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Port-Hamiltonian control systems

Let us recall the state space model of a port-Hamiltonian control system
ẋ =

(
J(x)− R(x)

)∂H
∂x

(x) + g(x)u,

y = g>(x)
∂H
∂x

(x),

where where x ∈ Rn is the state vector, u ∈ Rm, m < n, is the control action,
H : Rn → R is the total stored energy, J(x) = −J(x)> is the n × n natural
interconnection matrix, R(x) = R(x)> ≥ 0 is the n × n damping matrix, g(x), is the
n ×m input map and u, y ∈ Rm, are conjugated variables whose product has units of
power.  Ḣ = u>y − ∂H

∂x

>
R
∂H
∂x

,

Ḣ ≤ u>y ,
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Example: pendulum (model)

The dynamic equations
Consider the pendulum with damping

q̇ =
p
m

ṗ = −mg sin(q)− f
p
m

+ u
(1)

with state variables x = [p, q], with q the configuration and p the momentum.

The port Hamiltonian model is:

d
dt

(
q
p

)
=

(
0 1
−1 −f

)
︸ ︷︷ ︸

J−R

(
∂H0
∂q
∂H0
∂p

)
+

(
0
1

)
︸ ︷︷ ︸

g

u

y =
(

0 1
) (

∂H0
∂q
∂H0
∂p

)
=

p
m

(2)

with Hamiltonian : H0(q, p) = mg(1− cos q) + 1
2m p2
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Stabilization of passive systems

Let us consider systems arising from some physical energy model. We then usually
have

H(t) = H(t0) +

∫ t

0
u(τ)y(τ)dτ︸ ︷︷ ︸

supplied energy

−
∫ t

0
S(x(τ))dτ︸ ︷︷ ︸

dissipated energy

.

So if H(x) qualifies as a Lyapunov function and S(x) vanishes at x = 0 (and only in
x = 0), then the system is asymptotically stable!

So why do we need the control then?
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Stabilization of passive systems

• What if we want to increase the stability/rate of dissipation?: damping injection,

• What if we want to stabilize at some different equilibrium point/change the
performances, x = x∗, x∗ 6= 0: Energy shaping,

• What if S(x) vanishes for some x 6= 0 or S(x) = 0?: damping injection + Energy
shaping
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Stabilization of PHS: Damping injection

Consider the energy balance equation of a passive system:

H(t) = H(t0) +

∫ t

0
u(τ)y(τ)dτ︸ ︷︷ ︸

supplied energy

−
∫ t

0
S(x(τ))dτ︸ ︷︷ ︸

dissipated energy

.

And assume that H(x) qualifies as a Lyapunov function candidate. If we select the
input u = −Ky , with K a positive definite constant matrix, then the energy balance
equation becomes:

H(t) = H(t0) −K
∫ t

0
y2(τ)dτ︸ ︷︷ ︸

controller

−
∫ t

0
S(x(τ))dτ︸ ︷︷ ︸

dissipated energy

,

H(t) = H(t0) −
∫ t

0

(
Ky2(τ)dτ + S(x(τ))

)
dτ︸ ︷︷ ︸

dissipated energy

.
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Control by interconnection

A controlled system may be viewed as a plant system interconnected with a control
system exchanging energy

The interconnection is power continuous if

u = v − yc , and uc = y + vc , ∀t
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Control by interconnection

Assume that the plant and the controller are PHS

Σ :


ẋ =[J(x)− R(x)]

∂H
∂x

(x) + g(x)u

y =g>(x)
∂H
∂x

(x)

x ∈ X

Σc :


ξ̇ =[Jc(ξ)− Rc(ξ)]

∂Hc

∂ξ
(ξ) + gc(ξ)uc

yc =g>c (ξ)
∂Hc

∂ξ
(ξ)

ξ ∈ Xc

Booth are passive systems, so a power preserving interconnection, u = −yc , y = uc ,
yields a passive closed-loop system.
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Control by interconnection

The closed-loop systems looks

[
ẋ
ξ̇

]
=


[

J(x) −g(x)g>c (ξ)
gc(ξ)g>(x) Jc(ξ)

]
︸ ︷︷ ︸

Jcl (x,ξ)

−
[

R(x) 0
0 Rc(ξ)

]
︸ ︷︷ ︸

Rcl (x,ξ)


[
∂Hd
∂x (x)
∂Hd
∂ξ

(ξ)

]

[
y
yc

]
=

[
g(x) 0

0 gc(ξ)

]
︸ ︷︷ ︸

gcl

[
∂Hd
∂x (x)
∂Hd
∂ξ

(ξ)

]

With total energy function

Hd (x , ξ) = H(x) + Hc(ξ)

We may equivalently write the closed-loop system as

ẇ = (Jcl − Rcl )
∂Hd

∂w
, ycl = g>cl

∂Hd

∂w

with w = [x ξ].
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Control by interconnection

Aim
We would like to get an energy function in terms of x only: Hd = Hd (x), so that we can
assign the minimum at a desired point and characterize it in terms of the plant system.

In order achieve this, we must restrict the dynamics to a submanifold of the (x , ξ)
space parametrized by x . This means that we are looking for a submanifold

ΩC = (x , ξ) : ξ = F (x)− C

which is dynamically invariant, i.e.,

dC
dt

=

(
∂Fi

∂x

>
ẋ − ξ̇i

)
ξ=Fi (x)−C

= 0
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Control by interconnection

Casimir functions
Let us look for structural invariants that relates each state of the controller with the
states of the plant:

Ci (x , ξi ) = Fi (x)− ξi

In order to relate all the states of the controller with the state of the plant we define
F (x) = [F1(x),F2(x), . . . ,Fnc (x)], and define the following Casimir function

C =
n∑

i=1

(Fi (x)− ξi ) =
n∑

i=1

Ci (x , ξi )

C is an invariant of the system, hence

Ċ =
∂C
∂w

>
ẇ =

∂C
∂w

> (
Jcl
∂Hcl

∂w

)
= 0

But furthermore, C is a structural invariant, so it should be invariant with respect to the
structure of the system:

∂C
∂w

>
Jcl = 0
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Control by interconnection

Casimir functions
Let us look for structural invariants that relates each state of the controller with the
states of the plant:

C =
n∑

i=1

Ci (x , ξi ) =
n∑

i=1

(Fi (x)− ξi )

we obtain the following matching condition

[
∂F
∂x
>

(x) −I
] [J(x)− R(x) −g(x)g>C (ξ)

gC(ξ)g>(x) JC(ξ)− RC(ξ)

]
︸ ︷︷ ︸

Matching condition

[
∂Hd
∂x (x)
∂Hd
∂ξ

(ξ)

]
= 0

• Only the term in blue is considered in the matching condition because we want the
Casimir functions to be structural invariants of the system: not depend on
Hd (x , ξ).
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Control by interconnection

The condition for existence of Casimir functions for the closed loop system[
∂F
∂x
>

(x) −I
] [J(x)− R(x) −g(x)g>C (ξ)

gC(ξ)g>(x) JC(ξ)− RC(ξ)

]
= 0

may be written out as

Matching equations

∂F
∂x

>
(x)J(x)

∂F
∂x

(x) = Jc(ξ)

R(x)
∂F
∂x

(x) = 0 Dissipation obstacle!

Rc(ξ) = 0

∂F
∂x

>
(x)J(x) = gc(ξ)g>(x)
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Control by interconnection

The closed-loop dynamic then takes the form

ẋ =
[
J(x)− R(x)

]∂H
∂x

(x)− g(x)g>C (ξ)
∂Hc

∂ξ
(ξ)

Using the second and fourth M.C. we get

ẋ =
[
J(x)− R(x)

](∂H
∂x

(x)+
∂F
∂x

(x)
∂Hc

∂ξ
(ξ)

)
Since ξ = F (x)− C, we use the chain-rule for differentiation to establish

∂F
∂x

(x)
∂Hc

∂ξ
(ξ) =

∂Hc

∂x
(F (x)− C)
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Control by interconnection

Hence we obtain:

ẋ =
[
J(x)− R(x)

](∂H
∂x

(x)+
∂Hc

∂x
(F (x)− C)

)

Or equivalently

ẋ =
[
J(x)− R(x)

]∂Hd

∂x
(x)

With closed-loop energy Hd (x) = H(x) + Hc(F (x)− C).
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Pendulum (extended Casimir functions)



d
dt

(
q
p

)
=

(
0 1
−1 −f

)
︸ ︷︷ ︸

J

(
∂H0
∂q
∂H0
∂p

)
+

(
0
1

)
︸ ︷︷ ︸

g

u

y =
(

0 1
) (

∂H0
∂q
∂H0
∂p

)
=

p
m

(3)

Recall: we look for Casimir functions such as:

C (q, p, xc) = F (q, p)− xc

Using the M.C.s.
• From physical considerations we know that we only need to shape the q

coordinate: F is only one scalar function.
• Then, from M.E.1. we obtain that Jc = 0, and from M.E.3 that Rc = 0.
• Finally from M.E.4 we have that ∂F

∂q = 1.

hence a generating function is: F (q, p) = q
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Pendulum (control)

For the controller design we choose a function HC(xc) such that

Hd (x) = H0 (x) + Hc(F (x))

has a minimum at the desired equilibrium x∗ = (x∗1 , 0). The simplest choice is given by

HC(xc) = −mg(1− cos xc) +
1
2
αmg(xc − x∗1 )2

The control is finally (with damping injection) :

u = −yc − dp = −∂HC

∂xc
(xc) |xc =q − dp = mg sin q − αmg(q − x∗1 )− dp

which is the well-known as proportional plus gravity compensation control.
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Stability and stabilization of BCS

!

!"
#"

u(t,z) 

We are now interested in stability of BCS. We consider:
• Asymptotic stability
• Exponential stability

in the case of
• Static boundary feedback
• Dynamic boundary feedback

We shalle also see how to design dynamic controllers in order to shape the closed loop
energy function by using structural invariants.
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Stability

We are interested in (exponential) stability of abstract systems of the form

ẋ(t) = Ax(t), t ≥ 0, x(0) = x0

i.e. when the solution tends to zero (exponentially) fast as t → 0.

Definition

The C0 semigroup (T (t))t≥0 on X is exponentially stable if there exist positives
constants M and α such that

‖T (t)‖ ≤ Me−αt for t ≥ 0
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Stability

Theorem

Suppose that A is the infinitesimal generator of a C0 semigroup (T (t))t≥0 on X . The
following are equivalent

1. (T (t))t≥0 is exponentially stable

2. There exists a positive operator P ∈ L(X) such that

〈Ax ,Px〉+ 〈Px ,Ax〉 = −〈x , x〉 for all x ∈ D(A) (4)

3. There exists a positive operator P ∈ L(X) such that

〈Ax ,Px〉+ 〈Px ,Ax〉 ≤ −〈x , x〉 for all x ∈ D(A)

Equation (4) is called Lyapunov equation.
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Stability

When there exists a positive operator P ∈ L(X) such that

〈Ax ,Px〉+ 〈Px ,Ax〉 ≤ 0 for all x ∈ D(A)

one has to prove that there exists an invariant set and that this invariant set reduces to
zero.
Lassale’s invariant principle
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Boundary controlled port Hamiltonian systems

Boundary controlled port Hamiltonian systems

Let W be a n × 2n real matrix. If W has full rank and satisfies W ΣW> ≥ 0, then the
system ∂x

∂t = P1
∂
∂z (L(z)x)(t , z)) + (P0 − G0)L(z)x(t , z)with input

u(t) = W
[

f∂,Lx (t)
e∂,Lx (t)

]
is a BCS on X . The operator Ax = P1(∂/∂z)(Lx) + (P0 − G0)Lx with domain

D(A) =

{
Lx ∈ H1(a, b;Rn)

∣∣∣ [ f∂,Lx (t)
e∂,Lx (t)

]
∈ ker W

}
generates a contraction semigroup on X .
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Boundary controlled port Hamiltonian systems

Boundary controlled port Hamiltonian systems

Let W̃ be a full rank matrix of size n× 2n with
[

W
W̃

]
invertible and let PW ,W̃ be given by

PW ,W̃ =

([
W
W̃

]
Σ

[
W
W̃

]>)−1

=

[
W ΣW> W ΣW̃>

W̃ ΣW> W̃ ΣW̃>

]−1

.

Define the output of the system as the linear mapping C : L−1H1(a, b;Rn)→ Rn,

y = Cx(t) := W̃
[

f∂,Lx (t)
e∂,Lx (t)

]
.

Then for u ∈ C2(0,∞;Rk ), Lx(0) ∈ H1(a, b;Rn), and u(0) = W
[

f∂,Lx (0)

e∂,Lx (0)

]
the

following balance equation is satisfied:

1
2

d
dt
‖x(t)‖2

L =
1
2

[
u(t)
y(t)

]>
PW ,W̃

[
u(t)
y(t)

]
−〈G0Lx(t),Lx(t)〉 ≤ 1

2

[
u(t)
y(t)

]>
PW ,W̃

[
u(t)
y(t)

]
.

24 / 75



Outline

1. Control of finite dimensional PHS

2. Stability of BCS

3. In-domain controlled Port Hamiltonian systems

4. Conclusion and future works

25 / 75



Closed loop control with static feedback

Impedance passive case

As it has been pointed out in [Villegas, 2007], if the matrices W and W̃ are selected
such that PW ,W̃ =

[ 0 I
I 0

]
= Σ, then the BCS fulfills

1
2

d
dt
‖x(t)‖2

L ≤ u>(t)y(t).

!

"! #! $!

#%!$%!

&!'!

!!

!

ABOUT TWEEZERS

Y. LE GORREC

DNA is first approximated by a spring+damper system. The tweezer is approx-
imated by a linear second order system. The parametric identification of the open
tweezers (without trapped DNA) leads to:

• Mass: M = 360 . 10−9Kg
• Stiffness: k = 24.9 n/m
• Friction coefficient: ν = 10−4 N.s/m

The resonance frequency and the damping factor of the open tweezers are given by:

fR =
1

2π

�
k

M
− ν2

4M2
, Q =

√
kM

ν

After DNA bundle trapping

fR−DNA =
1

2π

�
k + kDNA

M
− (ν + νDNA)2

4M2
, QDNA =

�
(k + kDNA)M

(ν + νDNA)

From experiments we have:

fR = 2477, 75Hz , Q = 59.75 , fR−DNA = 2479, 5Hz , QDNA = 56, 80

Then
4π2f2

R−DNA =
k + kDNA

M
− (k + kDNA)

4MQ2
DNA

Then

kDNA = 4Mπ2f2
R−DNA

�
1 − 1

4Q2
DNA

�−1

− k

and

νDNA =

�
(k + kDNA)M

QDNA
− ν

ẋ = JLx

u = W

�
f∂
e∂

�
, y = �W

�
f∂
e∂

�

1


ẋ = JLx

r =
(

W + αW̃
)( f∂

e∂

)
y = W̃

(
f∂
e∂

)
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Asymptotic stability

Lemma

Assume that (λ−A)−1 : X → X is a compact operator for λ > 0. Then the system
described by: 

ẋ = JLx

r =
(

W + αW̃
)( f∂

e∂

)
y = W̃

(
f∂

e∂

)
with r = 0 and α > 0 is asymptotically stable.

Sketch of poof

We use the energy as Lyapunov function and Lassale’s invariant principle. First the
closed loop system is a BCS with infinitesimal generator of a contraction semigroup as
soon as α > 0. If u = 0, dH

dt = −yTαy
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Exponential stability

Lemma

Consider a BCS such that Wcl ΣW T
cl ≥ 0 with u(t) = 0, for all t ≥ 0. Then the energy of

the system E(t) = (1/2)‖x(t)‖2
L satisfies for τ large enough

E(τ) ≤ c(τ)

∫ τ

0
‖(Lx)(t , b)‖2

Rdt , and E(τ) ≤ c(τ)

∫ τ

0
‖(Lx)(t , a)‖2

Rdt ,

Theorem : exponential stability.

BCS is exponentially stable if the energy of the system satisfies

(dE/dt) ≤ −k‖(Lx)(t , b)‖2
R or (dE/dt) ≤ −k‖(Lx)(t , a)‖2

R

where k is a positive real constant.
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Example : Timoshenko beam

As state variables we choose

x1 = ∂w
∂z − φ : shear displacement,

x2 = ρ ∂w
∂t : transverse momentum distribution,

x3 = ∂φ
∂z : angular displacement,

x4 = Iρ ∂φ∂t : angular momentum distribution.

Then the model of the beam can be rewritten as

∂

∂t


x1
x2
x3
x4

 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


︸ ︷︷ ︸

P1

∂

∂z


K x1
1
ρ

x2

EI x3
1
Iρ

x4

+


0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0


︸ ︷︷ ︸

P0


K x1
1
ρ

x2

EI x3
1
Iρ

x4


︸ ︷︷ ︸

Lx

.
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Velocity feedback

One can define the boundary port variables:

(
f∂
e∂

)
=

1√
2

[
P1 −P1
I I

](
(Lx)(b)
(Lx)(a)

)
=

1√
2



(ρ−1x2)(b)− (ρ−1x2)(a)
(Kx1)(b)− (Kx1)(a)

(I−1
ρ x4)(b)− (I−1

ρ x4)(a)
(EIx3)(b)− (EIx3)(a)
(Kx1)(b) + (Kx1)(a)

(ρ−1x2)(b) + (ρ−1x2)(a)
(EIx3)(b) + (EIx3)(a)

(I−1
ρ x4)(b) + (I−1

ρ x4)(a)


.

(5)

Let us consider stabilization by applying velocity feedback i.e. following BC:

1
ρ(a)

x2(a) = 0, 1
Iρ(a)

x4(a) = 0,

K (b)x1(b, t) = −α1
1
ρ(b)

x2(b, t), EI(b)x3(b, t) = −α2
1

Iρ(b)
x4(b)
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Velocity feedback

Input mapping:

Wcl =
1√
2


−1 0 0 0 0 1 0 0

0 0 −1 0 0 0 0 1
α1 1 0 0 1 α1 0 0

0 0 α2 1 0 0 1 α2


then

Wcl ΣW T
cl = 2


0 0 0 0
0 0 0 0
0 0 α1 0
0 0 0 α2

 ≥ 0

As output we can choose

y =


−K (a)x1(a)
−(EI)(a)x3(a)

1
ρ(b)

x2(b)
1

Iρ(b)
x4(b)

 , with W̃ =
1√
2


0 1 0 0 −1 0 0 0
0 0 0 1 0 0 −1 0
1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1

 .
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Velocity feedback

Then

P−1
W ,W̃

=

[
2α I

I 0

]
,PW ,W̃ =

[
0 I
I −2α

]
Energy balance:

d
dt

E(t) =
d
dt
‖x(t)‖2

L = 〈u(t), y(t)〉U − 〈αy(t), y(t)〉R

where
〈αy(t), y(t)〉R = α1|(ρ−1x2)(b, t)|2 + α2|(I−1x4)(b, t)|2

Then

‖ (Lx(b)) ‖2
R = |(kx1)(b)|2 + |(ρ−1x2)(b)|2 + |(EIx3)(b)|2 + |(I−1

ρ x4)(b)|2
= (α2

1 + 1)|(ρ−1x2)(b, t)|2 + (α2
2 + 1)|(I−1

ρ x4)(b)|2
≤ κ〈αy(t), y(t)〉R = −κ d

dt E(t)

⇒ Exponential stability
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Dynamic boundary feedback
Consider a strictly passive linear finite dimensional system

v̇ = Acv + Bcuc , yc = Ccv + Dcuc .

with storage function Ec(t) = 1
2 〈v(t)Qcv(t)〉Rm , Qc = Q>c > 0 ∈ Rm × Rm.

Theorem [Villegas, 2007]

Let the open-loop BCS satisfy 1
2

d
dt ‖x(t)‖2

L = u(t)y(t). Consider a LTI strictly passive finite
dimensional system with storage function Ec(t) = 1

2 〈v(t),Qcv(t)〉Rm . Then the power preserving
feedback interconnection

u = r − yc , y = uc ,

with r ∈ Rn the new input of the system is a BCS on the extended state space x̃ ∈ X̃ = X × V with
inner product 〈x̃1, x̃2〉X̃ = 〈x1, x2〉L + 〈v1,Qcv2〉V . Furthermore, the operator Ae defined by

Ae x̃ =

[
JL 0
BcC Ac

] [
x
v

]
, D(Ae) =

{[
x
v

]
∈
[

X
V

] ∣∣∣Lx ∈ HN (a, b; Rn),

 f∂,Lx
e∂,Lx

v

 ∈ ker W̃D

}

where
W̃D =

[
(W + DcW̃ Cc)

]
generates a contraction semigroup on X̃ .
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Dynamic boundary feedback!
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ABOUT TWEEZERS 2





ẋ = J Lx�
u
y

�
=

�
W

W̃

� �
f∂,Lx(t)
e∂,Lx(t)

�

Define the output of the system as the linear mapping

C : L−1H1(a, b; Rn) → Rn, y = Cx(t) := W̃

�
f∂,Lx(t)
e∂,Lx(t)

�
.

Then for u ∈ C2(0,∞; Rk), Lx(0) ∈ H1(a, b; Rn), and

u(0) = W
�

f∂,Lx(0)

e∂,Lx(0)

�
the following balance equation is

satisfied:

1

2

d

dt
�x(t)�2

L =
1

2

�
u(t)
y(t)

��
PW,W̃

�
u(t)
y(t)

�
− �G0Lx(t), Lx(t)�

≤ 1

2

�
u(t)
y(t)

��
PW,W̃

�
u(t)
y(t)

�
.

(3)

The matrix PW,W̃ is defined only when
�

W
W̃

�
is invertible.

Notice that in the absence of some internal dissipation
(G0 = 0) the system only exchanges energy with the
environment through the boundaries since the input and
output act on the boundary of the spatial domain. Finally
we remark that the balance equation (3) may be rewritten
as:

1

2

d

dt
�x(t)�2

L ≤
�
(Lx)(t, b)
(Lx)(t, a)

�� �
P1 0
0 −P1

� �
(Lx)(t, b)
(Lx)(t, a)

�
(4)

Remark 3. As it has been pointed out in ?, if the matrices
W and W̃ are selected such that PW,W̃ = [ 0 I

I 0 ] = Σ, then

the BCS fulfils 1
2

d
dt�x(t)�2

L ≤ u�(t)y(t).

3. DYNAMIC BOUNDARY CONTROL

In what follows we consider the feedback loop of Figure ??
where the infinite dimensional system is is an impedance
passive system as described in Theorem 2. This intercon-
nection is power preserving and satisfies:

u = r − yc, uc = y

Furthermore we consider that the controller satisfies As-
sumption 4

Assumption 4. We consider a controllable, observable and
exponentially stable port Hamiltonian controller on the
form:

v̇ = (Jc − Rc)Qcv + Bcuc,
yc = BT

c Qcv
(5)

with state space v ∈ V = Rm, set of input values
uc ∈ Uc = Rn and set of output values yc ∈ Y = Rn.
The set Uc of admissible inputs consists of all Uc-valued
piecewise continuous functions defined on R. Jc, Rc , Qc

and Bc are constant real matrices of dimension m × m,
m × m, m × m, and m × n, respectively with Jc = −JT

c ,
Rc = RT

c ≥ 0 and Qc > 0 such that (Jc−Rc)Qc is Hurwitz.

From Kalman-Yakubovich-Popov Lemma the controller
satisfi

Proposition 1. There exist matrices P = PT > 0, P ∈
Rm,m, L ∈ Rm,n such that:

P (Jc − Rc)Qc + QT
c (Jc − Rc)

T P = −LLT (6)

(7)

4. ASYMPTOTIC STABILITY

Theorem 5. ?? Let the state of the open-loop BCS satisfy
1
2

d
dt�x(t)�2

L ≤ u�(t)y(t). Consider a LTI finite dimensional

system with storage function Ec(t) = 1
2 �v(t), Qcv(t)�Rm ,

Qc = Q�
c ≥0 ∈ Rm × Rm satisfying Assuption 4. Then

the feedback interconnection of the BCS and the finite
dimensional system is again a BCS on the extended state
space x̃ ∈ X̃ = X × V with inner product �x̃1, x̃2�X̃ =
�x1, x2�L + �v1, Qcv2�V . Furthermore, the operator Ae

defined by

Aex̃ =

�
J L 0
BcC Ac

� �
x
v

�

with

D(Ae) =

��
x
v

�
∈
�
X
V

� ���Lx ∈ HN (a, b; Rn),

�
f∂,Lx

e∂,Lx

v

�
∈ ker W̃D

�
,

where
W̃D =

�
(W + DcW̃ Cc)

�

generates a contraction semigroup on X̃.

Theorem 6. Consider the controller satisfying Assumption
4 connected to the impedance passive system as in Figure
??. Then the operator Ae described in Theorem 5 has
compact resolvant.

Theorem 7. Consider the feedback system of Figure ??
where the controller is chosen satisfying Assumption 4.
Then the closed loop system ?? such that r = 0 is globally
asymptotically stable. That is for any w(0)

5. ENERGY SHAPING

In the case of power preserving interconnection at the
boundary of the form (??), the closed loop Hamiltonian
function is equal to the sum of the Hamiltonians of the
open-loop system (plant) and the controller ???: Ẽ(x, v) =
E(x)+Ec(v). In order to use this closed loop Hamiltonian
as Lyapunov function, one has to guarantee that its

minimum is at the desired equilibrium ∂Ẽ
∂x (x∗) = 0. For

this purpose, and in a similar manner as for control of finite
dimensional port-Hamiltonian systems ?, it is possible to
relate the state variables of the controller with the state
variables of the plant by using structural invariants (i.e.,
which do not depend on the Hamiltonian) named Casimir
functions. Indeed, if it is possible to find Casimirs of the
form C(x, v) = v − F (x), with F (x) some smooth well
defined function of x, then on every invariant manifold
defined by v − F (x) = κ, with κ ∈ R a constant which
depends on the initial states of plant and controller, the
closed-loop Hamiltonian may be written as Ẽ(x, v) =
E(x) + Ec(F (x) + κ). The closed-loop Hamiltonian may
then be shaped by an appropiate choice of Ec.

In the following we give sufficient conditions such that
Casimir functions exist in the case of closed loop control
with dissipative port Hamiltonian controller.

Definition 8. ?? Consider the BCS defined by Theorem
2 with r = 0. A function C : X × V → R is a Casimir
function if Ċ = 0 along the solutions for every possible
choice of L(·) and Qc.

Following ? we will look for linear Casimir functions in the
form

C(x(t), v(t)) = Γ�v(t) +

� b

a

Ψ�(z)x(t, z)dz (8)

with Γ ∈ Rm, Ψ(z) ∈ Rn and Ψ�(z)x(t, z) ∈ H1(a, b; Rn).
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Asymptotic stability

Finite dimensional port Hamiltonian controller

v̇ = (Jc − Rc)Qcv + Bcuc , yc = B>c Qcv , Ec(t) = 1
2 v(t)>Qcv(t)

where we assume that Qc = Q>c > 0, Jc = −J>c , Rc = R>c ≥ 0 and Bc are real
constant matrices of proper dimensions. Furthermore, the controller is assumed to be
exponentially stable, i.e., Ac := (Jc − Rc)Qc is Hurwitz.

Theorem

Consider the above controller connected to the impedance passive system through
u = r − yc , uc = y . Then the operator Ae described in the previous theorem has
compact resolvant.

Theorem

Consider the feedback system u = r − yc , uc = y where the controller is chosen
satisfying the condition above. Then the closed loop system such that r = 0 is globally
asymptotically stable.
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Sketch of proof

• Let first consider that ω(0) ∈ D (Ae). By the aforementioned Theorem
[Villegas, 2007], Ae generates a contraction semigroup.

• Let now consider the energy as Lyapunov function Ec(t) = 1
2 〈ω(t), ω(t)〉X̃ . Since

ω(0) ∈ D (Ae) and:

dEc(t)
dt

= 〈ω̇(t), ω(t)〉X̃ = 〈Aeω(t), ω(t)〉X̃ = −vT Qd v (6)

where Qd > 0. Since (λI −Ae)−1 is compact and the semigroup is a contraction
it follows from LaSalle’s invariance principle that all solutions asymptotically tend
to the maximal invariant set Oc =

{
x̃ ∈ X̃ |Ėc = 0

}
.

• Let E be the largest invariant subset of Oc . We can prove that E = {0}. From
Ėc(t) = 0 and (6) we have v(t) = 0 and then v̇(t) = 0. Let η < n be the rank of
ker(Bc). Form the controller structure yc = 0 and n − η > 0 components of uc
equal 0. It follows that Oc reduces to the solution of a first order PDE of dimension
n with 2n − η boundary variables set to zero. It follows from Holmgren’s Theorem
that x̃(t) = 0, hence the asymptotic stability. The same hold for ω(0) ∈ X̃ by using
denseness argument.
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Energy shaping!
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ẋ = J Lx�
u
y

�
=

�
W

W̃

� �
f∂,Lx(t)
e∂,Lx(t)

�

Define the output of the system as the linear mapping

C : L−1H1(a, b; Rn) → Rn, y = Cx(t) := W̃

�
f∂,Lx(t)
e∂,Lx(t)

�
.

Then for u ∈ C2(0,∞; Rk), Lx(0) ∈ H1(a, b; Rn), and

u(0) = W
�

f∂,Lx(0)

e∂,Lx(0)

�
the following balance equation is

satisfied:

1

2

d

dt
�x(t)�2

L =
1

2

�
u(t)
y(t)

��
PW,W̃

�
u(t)
y(t)

�
− �G0Lx(t), Lx(t)�

≤ 1

2

�
u(t)
y(t)

��
PW,W̃

�
u(t)
y(t)

�
.

(3)

The matrix PW,W̃ is defined only when
�

W
W̃

�
is invertible.

Notice that in the absence of some internal dissipation
(G0 = 0) the system only exchanges energy with the
environment through the boundaries since the input and
output act on the boundary of the spatial domain. Finally
we remark that the balance equation (3) may be rewritten
as:

1

2

d

dt
�x(t)�2

L ≤
�
(Lx)(t, b)
(Lx)(t, a)

�� �
P1 0
0 −P1

� �
(Lx)(t, b)
(Lx)(t, a)

�
(4)

Remark 3. As it has been pointed out in ?, if the matrices
W and W̃ are selected such that PW,W̃ = [ 0 I

I 0 ] = Σ, then

the BCS fulfils 1
2

d
dt�x(t)�2

L ≤ u�(t)y(t).

3. DYNAMIC BOUNDARY CONTROL

In what follows we consider the feedback loop of Figure ??
where the infinite dimensional system is is an impedance
passive system as described in Theorem 2. This intercon-
nection is power preserving and satisfies:

u = r − yc, uc = y

Furthermore we consider that the controller satisfies As-
sumption 4

Assumption 4. We consider a controllable, observable and
exponentially stable port Hamiltonian controller on the
form:

v̇ = (Jc − Rc)Qcv + Bcuc,
yc = BT

c Qcv
(5)

with state space v ∈ V = Rm, set of input values
uc ∈ Uc = Rn and set of output values yc ∈ Y = Rn.
The set Uc of admissible inputs consists of all Uc-valued
piecewise continuous functions defined on R. Jc, Rc , Qc

and Bc are constant real matrices of dimension m × m,
m × m, m × m, and m × n, respectively with Jc = −JT

c ,
Rc = RT

c ≥ 0 and Qc > 0 such that (Jc−Rc)Qc is Hurwitz.

From Kalman-Yakubovich-Popov Lemma the controller
satisfi

Proposition 1. There exist matrices P = PT > 0, P ∈
Rm,m, L ∈ Rm,n such that:

P (Jc − Rc)Qc + QT
c (Jc − Rc)

T P = −LLT (6)

(7)

4. ASYMPTOTIC STABILITY

Theorem 5. ?? Let the state of the open-loop BCS satisfy
1
2

d
dt�x(t)�2

L ≤ u�(t)y(t). Consider a LTI finite dimensional

system with storage function Ec(t) = 1
2 �v(t), Qcv(t)�Rm ,

Qc = Q�
c ≥0 ∈ Rm × Rm satisfying Assuption 4. Then

the feedback interconnection of the BCS and the finite
dimensional system is again a BCS on the extended state
space x̃ ∈ X̃ = X × V with inner product �x̃1, x̃2�X̃ =
�x1, x2�L + �v1, Qcv2�V . Furthermore, the operator Ae

defined by

Aex̃ =

�
J L 0
BcC Ac

� �
x
v

�

with

D(Ae) =

��
x
v

�
∈
�
X
V

� ���Lx ∈ HN (a, b; Rn),

�
f∂,Lx

e∂,Lx

v

�
∈ ker W̃D

�
,

where
W̃D =

�
(W + DcW̃ Cc)

�

generates a contraction semigroup on X̃.

Theorem 6. Consider the controller satisfying Assumption
4 connected to the impedance passive system as in Figure
??. Then the operator Ae described in Theorem 5 has
compact resolvant.

Theorem 7. Consider the feedback system of Figure ??
where the controller is chosen satisfying Assumption 4.
Then the closed loop system ?? such that r = 0 is globally
asymptotically stable. That is for any w(0)

5. ENERGY SHAPING

In the case of power preserving interconnection at the
boundary of the form (??), the closed loop Hamiltonian
function is equal to the sum of the Hamiltonians of the
open-loop system (plant) and the controller ???: Ẽ(x, v) =
E(x)+Ec(v). In order to use this closed loop Hamiltonian
as Lyapunov function, one has to guarantee that its

minimum is at the desired equilibrium ∂Ẽ
∂x (x∗) = 0. For

this purpose, and in a similar manner as for control of finite
dimensional port-Hamiltonian systems ?, it is possible to
relate the state variables of the controller with the state
variables of the plant by using structural invariants (i.e.,
which do not depend on the Hamiltonian) named Casimir
functions. Indeed, if it is possible to find Casimirs of the
form C(x, v) = v − F (x), with F (x) some smooth well
defined function of x, then on every invariant manifold
defined by v − F (x) = κ, with κ ∈ R a constant which
depends on the initial states of plant and controller, the
closed-loop Hamiltonian may be written as Ẽ(x, v) =
E(x) + Ec(F (x) + κ). The closed-loop Hamiltonian may
then be shaped by an appropiate choice of Ec.

In the following we give sufficient conditions such that
Casimir functions exist in the case of closed loop control
with dissipative port Hamiltonian controller.

Definition 8. ?? Consider the BCS defined by Theorem
2 with r = 0. A function C : X × V → R is a Casimir
function if Ċ = 0 along the solutions for every possible
choice of L(·) and Qc.

Following ? we will look for linear Casimir functions in the
form

C(x(t), v(t)) = Γ�v(t) +

� b

a

Ψ�(z)x(t, z)dz (8)

with Γ ∈ Rm, Ψ(z) ∈ Rn and Ψ�(z)x(t, z) ∈ H1(a, b; Rn).
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Energy shaping

Idea:

Use the total energy as Lyapunov function candidate

From the power preserving interconnection:

Ẽ(x , v) = E(x) + Ec(v)

We are looking for Casimir functions (structural invariants⇒ Ċ = 0) on the form:

C(x , v) = v − F (x)

then
v − F (x) = κ

And
Ẽ(x , v) = E(x) + Ec(F (x) + κ)

It remains to choose Ec and to add dissipation such that:

∂Ẽ
∂x

(x∗) = 0, and
dE
dt

(x) < 0
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Casimir

Let consider the structural invariants of the closed loop system i.e. Casimirs, of the
form:

C(x(t), v(t)) = Γ>v(t) +

∫ b

a
Ψ>(z)x(t , z)dz (7)

with Γ ∈ Rm, Ψ(z) ∈ Rn and Ψ>(z)x(t , z) ∈ H1(a, b;Rn).

Computation of Casimir functions

Let consider the previously defined boundary controlled port Hamiltonian system with
r = 0. Then (7) is a Casimir function for the closed loop system if and only if:

P1
∂

∂z
Ψ(z) + (P0 + G0)Ψ(z) = 0, (8)

(Jc + Rc)Γ + BcW̃R
[

Ψ(b)
Ψ(a)

]
= 0, (9)

B>c Γ + WR
[

Ψ(b)
Ψ(a)

]
= 0. (10)
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Energy shaping

Sketch of the proof

C(xe(t)) is a Casimir function if and only if dC
dt = 0 independently to the energy

function,

dC
dt

=

〈
δC
δxe

,
dxe

dt

〉
L2

(11)

=

〈
δC
δxe

,AeHexe

〉
L2

(12)

=

〈
A∗e

δC
δxe

,Hexe

〉
L2

+ BC (13)

(14)
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Energy shaping

Proposition [Macchelli et al., 2017]
Under the hypothesis that the Casimir functions exist, the closed-loop dynamics (when
u = yc + u′) is given by :

∂x
∂t

(t , ζ) = P1
∂

∂ζ

δHcl

δx
(x(t))(ζ) + (P0 − G0)

δHcl

δx
(x(t))(ζ)

u′ = W ′R

( δHcl
δx (x)

)
(b)(

δHcl
δx (x)

)
(a)

 (15)

in which δ denotes the variational derivative, while

Hcl (x(t)) =
1
2
‖x(t)‖2

cl +
1
2

(∫ b

a
Ψ̂T (ζ)x(t , ζ) dz

)T

×

× Γ̂−1QC Γ̂−T
∫ b

a
Ψ̂(ζ)T x(t , ζ) dz (16)

and W ′ is a n × 2n full rank, real matrix s.t. W ′ΣW ′T ≥ 0. Asymptotic stability is
ensured by damping injection.
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Extension to systems with dissipation

Proposition [Macchelli et al., 2017]
The feedback law u = β(x) + u′, with u′ an auxiliary boundary input, maps the original
system into the target dynamical system

∂x
∂t

(t , z) = P1
∂

∂z
δHd

δx
(x(t))(z) + (P0 − G0)

δHd

δx
(x(t))(z)

u′(t) = WR

( δHd
δx (x(t))

)
(b)(

δHd
δx (x(t))

)
(a)

 (17)

with Hd (x) = H(x) + Ha(x), provided that

P1
∂

∂z
δHa

δx
(x) + (P0 − G0)

δHa

δx
(x) = 0 (18)

β(x) + WR

( δHa
δx (x)

)
(b)(

δHa
δx (x)

)
(a)

 = 0. (19)

43 / 75



Main results

• System without dissipation (immersion reduction method)
• Computation of the Casimir invariants: Γ̂, Ψ̂T (z)
• Implementation of the control: Qc → Hd
• Stabilization using damping injection.

• System with dissipation (direct state feedback)
• Direct computation of Ha and β(x)
• Stabilization using damping injection.

• In the two cases we can prove asymptotic stability
[Villegas et al., 2009, Ramirez et al., 2014, Macchelli et al., 2017].

• Not so many degrees of freedom but the closed loop energy function can be
partially shaped.
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Example: longitudinal (axial) vibration of a beam

	

0	 L	ϕ(z) 

S(z)	

State variables : deformation and linear momentum density

ε(t , ζ) =
∂ϕ

∂ζ
(t , ζ), p(t , ζ) = ρS(ζ)v(t , ζ) (20)

Material’s deformation is considered linear (Hooke’s law) :

ρS(ζ)
∂2ϕ

∂t2
(t , ζ) =

∂

∂ζ

[
ES(ζ)

∂ϕ

∂ζ
(t , ζ)

]
− D

∂ϕ

∂t
(t , ζ)dζ

The energy is given by (kinetic+potential):

H(p(t , ζ), ε(t , ζ)) =
1
2

∫ L

0

[
p2(t , ζ)

ρS(ζ)
+ ES(ζ)ε2(t , ζ)

]
dζ
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Example: longitudinal (axial) vibration of a beam

From:

H(p(t , ζ), ε(t , ζ)) =
1
2

∫ L

0

[
p2(t , ζ)

ρS(ζ)
+ ES(ζ)ε2(t , ζ)

]
dζ

We define the co-energy variables:

σS(t , ζ) =
δH
δε

(ε(t , ζ)) = ES(ζ)ε(t , ζ) = S(ζ)σ(t , ζ)

v(t , ζ) =
δH
δp

(p(t , ζ)) =
p(t , ζ)

ρS(ζ)
=
∂ϕ

∂t
(t , ζ)

Then:
∂

∂t

(
ρS(ζ)

∂ϕ

∂t
(t , ζ)

)
=

∂

∂ζ

[
ES(ζ)

∂ϕ

∂ζ
(t , ζ)

]
− D

∂ϕ

∂t
(t , ζ)

with
∂

∂t

(
∂ϕ

∂ζ
(t , ζ)

)
=

∂

∂ζ

(
∂ϕ

∂t
(t , ζ)

)
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Example: longitudinal (axial) vibration of a beam

The port-Hamiltonian formulation of the system is then

∂

∂t

(
ε(t , ζ)
p(t , ζ)

)
=

(
0 ∂

∂ζ
∂
∂ζ

−D

)(
ES(ζ) 0

0 1
ρS(ζ)

)(
ε(t , ζ)
p(t , ζ)

)
which is in the form :

∂x
∂t

(t , ζ) = P1
∂

∂ζ

(
H(ζ)x(t , ζ)

)
+ (P0 − G0)H(ζ)x(t , ζ) (21)

with P0 = 0 and

P1 =

(
0 1
1 0

)
G0 =

(
0 0
0 D

)
H(ζ) =

(
ES(ζ) 0

0 1
ρS(ζ)

)
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Input and output

The boundary port variables are

(
f∂
e∂

)
=

1√
2


v(L)− v(0)
σS(L)− σS(0)
σS(L) + σS(0)

v(L) + v(0)


The boundary input and output are selected as

u(t) =

(
v(t , 0)
σS(t , L)

)
y(t) =

(
−σS(t , 0)

v(t , L)

)
(22)

which can be derived choosing W and W̃ such that:

W =
1√
2

(
−1 0 0 1
0 1 1 0

)
W̃ =

1√
2

(
0 1 −1 0
1 0 0 1

)
The energy balance is then :

dH
dt

(t) = −
∫ L

0
Dv2(t , ζ) dζ + yT(t)u(t) ≤ yT(t)u(t).
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Lossless case : Approach based on structural invariants

We consider a dynamic controller with nC = 2, RC = 0, BC = I and

JC =

(
0 I
−I 0

)
,

which implies that the closed-loop system is characterized by the following Casimir
functions:

C1(ξ1(t), ε(t , ·)) = ξ1(t)−
∫ L

0
ε(t , ζ) dζ

C2(ξ2(t), p(t , ·)) = ξ2(t)−
∫ L

0
p(t , ζ) dζ.

The controller Hamiltonian is chosen such that

Ĥc(ξ1, ξ2) =
1
2

Ξ1ξ
2
1 +

1
2

Ξ2ξ
2
2 (23)
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Approach based on structural invariants

The closed loop energy function is:

Hcl (ε, p) =
1
2

∫ L

0

[
p2

ρS(ζ)
+ ES(ζ)ε2

]
dζ+

+
1
2

Ξ1

(∫ L

0
ε dζ

)2

+
1
2

Ξ2

(∫ L

0
p dζ

)2

(24)

and the control is of the form

u = −yc = −GcδHc = −
(

Ξ2 0
0 Ξ1

)(∫ L
0 p dζ∫ L
0 ε dζ

)
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System with dissipation

Due to the dissipation D 6= 0, the energy-Casimir method cannot be applied. The
closed loop energy function cannot be shaped in the p coordinate.

Admissible Ha :

Ĥa(ξ1, ξ2) =
1
2

Ξ1ξ
2
1 +

1
2

Ξ2ξ
2
2

with

ξ1(ε(t , ·)) =

∫ L

0
ε(t , ζ) dζ

ξ1(ε(t , ·), p(t , ·)) =

∫ L

0
[D(L− z)ε(t , ζ) + p(t , ζ)] dζ

(25)

Leading to u = −
(

Ξ2 0
0 Ξ1

)(∫ L
0 [D(L− z)ε(t , ζ) + p(t , ζ)] dζ∫ L

0 ε dζ

)
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Achievable performances
We consider now that D = 0, all parameters equal 1 (simulations are provided
considering a finite volume approximation)

u(t) =

(
v(t , 0)
σS(t , L)

)
=

(
0

ū(t)

)
y(t) =

(
−σS(t , 0)

v(t , L)

)
=

(
ỹ(t)
ȳ(t)

)
and we plot the position at the end point of the system.
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Figure: Open loop step response.
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Simulation
We first consider the static feedback case i.e. when pure dissipation is added at the
boundary:

u2 = −kd y2
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Figure: Step response of the closed loop system with pure dissipation term.
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Simulation
In a second instance we consider the control law devoted to energy shaping in addition
to a pure dissipation term:

u = −kc (x22 − x01)− kd ẋ22
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Figure: Step response of the closed loop system with state feedback.
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Outline

Control of finite dimensional PHS

Stability of BCS

In-domain controlled Port Hamiltonian systems

Conclusion and future works
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General case: class of systems

Consider systems of two conservation laws

∂

∂t

(
x1
x2

)
=

(
0 G
−G∗ 0

)(
L1x1
L2x2

)
+

(
0
I

)
u, y =

(
0 I

)( x1
x2

)
where x1, x2 ∈ L2([a, b] ,Rn), L1(ζ) > 0 and L2(ζ) > 0

G = G0 + G1
∂

∂ζ
+ G2

∂2

∂ζ2
G∗ = GT

0 − GT
1
∂

∂ζ
+ GT

2
∂2

∂ζ2

with G0,G1,G2 ∈ R(n,n) and G∗ is the formal adjoint of G. This formulation allows to
model a large class of systems:

• The 1D wave equation: n = 1, G0 = 0,G1 = 1,G2 = 0.
• The Euler Bernouilli beam equation. In this case n = 1, G0 = 0,G1 = 0,G2 = 1.
• The Timoshenko beam equation. In this case n = 2 and

G0 =

(
0 0
−1 0

)
,G1 =

(
1 0
0 1

)
,G2 = 02,2
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Distributed control

We consider the system is connected to the infinite dimensional controller

∂xc

∂t
= 0.Qcxc + Bcuc (26)

yc = Bc
∗Qcxc +Dcuc (27)

where Qc > 0 ∈ Rn×n, Bc a differential operator operator of the form:

Bc = Bc0 + Bc1
∂

∂ζ
+ Bc2

∂2

∂ζ2

with Bc0,Bc1,Bc2 ∈ Rn×n and Dc = I ∂
2

∂ζ2 through the power preserving
interconnection : (

u
y

)
=

(
0 −I
I 0

)(
uc
yc

)
(28)

The energy of the controller is given by:

Hc(xc) =
1
2

∫ b

a
xT

c Qcxcdζ
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Distributed control

System

Control
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+

BC(a) BC(b).
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Distributed control

Due to the power preserving interconnection

Hcl (x , xc) = H(x) + Hc(xc)

We look for closed loop structural invariants C(x , xc) to shape the closed loop energy
function i.e.

dC
dt

(x , xc) = 0, in closed loop

If these Casimir functions exist and can be written in the form

C(x , xc) =

∫ b

a
(xc + F (x)) dζ = κ

it is possible to relate the state of the controller xc with the state of the system x . By
choosing the controller energy function, it is then possible to shape the closed loop
energy function as

Hcl (x , xc) = H(x) + Hc(xc) (29)

= H(x) + Hc(κ− F (x)) (30)

= Hcl (x) (31)
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Distributed control case

The closed loop system is given by:

∂xe

∂t
:=


∂x1
∂t
∂x2
∂t
∂xc
∂t

 =

 0 G 0
−G∗ −Dc −B∗c

0 Bc 0


︸ ︷︷ ︸

Ae

 L1x1
L2x2
Qcxc

 (32)

The closed loop system (32) admits structural invariants of the form

κ0 = C(xe) =

∫ b

a
ΨT xedζ (33)

with Ψ = (ψ1, ψ2, ψc) if and only if

60 / 75



Distributed control case

− Gψ2(ζ) = 0 = −Bcψ2(ζ) (34)

G∗ψ1(ζ)−D∗cψ2(ζ) + B∗cψ3(ζ) = 0 (35) 0 G1 0
−GT

1 0 Bc1
0 BT

c1 0

 ψ1(ζ)
ψ2(ζ)
ψ3(ζ)

∣∣∣∣∣∣
a,b

= 0 (36)

 0 −G2 0
GT

2 −I −Bc2
0 BT

c2 0

 ψ1(ζ)
ψ2(ζ)
ψ3(ζ)

∣∣∣∣∣∣
a,b

= 0 (37)

 0 −G2 0
GT

2 −I −Bc2
0 BT

c2 0




dψ1
dζ (ζ)

dψ2
dζ (ζ)

dψ3
dζ (ζ)


∣∣∣∣∣∣∣∣
a,b

= 0 (38)
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Control design

Control design
Choosing Bc = G and appropriate initial conditions the closed loop system (32) admits
as structural invariants the function C(xe) defined by (33) and

Ψ = (Ψ1, 0,−Ψ1)

i.e. xc = x1

The dynamic controller we consider at the end is of the form

∂xc

∂t
= 0.Qxc + Guc (39)

yc = G∗Qcxc −Dcuc (40)

with xc(ζ, 0) = x1(ζ, 0) and Dc = I ∂
2

∂ξ2 .
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Control design
The closed loop system is equivalent to the system

∂x1
∂t
∂x2
∂t
∂xc
∂t

 =

 0 G 0
−G∗ Dc −G∗

0 G 0

 L1x1
L2x2
Qcxc

 (41)

• The operator Jcl defined on

D (Jcl ) =

{
xe(ζ, t) ∈ HN

(
(a, b),R2n+1

) ∣∣∣ ( f∂,e
e∂,e

)
∈ ker We, xc(ζ, 0) = x1(ζ, 0)

}
with W T

e ΣWe ≥ 0 generates a contraction semigroup.
• Choosing the initial conditions such that xc(ζ, 0) = x1(ζ, 0)(

∂x1
∂t
∂x2
∂t

)
=

(
0 G
−G∗ −Dc

)(
(L1 +Qc) x1
L2x2

)

with boundary conditions 0 = We

(
f∂,e
e∂,e

)
with xc(a) = x1(a, t), xc(b, t) = x1(b, t) is

asymptotically stable.
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Example: 1D wave propagation of sound in a wave guide
The state variables are the kinetic momentum Φ(ζ, t) of the air and its volumetric
expansion Γ(ζ, t) defined on ζ ∈ [0, L]. The total energy of the system is given by:

H(Φ, Γ) =
1
2

∫ b

a

(
1
µ0

Φ(ζ, t)2 +
1
χs

Γ(ζ, t)2
)

dζ

with µ0 the average mass density and χs the adiabatic compressibility factor. The
co-state variables are(

e1
e2

)
=

(
δH
δΦ
δH
δΓ

)
=

(
1
µ0

Φ(ζ, t)
1
χs

Γ(ζ, t)

)
=

(
v(ζ, t)
P(ζ, t)

)
namely the velocity v(ζ, t) and the pressure P(ζ, t). The resulting model is given by:

∂

∂t

(
Γ
Φ

)
=

(
0 − ∂

∂ζ

− ∂
∂ζ

0

)(
1
χs

Γ
1
µ0

Φ

)
+

(
0
1

)
u (42)

y =
(

0 1
)( 1

χs
Γ

1
µ0

Φ

)
(43)

This model fits with the general port Hamiltonian formulation (56) with

P0 = 0,P1 = 1,P2 = 0,L1 =
1
µ0
,L2 =

1
χs
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Example: 1D wave propagation of sound in a wave guide

The controller defined by

∂xc

∂t
= 0.L1xc +

∂uc

∂ζ
(ζ, t) (44)

yc = −∂ (L1xc)

∂ζ
(ζ, t)− D

∂2 (µ0uc)

∂ζ2
(ζ, t) (45)

allows to transform the original system into

∂Φ

∂t
(ζ, t) = D

∂2Φ

∂ζ2
(ζ, t)

by using the power preserving interconnection u = −yc , uc = y .
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Example

Figure: Open loop time response to initial conditions on x2 with reflective boundary conditions.
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Example

Figure: Closed loop time response to initial conditions on x2 with reflective boundary conditions
(with the dynamic feedback (44)).

67 / 75



Example

Figure: Time response to boundary input on x2 with reflective boundary condition at point L in open
loop.
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Example

Figure: Time response to boundary input on x2 with reflective boundary condition at point L in open
loop (with the dynamic feedback (44)).
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Example

Figure: Time response to boundary input on x2 with reflective boundary condition at point L in
closed loop with a 10% (top) and 200% (bottom) variation of L1.
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Example

The control strategy is now applied to the boundary control of the 2D wave equation

cliquer ici
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Conclusion and future work

Conclusion
In this talk we have:

• Given an overview on control design by energy shaping.
• Discussed the control design using structural invariants in the boundary control

case.
• Discussed the distributed control design using structural invariants in the linear

infinite dimensional case.
• Applied it to the 1D wave equation and checked the performances on the 2D wave

equation.

Ongoing and future work
• Extension to the under actuated case.
• Use of observers to get rid of initialisation issues.
• Link with backstepping approaches.
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Thank you for your attention !
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