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Port-Hamiltonian systems with inputs and outputs

We are interested in boundary controls and boundary observations.
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Port-Hamiltonian systems with inputs and outputs

Example: Wave equation
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Port-Hamiltonian systems with inputs and outputs

Example: Wave equation
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y) = 22,
Question: Is this a well-posed linear system?
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Well-posedness of port-Hamiltonian systems

State space X = L?((a,b); R™) with (the energy) norm

b
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Definition
The port-Hamiltonian system is called well-posed, if

> Ar = PljC [Hz] + Py [Hz] with domain

D(A) = {33 €X| CZ_H:U € X, [WBJ] [(H$)(b)] = o}

)

is the generator of a Cy-semigroup on X.
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Well-posedness of port-Hamiltonian systems

Let Wp = [S//B’l} be a full rank real matrix of size n x 2n.
B,2

PyH can be factorized as PyH(¢) = ST A(C)S(C) with A
diagonal.

Assume: A, S are continuously differentiable.

Theorem (Z, Le Gorrec, Maschke, Villegas '10)

If Ax = (Plﬁ + P(]) [Hz] generates a Cyy-semigroup, then the
port-Hamiltonian system is well-posed.

Remark: We even have a regular system.



Example: Wave equation
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Example: Wave equation
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So if T" and p are continuously differentiable, then the controlled
wave equation is well-posed.



Inputs and Outputs

Transfer Functions



Introduction

The aim of this part is to define transfer function for systems
described by partial differential equations.

We derive these transfer functions via a very simple calculation.
For port-Hamiltonian systems we show that the energy/power
balance induces properties on the transfer function.



Transfer function for an o.d.e.

Consider the simple system described by the ordinary differential
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Transfer function for an o.d.e.

Consider the simple system described by the ordinary differential

equation
y(t) +5y(t) = 3u(?),

the transfer function of this system is given by

How do you come to this?
» Laplace transform, or

» Exponential solutions.
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One way for obtaining the transfer function of
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is to take u(t) = e, s € C, and to try to find a solution of the

same format, i.e., y(t) = ae®’.
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Exponential solutions

One way for obtaining the transfer function of

y(t) + 5y(t) = 3u(t)

is to take u(t) = e, s € C, and to try to find a solution of the
same format, i.e., y(t) = ae®’. Substituting this in the differential
equation, gives

sae® + baest = 3est.

Since e*! is non-zero, we may divide by it, and we find
sa+ ba = 3.

If s £ —5, this is solvable;

T 545



Exponential solutions

So if we want to find an exponential solution
ut) =e*, y(t) = ae™,
of the o.d.e.
y(t) + 5y(t) = 3u(t),
we find that:

» It is possible for all s € C except for s = —5.
» The « equals




Exponential solutions

So if we want to find an exponential solution
ut) =e*, y(t) = ae™,
of the o.d.e.
y(t) + 5y(t) = 3u(t),
we find that:

» It is possible for all s € C except for s = —5.
» The « equals

» We call this the transfer function at s.



Transfer function via exponential solutions

Definition

Given an (abstract) differential equation in the variables

(u(t), z(t),y(t)), where u(t), z(t), and y(t) take their values in the
(Hilbert) spaces U, Z, and Y, respectively.

Let s € C. If for every ug € U, there exists a unique solution of
the form (uge®t, 2pe®t, yoe®?), and the mapping ug — o is linear
and bounded, then this mapping is called the transfer function at
s, and will be denoted by G(s). O



Transfer function via exponential solutions

Definition

Given an (abstract) differential equation in the variables

(u(t), z(t),y(t)), where u(t), z(t), and y(t) take their values in the
(Hilbert) spaces U, Z, and Y, respectively.

Let s € C. If for every ug € U, there exists a unique solution of
the form (uge®t, 2pe®t, yoe®?), and the mapping ug — o is linear
and bounded, then this mapping is called the transfer function at
s, and will be denoted by G(s). O

We call a solution of the form ’U,(]€St ZO@St 0€St an exponential
) )
solution.



Transfer function for state linear systems

Consider the state differential equation

z(t) = Axz(t)+ Bu(t)
y(t) = Cux(t)+ Du(t)

with A, B, C', and D matrices.
Let s € C, and ug € U. We try to find a solution of the form

(u(t), z(t),y(t)) = (uoe™, zoe™, yoe™).
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Transfer function for state linear systems

Consider the state differential equation

y(t) = Cux(t)+ Du(t)

with A, B, C', and D matrices.

Let s € C, and ug € U. We try to find a solution of the form
(u(t), z(t), y(t)) = (uoe™, zoe™, yoe™).

Substituting, this in the differential equation gives

sroe®t =  Axoe’ + Buge®

yoet = Cuxoe®t + Duge®.

Since e*! is never zero, this is equivalent to:



(SI—A)ZO e BUO
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(SI—A)ZO e BUO
yo = Czy+ Dug.

If sI — A is invertible, then we find

yo = C(sI — A)~ ! Bug + Duy.



(SI—A)ZO e BUO
yo = Czy+ Dug.

If sI — A is invertible, then we find
Yo = C(SI — A)_lBuo + Dug.

This clearly defines a bounded linear mapping from ug to yo, and
so the transfer function at s is given by

G(s)=C(sI — A" 'B+D.

This holds for all
s€ p(A):={seC| (s — A)~! exists as bounded operator}.



Example

We take a heated bar. We heat it uniformly at one half, and we
measure (half) the average temperature in the other half;

9 s
G0 = GaEn+ I 0Ouw
ox Ox

y(t) = /0 * (¢ dC.

We obtain the transfer function.



Transfer function

We try to find an exponential solution of the p.d.e. This gives the
following equations

d2
szo(Q)e” = f?(c)eswﬂg,l](ouoe“
C;fz_o(())est _ ﬁ?u)esi:o

yoe = / 2o (C)etdc.

0



Transfer function

Hence

s20(¢)
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Transfer function

Hence
d2
s20(Q) = G O+ L (Quo
d$0 o dCL'O -
TC(O) = Tg(l)_o

Yo = /02$0(C)d4-

The first two lines represent an o.d.e. with boundary conditions.



Transfer function

The solution of

d2$0

szo(¢) = TCQ(O + 11 5 (Quo
dIQ o dCL'O -
TC(O) = Tg(l) =0

is given as
z0(¢) = cosh(v/s()wo(0) —
1 ¢
7= | bV =€) T may (o

with
sinh(y/s/2)ug ug

70(0) = ssinh(y/s)  2scosh(y/s/2)’




Transfer function

Using this we find that

=

/0  20(C)de

sinh(v/s/2)ug

Yo

2s+/s cosh(y/s/2)



Transfer function

Using this we find that

|=

Yo

/0  20(C)de

sinh(v/s/2)ug

2s+/s cosh(y/s/2)

Hence the transfer function is given by

G(s) = W



Transfer function, remark

If you write the solution of the o.d.e.

d2
s20(Q) = G O+ T(Ouo
dxg dxg
w0 = Pm=0

as a Fourier cosine series, then you find another expression for the
transfer function. Namely,

G(s) = 1 Qi sin(nm)?
%= 4 < n?m?(s + n?r?)



Transfer function, remark

If you write the solution of the o.d.e.

d2
s20(Q) = G O+ T(Ouo
dxg dxg
w0 = Pm=0

as a Fourier cosine series, then you find another expression for the
transfer function. Namely,

G(s) = 1 Qi sin(nm)?
%= 4 < n?m?(s + n?r?)

However, the transfer function is unique, and so we find that

tanh(y/5/2) 1 o sin(nmg)?
2VES =— 2 .
25/ G(s) 4s ; n?7m2(s + n?m?)



Transfer functions

So we have seen that working with exponential solutions, directly
on the p.d.e., works very well.

Note that it is (almost) the same as the engineering trick of
replacing derivative with respect to time by an s.



Transfer functions

So we have seen that working with exponential solutions, directly
on the p.d.e., works very well.

Note that it is (almost) the same as the engineering trick of
replacing derivative with respect to time by an s.

We can do that for systems with control and observation at the
boundary.



Transfer function, boundary control and observation

Example
Consider the system with boundary control and observation
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Transfer function, boundary control and observation

Example
Consider the system with boundary control and observation

ow ow
E(C? t) = %(C? t)
w(l,t) = u(t)

y() = w(0,1).
Substituting exponential functions for all signals, gives

d.%'()

seo(Q)e” = o (Oe”
zo(1)e’t = wuge
yoet = x0(0)e.

Thus



Example of transfer function with boundary control and
observation

s20(Q) = 20
1'0(1) = U
yo = x0(0).

This is an ordinary differential equation with given (end) condition,
ug and unknown (initial) condition, .



Example of transfer function with boundary control and
observation

s20(Q) = 20
1'0(1) = U
yo = x0(0).

This is an ordinary differential equation with given (end) condition,
ug and unknown (initial) condition, .

The solution equals zo(¢) = €5 Dugy. Thus yo = e uy.

The transfer function equals

G(s)=¢e* se C.
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Similar like for rational function, we can draw the Bode and
Nyquist plot of general transfer functions



Bode and Nyquist plots

Similar like for rational function, we can draw the Bode and
Nyquist plot of general transfer functions
For instance the Bode magnitude plot of

Gl = h(/5/2) 1

2s4/s 4s




Transfer functions for pH systems

Consider the port-Hamiltonian system with input and outputs
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Transfer functions for pH systems

Consider the port-Hamiltonian system with input and outputs

S = (g m) prate)

a¢
-G8, 0- 2]
() = We | (00

Assume that the energy balance can be expressed in the inputs and
outputs. That is

with () a symmetric matrix.



Transfer functions for pH systems

Since exponential solutions are solutions, the power balance
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Transfer functions for pH systems

Since exponential solutions are solutions, the power balance

(0 = [T w07] @ |11

also holds for these.

Remark: Since the s is the exponential solutions may be complex,
we have to write the power balance for complex valued solutions.
The (complex) power balance equals



Transfer functions for pH systems

Hence for the exponential solution the power balance can be
written as

Aw) = [ult)y,ut7]Q [““)}
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Transfer functions for pH systems

Hence for the exponential solution the power balance can be
written as

Aw) = [ult)y,ut7]Q [““)}

t
= = uoes
— [USGSt,yESSt,] Q |: :|

yoest

_ * ok U0 | 2Re(s)t
[ug, 5] @ [yo] €



Transfer functions for pH systems

Hence for the exponential solution the power balance can be
written as

Aw) = [ult)y,ut7]Q [““)}

st
St St upe
e 5™ @ [yoest}

_ * ok U0 | 2Re(s)t
[ug, 5] @ [yo] €

[uf, usG(s)*] Q [G(I;(;UJ eZRe(s)t,



Transfer functions for pH systems
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Since
H(t) = ()% = (x(t), 2(t)) x,

we find for the exponential solution that

H(t) = (woe®, zoe™) x = (0, 20) xR = ||| % &R,



Transfer functions for pH systems

Since
H(t) = ()% = (x(t), 2(t)) x,

we find for the exponential solution that
H(t) = (woe®, zoe™) x = (0, 20) xR = ||| % &R,

Combining these two results gives that

2Re(s)oo k0 = H(0) = [u5,05G(5] @ | 5, | 2



Transfer functions for pH systems

Since
H(t) = [lz(t)[% = (z(t), (1)) x,
we find for the exponential solution that

eZRe(s)t B{eQRe(s)t.

H(t) = (zoe®, moe™) x = (x0,z0)x = ||zo]

Combining these two results gives that

s ’ * * * U, s
2Re(s)[|zo[5 e = H(t) = [uf, uiG(s)] Q [G(sguo] e2Re)t,

Or equivalently:

2Re()aolfk = H0) = [1606(6)°] @ 55, |



Transfer functions for pH systems

Example: Wave equation
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Transfer functions for pH systems

Example: Wave equation

0%w 1 9 ow
) W(Cﬁ) = 0o {T(O(‘)C(C’t)]
%\@y ut) = TOZ0, 0=F 0.0
ow
y(t) = E(l,t)

To calculate the expression of the transfer function can be
hard/impossible. However,



Transfer functions for pH systems

Example: Wave equation

g

P
ot?

1 0 ow
= 2(0) B¢ {T(O(‘)C(C’t)]
ow ow
= T(l)aig(lvt% OZE(OJ)
ow
- E(lat)

To calculate the expression of the transfer function can be
hard /impossible. However, the power balance equals



Transfer function for the vibrating string system

From the general result we find
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Transfer function for the vibrating string system

From the general result we find

] [G(Z(; uo

[esR SIS

e()lalk = [uuic(s)] )
= Re(G(s)) ol



Transfer function for the vibrating string system

From the general result we find

= O
(@R NIIE
—
Q
=
~—~ O
e
o
[ I

el = [u5. 05607 |
= Re(G(s))|uo|?.
Since ||zo[|% > 0 and |up|? > 0, we find that for Re(s) > 0 there

holds
Re(G(s)) >0

Thus G is positive real.



