe), ∀λ 6= 0

Theorem (Euler)

K : T ∗Qe → R is homogeneous of degree r iff

∑
pei

∂K

∂pei
(qe , pe) = r K (qe , pe), for all (qe , pe) ∈ T ∗Q

Furthermore, if K is homogeneous of degree r (in pe), then derivatives ∂K
∂pe

i

are homogeneous of degree r − 1.
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Correspondence Legendre submanifolds L ⊂ P(T ∗Qe) and

homogeneous Lagrangian submanifolds L ⊂ T ∗Qe

T ∗Qe is endowed with Liouville form

α = pEdE + pSdS + pdq, qe = (E ,S , q) (e.g., q = V , · · · )

and the symplectic form

ω = dα = dpE ∧ dE + dpS ∧ dS + dp ∧ dq, pe = (pE , pS , p)

A Lagrangian submanifold is a maximal submanifold L ⊂ T ∗Q restricted
to which ω is zero.

Lagrangian L ⊂ T ∗Q is homogeneous if

(qe , pe) ∈ L ⇒ (qe , λpe) ∈ L

for any 0 6= λ ∈ R.
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Consider the canonical projection

π : T ∗Qe → P(T ∗Qe)

Then: any Legendre submanifold L ⊂ P(T ∗Qe) defines a homogeneous
Lagrangian submanifold

L := π−1L ⊂ T ∗Qe ,

and conversely any homogeneous Lagrangian submanifold is of this type.
Furthermore:

Theorem

Homogeneous Lagrangian submanifolds L ⊂ T ∗Qe are maximal
submanifolds restricted to which the Liouville one-form α is zero.

(Hence, not only ω := dα is zero on L, but in fact α is zero on L !)

Arjan van der Schaft (Univ. of Groningen) Power networks 52 / 63



Outline

1 Case I: Mass-spring-damper network

2 Case II: Power networks

3 Excursion: Market dynamics network

4 Case III: Chemical reaction networks

5 Conclusions and Outlook

6 Extensions to thermodynamics

7 Port-Hamiltonian systems capture thermodynamics ?

8 Gibbs’ relation and contact geometry

9 From contact geometry to homogeneous symplectic geometry

10 Definition of port-thermodynamic systems

Arjan van der Schaft (Univ. of Groningen) Power networks 53 / 63



State space: a paradigm shift

Gibbs’ relation describes state properties; i.e., relation between extensive
and intensive variables.

Thus Legendre submanifold L ⊂ P(T ∗Qe) and homogeneous Lagrangian
submanifold L ⊂ T ∗Qe describe the actual state space of the
thermodynamic system !

Situation may be compared with description of capacitor: its ’state
properties’ are

E = E (q) (=
1

2
q2), V =

dE

dq
(q) (=

q

C
)

This defines the 1-dimensional Legendre submanifold

L = {E , q,V ) | E = E (q), V =
dE

dq
(q)}

describing the state space.
Corresponding 2-dim. homogeneous Lagrangian submanifold L ⊂ R

4.
Arjan van der Schaft (Univ. of Groningen) Power networks 54 / 63



Dynamics leaving L and L invariant

Recall that given K : T ∗Qe → R the Hamiltonian vector field XK on
T ∗Qe with coordinates (qe , pe) is

q̇e =
∂K

∂pe
(qe , pe), ṗe = −

∂K

∂qe
(qe , pe)

Any Hamiltonian vector field XK is characterized by property LXK
ω = 0.

XK on T ∗Q with K homogeneous (of degree 1 in pe) not only satisfies
LXK

ω = 0, but in fact

LXK
α = iXdα+ d(α(XK )) = −dK + dK = 0

Conversely, if LXα = 0, then X = XK with K = α(X ) homogeneneous.

Furthermore, any Hamiltonian vector field XK with K homogeneous of
degree 1 projects to contact vector field X

K̂
on contact manifold P(T ∗Q).

Arjan van der Schaft (Univ. of Groningen) Power networks 55 / 63



Summary: correspondence between contact and

homogeneous symplectic geometry and dynamics

• Contact manifold P(T ∗Qe) ↔ symplectized manifold T ∗Qe

• Locally defined contact form θ on P(T ∗Qe) ↔ Liouville form α on
T ∗Qe

• Functions on P(T ∗Qe) ↔ functions on T ∗Qe that are homogeneous
of degree 0 in pe

• Legendre submanifold L ↔ homogeneous Lagrangian submanifold L

• Generating function for L ↔ homogeneous generating function for L

• Contact Hamiltonian K̂ ↔ homogeneous Hamiltonian K

• Contact vector field X
K̂

↔ Hamiltonian vector field XK with
LXK

α = 0

• Invariance of L: K̂ zero on L ↔ invariance of L: K zero on L
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Definition of port-thermodynamic system

State properties are given by homogeneous L ⊂ T ∗Qe .

Dynamics are given by homogeneous Hamiltonian, parametrized by u ∈ R
m

K := K a + K cu : T ∗Qe → R, u ∈ R
m,

with K a (drift Hamiltonian) and K c
j , j = 1, · · · ,m (input Hamiltonians),

which are all zero restricted to L.

By Euler’s Theorem, homogeneity implies

K a = pE fE + pS fS + pT f , fE = ∂K a

∂pE
, fS = ∂K a

∂pS
, f = ∂K a

∂p

K c = pEgE + pSgS + pTg , gE = ∂K c

∂pE
, gS = ∂K c

∂pS
, g = ∂K c

∂p

where the functions fE , fS , f , gE , gS , g are all homogeneous of degree 0;

defining the dynamics of the extensive variables.
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Additional conditions on the drift part K a

First Law of Thermodynamics (’conservation of energy’) imposes

fE |L = 0

Second Law of Thermodynamics (’increase of entropy’) imposes

fS |L ≥ 0
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Interaction with environment through ports

Define the outputs (homogeneous degree 0)

yp := gE |L,

leading to the power balance d
dt
E |L = ypu.

(u, yp) defines a power port.

Entropy-conjugate outputs (again homogeneous degree 0) are defined as

ye := gS |L,

leading to the entropy flow balance d
dt
S |L ≥ yeu.

(u, ye) defines a entropy flow port.
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Example (Mass-spring-damper system)

Consider extensive variables z (extension of the spring), π (momentum)
and entropy S . State properties are described by Lagrangian submanifold
L with generating function

−pE

(
1

2
kz2 +

π2

2m
+ U(S)

)
,

defining the state properties

L = {(z , π,S ,E , pz , pπ, pS , pE ) | E = 1
2kz

2 + π2

2m + U(S),

pz = −pEkz , pπ = −pE
π
m
, pS = −pEU

′(S)}

Dynamics is given by the homogeneous Hamiltonian

K = pz
π

m
+ pπ

(
−kz − d

π

m

)
+ pS

d( π
m
)2

U ′(S)
+
(
pπ + pE

π

m

)
u

The power-conjugate output yp = π
m

is the velocity of the mass.
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Example (Gas-piston-damper system)

This system is analogous to previous example, replacing z by volume V
and the partial energy 1

2kz
2 + U(S) by internal energy of the gas U(V ,S).

Dynamics is defined by the Hamiltonian

K = pz
π

m
+ pπ

(
−
∂U

∂V
− d

π

m

)
+ pS

d( π
m
)2

∂U
∂S

+
(
pπ + pE

π

m

)
u,

where the power-conjugate output yp = π
m

is the velocity of the piston.
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Thank you !

Questions?
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