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Port-Hamiltonian systems with inputs and outputs

We are interested in boundary controls and boundary observations.

∂x

∂t
(ζ, t) =

(
P1

∂

∂ζ
+ P0

)
[Hx(t)]

u(t) = WB,1

[
(Hx)(b, t)
(Hx)(a, t)

]
,

0 = WB,2
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(Hx)(b, t)
(Hx)(a, t)

]
,

y(t) = WC
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(Hx)(b, t)
(Hx)(a, t)

]
.



Port-Hamiltonian systems with inputs and outputs

Example: Wave equation
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]
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Question: Is this a well-posed linear system?
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Well-posedness of port-Hamiltonian systems

State space X=L2((a, b);Rn) with (the energy) norm

‖f‖2X =
1

2

∫ b

a
f(ζ)TH(ζ)f(ζ)dζ.

Definition
The port-Hamiltonian system is called well-posed, if

I Ax = P1
d

dζ
[Hx] + P0 [Hx] with domain

D(A) =

{
x ∈ X | d

dζ
Hx ∈ X,

[
WB,1

WB,2

] [
(Hx)(b)
(Hx)(a)

]
= 0

}
is the generator of a C0-semigroup on X.

I There are t0,mt0 > 0:

‖x(t0)‖2X +

∫ t0

0
‖y(t)‖2dt ≤ mt0

[
‖x(0)‖2X +

∫ t0

0
‖u(t)‖2dt

]
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Well-posedness of port-Hamiltonian systems

Let WB :=

[
WB,1

WB,2

]
be a full rank real matrix of size n× 2n.

P1H can be factorized as P1H(ζ) = S−1(ζ)∆(ζ)S(ζ) with ∆
diagonal.

Assume: ∆, S are continuously differentiable.

Theorem (Z, Le Gorrec, Maschke, Villegas ’10)

If Ax =
(
P1

d
dζ + P0

)
[Hx] generates a C0-semigroup, then the

port-Hamiltonian system is well-posed.

Remark: We even have a regular system.
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.

So if T and ρ are continuously differentiable, then the controlled
wave equation is well-posed.
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Inputs and Outputs

Transfer Functions



Introduction

The aim of this part is to define transfer function for systems
described by partial differential equations.
We derive these transfer functions via a very simple calculation.
For port-Hamiltonian systems we show that the energy/power
balance induces properties on the transfer function.



Transfer function for an o.d.e.

Consider the simple system described by the ordinary differential
equation

ẏ(t) + 5y(t) = 3u(t),

the transfer function of this system is given by

G(s) =
3

s+ 5
.

How do you come to this?

I Laplace transform, or

I Exponential solutions.
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Exponential solutions

One way for obtaining the transfer function of

ẏ(t) + 5y(t) = 3u(t)

is to take u(t) = est, s ∈ C, and to try to find a solution of the
same format, i.e., y(t) = αest.

Substituting this in the differential
equation, gives

sαest + 5αest = 3est.

Since est is non-zero, we may divide by it, and we find

sα+ 5α = 3.

If s 6= −5, this is solvable;

α =
3

s+ 5
.
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Exponential solutions

So if we want to find an exponential solution

u(t) = est, y(t) = αest,

of the o.d.e.
ẏ(t) + 5y(t) = 3u(t),

we find that:

I It is possible for all s ∈ C except for s = −5.

I The α equals

α =
3

s+ 5
.

I We call this the transfer function at s.
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Transfer function via exponential solutions

Definition
Given an (abstract) differential equation in the variables
(u(t), z(t), y(t)), where u(t), z(t), and y(t) take their values in the
(Hilbert) spaces U , Z, and Y , respectively.
Let s ∈ C. If for every u0 ∈ U , there exists a unique solution of
the form (u0e

st, z0e
st, y0e

st), and the mapping u0 7→ y0 is linear
and bounded, then this mapping is called the transfer function at
s, and will be denoted by G(s). �

We call a solution of the form (u0e
st, z0e

st, y0e
st) an exponential

solution.
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Transfer function for state linear systems

Consider the state differential equation

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

with A,B,C, and D matrices.
Let s ∈ C, and u0 ∈ U . We try to find a solution of the form
(u(t), x(t), y(t)) = (u0e

st, x0e
st, y0e

st).

Substituting, this in the differential equation gives

sx0e
st = Ax0e

st +Bu0e
st

y0e
st = Cx0e

st +Du0e
st.

Since est is never zero, this is equivalent to:
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(sI −A)z0 = Bu0

y0 = Cz0 +Du0.

If sI −A is invertible, then we find

y0 = C(sI −A)−1Bu0 +Du0.

This clearly defines a bounded linear mapping from u0 to y0, and
so the transfer function at s is given by

G(s) = C(sI −A)−1B +D.

This holds for all
s ∈ ρ(A) := {s ∈ C | (sI −A)−1 exists as bounded operator}.
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Example

We take a heated bar. We heat it uniformly at one half, and we
measure (half) the average temperature in the other half;

∂x

∂t
(ζ, t) =

∂2x

∂ζ2
(ζ, t) + 1[ 1

2
,1](ζ)u(t)

∂x

∂ζ
(0, t) =

∂x

∂ζ
(1, t) = 0

y(t) =

∫ 1
2

0
x(ζ, t)dζ.

We obtain the transfer function.



Transfer function

We try to find an exponential solution of the p.d.e. This gives the
following equations

sx0(ζ)est =
d2x0
dζ2

(ζ)est + 1[ 1
2
,1](ζ)u0e

st

dx0
dζ

(0)est =
dx0
dζ

(1)est = 0

y0e
st =

∫ 1
2

0
x0(ζ)estdζ.



Transfer function

Hence

sx0(ζ) =
d2x0
dζ2

(ζ) + 1[ 1
2
,1](ζ)u0

dx0
dζ

(0) =
dx0
dζ

(1) = 0

y0 =

∫ 1
2

0
x0(ζ)dζ.

The first two lines represent an o.d.e. with boundary conditions.
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Transfer function

The solution of

sx0(ζ) =
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dζ2

(ζ) + 1[ 1
2
,1](ζ)u0

dx0
dζ

(0) =
dx0
dζ

(1) = 0

is given as

x0(ζ) = cosh(
√
sζ)x0(0)−

1√
s

∫ ζ

0
sinh(

√
s(ζ − ξ))1[1/2,1](ξ)u0dξ

with

x0(0) =
sinh(

√
s/2)u0

s sinh(
√
s)

=
u0

2s cosh(
√
s/2)

.



Transfer function

Using this we find that

y0 =

∫ 1
2

0
x0(ζ)dζ
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sinh(

√
s/2)u0

2s
√
s cosh(

√
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.

Hence the transfer function is given by

G(s) =
tanh(

√
s/2)

2s
√
s
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Transfer function, remark

If you write the solution of the o.d.e.

sx0(ζ) =
d2x0
dζ2

(ζ) + 1[ 1
2
,1](ζ)u0

dx0
dζ

(0) =
dx0
dζ

(1) = 0

as a Fourier cosine series, then you find another expression for the
transfer function. Namely,

G(s) =
1

4s
− 2

∞∑
n=1

sin(nπ 1
2)2

n2π2(s+ n2π2)
.

However, the transfer function is unique, and so we find that

tanh(
√
s/2)

2s
√
s

= G(s) =
1

4s
− 2

∞∑
n=1

sin(nπ 1
2)2

n2π2(s+ n2π2)
.
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Transfer functions

So we have seen that working with exponential solutions, directly
on the p.d.e., works very well.
Note that it is (almost) the same as the engineering trick of
replacing derivative with respect to time by an s.

We can do that for systems with control and observation at the
boundary.
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Transfer function, boundary control and observation

Example

Consider the system with boundary control and observation

∂w

∂t
(ζ, t) =

∂w

∂ζ
(ζ, t)

w(1, t) = u(t)

y(t) = w(0, t).

Substituting exponential functions for all signals, gives

sx0(ζ)est =
dx0
dζ

(ζ)est

x0(1)est = u0e
st

y0e
st = x0(0)est.

Thus
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Example of transfer function with boundary control and
observation

sx0(ζ) =
dx0
dζ

(ζ)

x0(1) = u0

y0 = x0(0).

This is an ordinary differential equation with given (end) condition,
u0 and unknown (initial) condition, y0.

The solution equals x0(ζ) = es(ζ−1)u0. Thus y0 = e−su0.
The transfer function equals

G(s) = e−s s ∈ C.
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Bode and Nyquist plots

Similar like for rational function, we can draw the Bode and
Nyquist plot of general transfer functions

For instance the Bode magnitude plot of

G(s) =
tanh(

√
s/2)
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Transfer functions for pH systems

Consider the port-Hamiltonian system with input and outputs

∂x

∂t
(ζ, t) =

(
P1

∂

∂ζ
+ P0

)
[Hx(t)]

u(t) = WB,1

[
(Hx)(b)
(Hx)(a)

]
, 0 = WB,2

[
(Hx)(b)
(Hx)(a)

]
,

y(t) = WC

[
(Hx)(b)
(Hx)(a)

]

Assume that the energy balance can be expressed in the inputs and
outputs. That is

Ḣ(t) =
[
u(t)>, y(t)>

]
Q

[
u(t)
y(t)

]
with Q a symmetric matrix.
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Transfer functions for pH systems

Since exponential solutions are solutions, the power balance

Ḣ(t) =
[
u(t)>, y(t)>

]
Q

[
u(t)
y(t)

]
also holds for these.

Remark: Since the s is the exponential solutions may be complex,
we have to write the power balance for complex valued solutions.
The (complex) power balance equals

Ḣ(t) =
[
u(t)∗, y(t)∗

]
Q

[
u(t)
y(t)

]
.
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Transfer functions for pH systems

Hence for the exponential solution the power balance can be
written as

Ḣ(t) =
[
u(t)∗, y(t)∗

]
Q

[
u(t)
y(t)

]
=

[
u∗0e

st, y∗0e
st,
]
Q

[
u0e

st

y0e
st

]

=
[
u∗0, y

∗
0

]
Q

[
u0
y0

]
e2Re(s)t

=
[
u∗0, u

∗
0G(s)∗

]
Q

[
u0

G(s)u0

]
e2Re(s)t.



Transfer functions for pH systems

Hence for the exponential solution the power balance can be
written as
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Transfer functions for pH systems

Since
H(t) = ‖x(t)‖2X = 〈x(t), x(t)〉X ,

we find for the exponential solution that

H(t) = 〈x0est, x0est〉X

= 〈x0, x0〉Xe2Re(s)t = ‖x0‖2Xe2Re(s)t.

Combining these two results gives that

2Re(s)‖x0‖2Xe2Re(s)t = Ḣ(t) =
[
u∗0, u

∗
0G(s)∗

]
Q

[
u0

G(s)u0

]
e2Re(s)t.

Or equivalently:

2Re(s)‖x0‖2X = Ḣ(0) =
[
u∗0, u

∗
0G(s)∗

]
Q

[
u0

G(s)u0

]
.
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Transfer functions for pH systems

Example: Wave equation

u

y

∂2w

∂t2
(ζ, t) =

1

ρ(ζ)

∂

∂ζ

[
T (ζ)

∂w

∂ζ
(ζ, t)

]
u(t) = T (1)

∂w

∂ζ
(1, t), 0 =

∂w

∂t
(0, t)

y(t) =
∂w

∂t
(1, t)

To calculate the expression of the transfer function can be
hard/impossible. However, the power balance equals

Ḣ(t) = u(t)y(t) =
[
u(t)∗, y(t)∗

] [0 1
2

1
2 0

] [
u(t)
y(t)

]
.
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Transfer function for the vibrating string system

From the general result we find

2Re(s)‖x0‖2X =
[
u∗0, u

∗
0G(s)∗

] [0 1
2

1
2 0

] [
u0

G(s)u0

]

= Re(G(s))|u0|2.

Since ‖x0‖2X ≥ 0 and |u0|2 > 0, we find that for Re(s) > 0 there
holds

Re(G(s)) ≥ 0

Thus G is positive real. �
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