Modelling and Control of Nonlinear and Distributed Parameter Systems: The port-Hamiltonian Approach

Solutions, existence and properties

Hans Zwart

University of Twente and Eindhoven University of Technology, The Netherlands

February 25, 2020

Introduction, wave equation

$$
\frac{\partial^{2} w}{\partial t^{2}}(\zeta, t)=\frac{1}{\rho(\zeta)} \frac{\partial}{\partial \zeta}\left[T(\zeta) \frac{\partial w}{\partial \zeta}(\zeta, t)\right]
$$

With the variables $x_{1}=\rho \frac{\partial w}{\partial t}$ and $x_{2}=\frac{\partial w}{\partial \zeta}$ we can write this wave equation as

$$
\frac{\partial}{\partial t}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right](\zeta, t)
$$

Introduction, wave equation

$$
\frac{\partial^{2} w}{\partial t^{2}}(\zeta, t)=\frac{1}{\rho(\zeta)} \frac{\partial}{\partial \zeta}\left[T(\zeta) \frac{\partial w}{\partial \zeta}(\zeta, t)\right]
$$

With the variables $x_{1}=\rho \frac{\partial w}{\partial t}$ and $x_{2}=\frac{\partial w}{\partial \zeta}$ we can write this wave equation as

$$
\frac{\partial}{\partial t}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right](\zeta, t)=\left[\begin{array}{c}
\rho \frac{\partial^{2} w}{\partial t^{2}}(\zeta, t) \\
\frac{\partial^{w} w}{\partial t \partial \zeta}
\end{array}\right]
$$

Introduction, wave equation

$$
\frac{\partial^{2} w}{\partial t^{2}}(\zeta, t)=\frac{1}{\rho(\zeta)} \frac{\partial}{\partial \zeta}\left[T(\zeta) \frac{\partial w}{\partial \zeta}(\zeta, t)\right]
$$

With the variables $x_{1}=\rho \frac{\partial w}{\partial t}$ and $x_{2}=\frac{\partial w}{\partial \zeta}$ we can write this wave equation as

$$
\frac{\partial}{\partial t}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right](\zeta, t)=\left[\begin{array}{c}
\rho \frac{\partial^{2} w}{\partial t^{2}}(\zeta, t) \\
\frac{\partial^{2} w}{\partial t \partial \zeta}
\end{array}\right]=\left[\begin{array}{c}
\frac{\partial}{\partial \zeta}\left[T(\zeta) \frac{\partial w}{\partial \zeta}(\zeta, t)\right] \\
\frac{\partial}{\partial \zeta}\left[\frac{\partial w}{\partial t}\right](\zeta, t)
\end{array}\right]
$$

Introduction, wave equation

$$
\frac{\partial^{2} w}{\partial t^{2}}(\zeta, t)=\frac{1}{\rho(\zeta)} \frac{\partial}{\partial \zeta}\left[T(\zeta) \frac{\partial w}{\partial \zeta}(\zeta, t)\right]
$$

With the variables $x_{1}=\rho \frac{\partial w}{\partial t}$ and $x_{2}=\frac{\partial w}{\partial \zeta}$ we can write this wave equation as

$$
\left.\begin{array}{rl}
\frac{\partial}{\partial t}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right](\zeta, t) & =\left[\begin{array}{c}
\rho \frac{\partial^{2} w}{\partial t^{2}}(\zeta, t) \\
\frac{\partial^{2} w}{\partial t \partial \zeta}
\end{array}\right]=\left[\begin{array}{c}
\frac{\partial}{\partial \zeta}\left[T(\zeta) \frac{\partial w}{\partial \zeta}(\zeta, t)\right] \\
\frac{\partial}{\partial \zeta}\left[\frac{\partial w}{\partial t}\right](\zeta, t)
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \frac{\partial}{\partial \zeta}(\underbrace{\left[\begin{array}{cc}
\frac{1}{\rho(\zeta)} & 0 \\
0 & T(\zeta)
\end{array}\right]}_{=\mathcal{H}} x(\zeta, t)
\end{array}\right) .
$$

The wave equation, state differential equation

So with the variables $x_{1}=\rho \frac{\partial w}{\partial t}$ and $x_{2}=\frac{\partial w}{\partial \zeta}$ the p.d.e. becomes

$$
\frac{\partial}{\partial t}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right](\zeta, t)=\underbrace{\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]}_{=P_{1}} \frac{\partial}{\partial \zeta}(\underbrace{\left[\begin{array}{cc}
\frac{1}{\rho(\zeta)} & 0 \\
0 & T(\zeta)
\end{array}\right]}_{=\mathcal{H}} x(\zeta, t))
$$

The wave equation, state differential equation

So with the variables $x_{1}=\rho \frac{\partial w}{\partial t}$ and $x_{2}=\frac{\partial w}{\partial \zeta}$ the p.d.e. becomes

$$
\frac{\partial}{\partial t}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right](\zeta, t)=\underbrace{\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]}_{=P_{1}} \frac{\partial}{\partial \zeta}(\underbrace{\left[\begin{array}{cc}
\frac{1}{\rho(\zeta)} & 0 \\
0 & T(\zeta)
\end{array}\right]}_{=\mathcal{H}} x(\zeta, t))
$$

We have generalised this to our class of first order port-Hamiltonian equations.

Port-Hamiltonian partial differential equations

Our model class are p.d.e.'s of the form

$$
\frac{\partial x}{\partial t}(\zeta, t)=\left(P_{1} \frac{\partial}{\partial \zeta}+P_{0}\right)[\mathcal{H} x(\zeta, t)]
$$

with

- $x(\zeta, t) \in \mathbb{R}^{n}, \zeta \in[a, b], t \geq 0$
- P_{1} is an invertible, symmetric real $n \times n$-matrix,
- P_{0} is a skew-symmetric real $n \times n$-matrix,
- $\mathcal{H}(\zeta)$ is a symmetric, invertible $n \times n$-matrix with $m I \leq \mathcal{H}(\zeta) \leq M I$ for some $m, M>0$.

Port-Hamiltonian partial differential equations

Our model class are p.d.e.'s of the form

$$
\frac{\partial x}{\partial t}(\zeta, t)=\left(P_{1} \frac{\partial}{\partial \zeta}+P_{0}\right)[\mathcal{H} x(\zeta, t)]
$$

with

- $x(\zeta, t) \in \mathbb{R}^{n}, \zeta \in[a, b], t \geq 0$
- P_{1} is an invertible, symmetric real $n \times n$-matrix,
- P_{0} is a skew-symmetric real $n \times n$-matrix,
- $\mathcal{H}(\zeta)$ is a symmetric, invertible $n \times n$-matrix with $m I \leq \mathcal{H}(\zeta) \leq M I$ for some $m, M>0$.
The energy/Hamiltonian is defined as

$$
H(t)=H(x(\cdot, t))=\frac{1}{2} \int_{a}^{b} x(\zeta, t)^{T} \mathcal{H}(\zeta) x(\zeta, t) d \zeta
$$

Power balance

For the Port-Hamiltonian p.d.e. with energy/Hamiltonian

$$
H(x(\cdot, t))=\frac{1}{2} \int_{a}^{b} x(\zeta, t)^{T} \mathcal{H}(\zeta) x(\zeta, t) d \zeta
$$

it is not hard to show that along solutions; homework

$$
\dot{H}(t)=\frac{d H}{d t}(x(\cdot, t))=\frac{1}{2}\left[(\mathcal{H} x)^{T}(\zeta, t) P_{1}(\mathcal{H} x)(\zeta, t)\right]_{a}^{b}
$$

Power balance

For the Port-Hamiltonian p.d.e. with energy/Hamiltonian

$$
H(x(\cdot, t))=\frac{1}{2} \int_{a}^{b} x(\zeta, t)^{T} \mathcal{H}(\zeta) x(\zeta, t) d \zeta
$$

it is not hard to show that along solutions; homework

$$
\dot{H}(t)=\frac{d H}{d t}(x(\cdot, t))=\frac{1}{2}\left[(\mathcal{H} x)^{T}(\zeta, t) P_{1}(\mathcal{H} x)(\zeta, t)\right]_{a}^{b}
$$

Thus the change of internal energy goes via the boundary of the spatial domain, i.e. power balance.

The wave equation, energy

$$
\frac{\partial^{2} w}{\partial t^{2}}(\zeta, t)=\frac{1}{\rho(\zeta)} \frac{\partial}{\partial \zeta}\left[T(\zeta) \frac{\partial w}{\partial \zeta}(\zeta, t)\right]
$$

The energy is given by

$$
H(t)=\frac{1}{2} \int_{0}^{1} \rho(\zeta)\left(\frac{\partial w}{\partial t}(\zeta, t)\right)^{2}+T(\zeta)\left(\frac{\partial w}{\partial \zeta}(\zeta, t)\right)^{2} d \zeta
$$

with ρ is the mass density, and T is Young's modulus.

The wave equation, energy

$$
\frac{\partial^{2} w}{\partial t^{2}}(\zeta, t)=\frac{1}{\rho(\zeta)} \frac{\partial}{\partial \zeta}\left[T(\zeta) \frac{\partial w}{\partial \zeta}(\zeta, t)\right]
$$

The energy is given by

$$
H(t)=\frac{1}{2} \int_{0}^{1} \rho(\zeta)\left(\frac{\partial w}{\partial t}(\zeta, t)\right)^{2}+T(\zeta)\left(\frac{\partial w}{\partial \zeta}(\zeta, t)\right)^{2} d \zeta
$$

with ρ is the mass density, and T is Young's modulus. Of course, we want that our solutions have (keep) finite energy. So the initial state must satisfy

$$
\frac{1}{2} \int_{0}^{1} \rho(\zeta)\left(\frac{\partial w_{0}}{\partial t}(\zeta)\right)^{2}+T(\zeta)\left(\frac{\partial w_{0}}{\partial \zeta}(\zeta)\right)^{2} d \zeta<\infty
$$

The wave equation, energy

$$
\frac{\partial^{2} w}{\partial t^{2}}(\zeta, t)=\frac{1}{\rho(\zeta)} \frac{\partial}{\partial \zeta}\left[T(\zeta) \frac{\partial w}{\partial \zeta}(\zeta, t)\right]
$$

The energy is given by

$$
H(t)=\frac{1}{2} \int_{0}^{1} \rho(\zeta)\left(\frac{\partial w}{\partial t}(\zeta, t)\right)^{2}+T(\zeta)\left(\frac{\partial w}{\partial \zeta}(\zeta, t)\right)^{2} d \zeta
$$

with ρ is the mass density, and T is Young's modulus. Of course, we want that our solutions have (keep) finite energy. So the initial state must satisfy

$$
\frac{1}{2} \int_{0}^{1} \rho(\zeta)\left(\frac{\partial w_{0}}{\partial t}(\zeta)\right)^{2}+T(\zeta)\left(\frac{\partial w_{0}}{\partial \zeta}(\zeta)\right)^{2} d \zeta<\infty
$$

This indicates that our states must be functions (of the spatial variable)

The wave equation, state

We chooce for the state variables as $x_{1}:=\rho \frac{\partial w}{\partial t}$ (the momentum),
$x_{2}:=\frac{\partial w}{\partial \zeta}$ (the strain).

The wave equation, state

We chooce for the state variables as $x_{1}:=\rho \frac{\partial w}{\partial t}$ (the momentum),
$x_{2}:=\frac{\partial w}{\partial \zeta}$ (the strain). With this choice the energy

$$
\frac{1}{2} \int_{0}^{1} \rho(\zeta)\left(\frac{\partial w}{\partial t}(\zeta, t)\right)^{2}+T(\zeta)\left(\frac{\partial w}{\partial \zeta}(\zeta, t)\right)^{2}
$$

becomes

The wave equation, state

We chooce for the state variables as $x_{1}:=\rho \frac{\partial w}{\partial t}$ (the momentum),
$x_{2}:=\frac{\partial w}{\partial \zeta}$ (the strain). With this choice the energy

$$
\frac{1}{2} \int_{0}^{1} \rho(\zeta)\left(\frac{\partial w}{\partial t}(\zeta, t)\right)^{2}+T(\zeta)\left(\frac{\partial w}{\partial \zeta}(\zeta, t)\right)^{2}
$$

becomes

$$
\frac{1}{2} \int_{0}^{1}\left[\begin{array}{l}
x_{1}(\zeta, t) \\
x_{2}(\zeta, t)
\end{array}\right]^{T}\left[\begin{array}{cc}
\frac{1}{\rho(\zeta)} & 0 \\
0 & T(\zeta)
\end{array}\right]\left[\begin{array}{l}
x_{1}(\zeta, t) \\
x_{2}(\zeta, t)
\end{array}\right] d \zeta
$$

The wave equation, state

We chooce for the state variables as $x_{1}:=\rho \frac{\partial w}{\partial t}$ (the momentum),
$x_{2}:=\frac{\partial w}{\partial \zeta}$ (the strain). With this choice the energy

$$
\frac{1}{2} \int_{0}^{1} \rho(\zeta)\left(\frac{\partial w}{\partial t}(\zeta, t)\right)^{2}+T(\zeta)\left(\frac{\partial w}{\partial \zeta}(\zeta, t)\right)^{2}
$$

becomes

$$
\frac{1}{2} \int_{0}^{1}\left[\begin{array}{l}
x_{1}(\zeta, t) \\
x_{2}(\zeta, t)
\end{array}\right]^{T}\left[\begin{array}{cc}
\frac{1}{\rho(\zeta)} & 0 \\
0 & T(\zeta)
\end{array}\right]\left[\begin{array}{l}
x_{1}(\zeta, t) \\
x_{2}(\zeta, t)
\end{array}\right] d \zeta
$$

Since $M I>\mathcal{H}(\zeta)>m I$, we see that finite energy condition implies that the state should satisfy for all $t \geq 0$:

$$
\int_{0}^{1}\left\|\left[\begin{array}{l}
x_{1}(\zeta, t) \\
x_{2}(\zeta, t)
\end{array}\right]\right\|^{2} d \zeta<\infty
$$

The wave equation, state and state space

The functions $[0,1] \ni \zeta \mapsto f(\zeta) \in \mathbb{R}^{2}$ which satisfy

$$
\int_{0}^{1}\|f(\zeta)\|^{2} d \zeta<\infty
$$

form the linear space $L^{2}\left((0,1) ; \mathbb{R}^{2}\right)$.

The wave equation, state and state space

The functions $[0,1] \ni \zeta \mapsto f(\zeta) \in \mathbb{R}^{2}$ which satisfy

$$
\int_{0}^{1}\|f(\zeta)\|^{2} d \zeta<\infty
$$

form the linear space $L^{2}\left((0,1) ; \mathbb{R}^{2}\right)$.
However, the "energy" is still used to measure the size of x, i.e., the norm

$$
\|f\|_{X}^{2}=\frac{1}{2} \int_{0}^{1} f(\zeta)^{\top} \mathcal{H}(\zeta) f(\zeta) d \zeta
$$

The wave equation, state and state space

The functions $[0,1] \ni \zeta \mapsto f(\zeta) \in \mathbb{R}^{2}$ which satisfy

$$
\int_{0}^{1}\|f(\zeta)\|^{2} d \zeta<\infty
$$

form the linear space $L^{2}\left((0,1) ; \mathbb{R}^{2}\right)$.
However, the "energy" is still used to measure the size of x, i.e., the norm

$$
\|f\|_{X}^{2}=\frac{1}{2} \int_{0}^{1} f(\zeta)^{\top} \mathcal{H}(\zeta) f(\zeta) d \zeta
$$

This norm is linked with the inner product

$$
\langle f, g\rangle_{X}=\frac{1}{2} \int_{0}^{1} f(\zeta)^{\top} \mathcal{H}(\zeta) g(\zeta) d \zeta
$$

We see that $\|f\|_{X}^{2}=\langle f, f\rangle_{X}$.

The wave equation, state and state space

So based on the energy of our system, we have chosen our state space as $X=L^{2}\left((0,1) ; \mathbb{R}^{2}\right)$ with the inner product

$$
\langle f, g\rangle_{X}=\frac{1}{2} \int_{0}^{1} f(\zeta)^{\top} \mathcal{H}(\zeta) g(\zeta) d \zeta .
$$

We have that $\|f\|_{X}^{2}$ is precisely the energy.

The wave equation, state and state space

So based on the energy of our system, we have chosen our state space as $X=L^{2}\left((0,1) ; \mathbb{R}^{2}\right)$ with the inner product

$$
\langle f, g\rangle_{X}=\frac{1}{2} \int_{0}^{1} f(\zeta)^{\top} \mathcal{H}(\zeta) g(\zeta) d \zeta .
$$

We have that $\|f\|_{X}^{2}$ is precisely the energy.
So our state X is also called the energy space, i.e, the space consisting of all state/shapes/...... with finite energy.

The wave equation, state and state space

So based on the energy of our system, we have chosen our state space as $X=L^{2}\left((0,1) ; \mathbb{R}^{2}\right)$ with the inner product

$$
\langle f, g\rangle_{X}=\frac{1}{2} \int_{0}^{1} f(\zeta)^{\top} \mathcal{H}(\zeta) g(\zeta) d \zeta
$$

We have that $\|f\|_{X}^{2}$ is precisely the energy.
So our state X is also called the energy space, i.e, the space consisting of all state/shapes/...... with finite energy. Note that we already rewrote the p.d.e. model of the vibrating string in our state variables.

$$
\frac{\partial}{\partial t}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right](\zeta, t)=\underbrace{\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]}_{=P_{1}} \frac{\partial}{\partial \zeta}(\underbrace{\left[\begin{array}{cc}
\frac{1}{\rho(\zeta)} & 0 \\
0 & T(\zeta)
\end{array}\right]}_{=\mathcal{H}} x(\zeta, t)) .
$$

The wave equation, change of view point

Instead of seeing the state as a function of time and space, we see it as a function of time (which at each time depends on the spatial variable). So

$$
x(\zeta, t) \text { becomes }(x(t))(\zeta)
$$

The wave equation, change of view point

Instead of seeing the state as a function of time and space, we see it as a function of time (which at each time depends on the spatial variable). So

$$
x(\zeta, t) \text { becomes }(x(t))(\zeta)
$$

We see the solution map a mapping from initial state to state-at-time-t, i.e.

$$
x_{0} \underbrace{\longrightarrow}_{T(t)} x(t)
$$

Thus (short hand) $x(t)=T(t) x_{0}$.

The wave equation, change of view point

Instead of seeing the state as a function of time and space, we see it as a function of time (which at each time depends on the spatial variable). So

$$
x(\zeta, t) \text { becomes }(x(t))(\zeta)
$$

We see the solution map a mapping from initial state to state-at-time-t, i.e.

$$
x_{0} \underbrace{\longrightarrow}_{T(t)} x(t)
$$

Thus (short hand) $x(t)=T(t) x_{0}$. What properties do we expect from the solution mapping $T(t)$?

Semigroup

We denote the state space by X. Thus our solution map

$$
X \ni x_{0} \mapsto x(t)=T(t) x_{0} \in X
$$

Semigroup

We denote the state space by X. Thus our solution map

$$
X \ni x_{0} \mapsto x(t)=T(t) x_{0} \in X
$$

Properties

- $T(0)=I$ (the identity)

Semigroup

We denote the state space by X. Thus our solution map

$$
X \ni x_{0} \mapsto x(t)=T(t) x_{0} \in X
$$

Properties

- $T(0)=I$ (the identity)
- $T(t)$ is linear. That is $\alpha x_{0}+\beta \tilde{x}_{0} \mapsto \alpha x(t)+\beta \tilde{x}(t)$ (linearity of the p.d.e).

Semigroup

We denote the state space by X. Thus our solution map

$$
X \ni x_{0} \mapsto x(t)=T(t) x_{0} \in X
$$

Properties

- $T(0)=I$ (the identity)
- $T(t)$ is linear. That is $\alpha x_{0}+\beta \tilde{x}_{0} \mapsto \alpha x(t)+\beta \tilde{x}(t)$ (linearity of the p.d.e).
- $T\left(t_{1}+t_{2}\right)=T\left(t_{1}\right) T\left(t_{2}\right)$, because of the time invariance, of the p.d.e. any time may be chosen as initial time.

Semigroup

We denote the state space by X. Thus our solution map

$$
X \ni x_{0} \mapsto x(t)=T(t) x_{0} \in X
$$

Properties

- $T(0)=I$ (the identity)
- $T(t)$ is linear. That is $\alpha x_{0}+\beta \tilde{x}_{0} \mapsto \alpha x(t)+\beta \tilde{x}(t)$ (linearity of the p.d.e).
- $T\left(t_{1}+t_{2}\right)=T\left(t_{1}\right) T\left(t_{2}\right)$, because of the time invariance, of the p.d.e. any time may be chosen as initial time.
- $T(t) x_{0} \in X$ for all $x_{0} \in X$. Thus $\|x(t)\|_{X}<\infty$ whenever $\left\|x_{0}\right\|_{X}<\infty$. In particular, $\|x(t)\|_{X} \leq m(t)\left\|x_{0}\right\|$ for some function $m(t)$.

Semigroup

We denote the state space by X. Thus our solution map

$$
X \ni x_{0} \mapsto x(t)=T(t) x_{0} \in X
$$

Properties

- $T(0)=I$ (the identity)
- $T(t)$ is linear. That is $\alpha x_{0}+\beta \tilde{x}_{0} \mapsto \alpha x(t)+\beta \tilde{x}(t)$ (linearity of the p.d.e).
- $T\left(t_{1}+t_{2}\right)=T\left(t_{1}\right) T\left(t_{2}\right)$, because of the time invariance, of the p.d.e. any time may be chosen as initial time.
- $T(t) x_{0} \in X$ for all $x_{0} \in X$. Thus $\|x(t)\|_{X}<\infty$ whenever $\left\|x_{0}\right\|_{X}<\infty$. In particular, $\|x(t)\|_{X} \leq m(t)\left\|x_{0}\right\|$ for some function $m(t)$.
- For all $x_{0} \in X$ there holds

$$
\lim _{t \downarrow 0}\left\|T(t) x_{0}-x_{0}\right\|_{X}=0 \quad \text { or } \quad \lim _{t \downarrow 0} T(t) x_{0}=x_{0}
$$

Semigroup

So the only "unexpected" property is

$$
T(t) x_{0} \rightarrow x_{0} \quad \text { if } \quad t \downarrow 0
$$

This the strong continuity.

Semigroup

So the only "unexpected" property is

$$
T(t) x_{0} \rightarrow x_{0} \quad \text { if } \quad t \downarrow 0
$$

This the strong continuity.
It tells that the solution becomes more and more the initial state when time get smaller and smaller.

Semigroup

We introduce some notation. $\mathcal{L}(X)$ denotes the set of linear and bounded operators from X to X. Thus if $Q \in \mathcal{L}(X)$, then

- $Q\left(\alpha x_{0}+\beta \tilde{x}_{0}\right)=\alpha Q\left(x_{0}\right)+\beta Q\left(\tilde{x}_{0}\right)$, and
- there exists a $q \geq 0$ such that for all $x_{0} \in X$,

$$
\left\|Q\left(x_{0}\right)\right\| \leq q\left\|x_{0}\right\| .
$$

Semigroup

We introduce some notation. $\mathcal{L}(X)$ denotes the set of linear and bounded operators from X to X. Thus if $Q \in \mathcal{L}(X)$, then

- $Q\left(\alpha x_{0}+\beta \tilde{x}_{0}\right)=\alpha Q\left(x_{0}\right)+\beta Q\left(\tilde{x}_{0}\right)$, and
- there exists a $q \geq 0$ such that for all $x_{0} \in X$,

$$
\left\|Q\left(x_{0}\right)\right\| \leq q\left\|x_{0}\right\| .
$$

Definition

A strongly continuous semigroup (C_{0}-semigroup) is an operator valued function, $(T(t))_{t \geq 0}$, from $[0, \infty)$ to $\mathcal{L}(X)$ which satisfies

- $T(0)=I$
- $T(t) T(s)=T(t+s), \quad t, s \in[0, \infty)$
- For all $x_{0} \in X$ there holds

$$
\lim _{t \downarrow 0} T(t) x_{0}=x_{0}
$$

Semigroup, example

Let a be a (complex or real) number, then

$$
e^{a t}
$$

is a C_{0}-semigroup on $X=\mathbb{R}$.

Semigroup, example

Let a be a (complex or real) number, then

$$
e^{a t}
$$

is a C_{0}-semigroup on $X=\mathbb{R}$.
Let A be a (square) matrix, then

$$
T(t):=e^{A t}
$$

is a C_{0}-semigroup on the state space $X=\mathbb{R}^{n}$. Homework

Contraction semigroup

Definition

The C_{0}-semigroup $(T(t))_{t \geq 0}$ is contraction semigroup if

$$
\left\|T(t) x_{0}\right\| \leq\left\|x_{0}\right\| \quad \text { for all } t \geq 0 \text { and for all } x_{0} \in X
$$

It is a unitary group if

$$
\left\|T(t) x_{0}\right\|=\left\|x_{0}\right\| \quad \text { for all } t \text { and for all } x_{0} \in X
$$

Contraction semigroup

Definition

The C_{0}-semigroup $(T(t))_{t \geq 0}$ is contraction semigroup if

$$
\left\|T(t) x_{0}\right\| \leq\left\|x_{0}\right\| \quad \text { for all } t \geq 0 \text { and for all } x_{0} \in X
$$

It is a unitary group if

$$
\left\|T(t) x_{0}\right\|=\left\|x_{0}\right\| \quad \text { for all } t \text { and for all } x_{0} \in X
$$

Solution pH-system

We known that $e^{A t} x_{0}$ is the solution of

$$
\dot{x}(t)=A x(t), \quad x(0)=x_{0} \in \mathbb{R}^{n}
$$

Solution pH-system

We known that $e^{A t} x_{0}$ is the solution of

$$
\dot{x}(t)=A x(t), \quad x(0)=x_{0} \in \mathbb{R}^{n}
$$

How about our port-Hamiltonian partial differential equation?
For our port-Hamiltonian equation we have that the state is directly linked to the energy. So the p.d.e. must tell us what happens with the energy.
We have that

$$
\dot{H}(t)=\frac{1}{2}\left[(\mathcal{H} x)^{T}(\zeta, t) P_{1}(\mathcal{H} x)(\zeta, t)\right]_{a}^{b} .
$$

Solution pH-system

We known that $e^{A t} x_{0}$ is the solution of

$$
\dot{x}(t)=A x(t), \quad x(0)=x_{0} \in \mathbb{R}^{n}
$$

How about our port-Hamiltonian partial differential equation?
For our port-Hamiltonian equation we have that the state is directly linked to the energy. So the p.d.e. must tell us what happens with the energy.
We have that

$$
\dot{H}(t)=\frac{1}{2}\left[(\mathcal{H} x)^{T}(\zeta, t) P_{1}(\mathcal{H} x)(\zeta, t)\right]_{a}^{b} .
$$

So the boundary conditions must tell us what happens with this term.

Port-Hamiltonian partial differential equations

Given our port-Hamiltonian partial differential equation

$$
\frac{\partial x}{\partial t}(\zeta, t)=\left(P_{1} \frac{\partial}{\partial \zeta}+P_{0}\right)[\mathcal{H}(\zeta) x(\zeta, t)]
$$

with the properties on P_{0}, P_{1} and \mathcal{H}.

Port-Hamiltonian partial differential equations

Given our port-Hamiltonian partial differential equation

$$
\frac{\partial x}{\partial t}(\zeta, t)=\left(P_{1} \frac{\partial}{\partial \zeta}+P_{0}\right)[\mathcal{H}(\zeta) x(\zeta, t)]
$$

with the properties on P_{0}, P_{1} and \mathcal{H}. We need to add boundary conditions to this p.d.e. That are conditions in $x(\zeta, t)$ for ζ equal to a or b.

Port-Hamiltonian partial differential equations

Given our port-Hamiltonian partial differential equation

$$
\frac{\partial x}{\partial t}(\zeta, t)=\left(P_{1} \frac{\partial}{\partial \zeta}+P_{0}\right)[\mathcal{H}(\zeta) x(\zeta, t)]
$$

with the properties on P_{0}, P_{1} and \mathcal{H}.
We need to add boundary conditions to this p.d.e. That are conditions in $x(\overline{\zeta, t)}$ for ζ equal to a or b.
We write these boundary conditions as

$$
W_{B}\left[\begin{array}{c}
\mathcal{H}(b) x(b, t) \\
\mathcal{H}(a) x(a, t)
\end{array}\right]=0 .
$$

with W_{B} a matrix.

Port-Hamiltonian partial differential equations

Given our port-Hamiltonian partial differential equation

$$
\frac{\partial x}{\partial t}(\zeta, t)=\left(P_{1} \frac{\partial}{\partial \zeta}+P_{0}\right)[\mathcal{H}(\zeta) x(\zeta, t)]
$$

with the properties on P_{0}, P_{1} and \mathcal{H}.
We need to add boundary conditions to this p.d.e. That are conditions in $x(\overline{\zeta, t)}$ for ζ equal to a or b.
We write these boundary conditions as

$$
W_{B}\left[\begin{array}{c}
\mathcal{H}(b) x(b, t) \\
\mathcal{H}(a) x(a, t)
\end{array}\right]=0 .
$$

with W_{B} a matrix.
Question: Which boundary conditions lead to unique solutions?

Port-Hamiltonian partial differential equations

Given our port-Hamiltonian partial differential equation

$$
\frac{\partial x}{\partial t}(\zeta, t)=\left(P_{1} \frac{\partial}{\partial \zeta}+P_{0}\right)[\mathcal{H}(\zeta) x(\zeta, t)]
$$

with the properties on P_{0}, P_{1} and \mathcal{H}.
We need to add boundary conditions to this p.d.e. That are conditions in $x(\overline{\zeta, t)}$ for ζ equal to a or b.
We write these boundary conditions as

$$
W_{B}\left[\begin{array}{c}
\mathcal{H}(b) x(b, t) \\
\mathcal{H}(a) x(a, t)
\end{array}\right]=0 .
$$

with W_{B} a matrix.
Question: Which boundary conditions lead to unique solutions? We answer this question by using semigroup theory. However, we do it only for contraction semigroups.

Port-Hamiltonian p.d.e., existence of solutions

Theorem (Le Gorrec, Maschke \& Zwart '05, Jacob \& Zwart '11)
Assume the (standard) conditions on P_{0}, P_{1} and \mathcal{H}. Assume further that W_{B} is a $n \times 2 n$ matrix of full rank.

Port-Hamiltonian p.d.e., existence of solutions

Theorem (Le Gorrec, Maschke \& Zwart '05, Jacob \& Zwart '11)
Assume the (standard) conditions on P_{0}, P_{1} and \mathcal{H}. Assume further that W_{B} is a $n \times 2 n$ matrix of full rank.
Then the solution map is a contraction C_{0}-semigroup on X (energy space) if and only if

$$
\dot{H} \leq 0
$$

Port-Hamiltonian p.d.e., existence of solutions

Theorem (Le Gorrec, Maschke \& Zwart '05, Jacob \& Zwart '11)
Assume the (standard) conditions on P_{0}, P_{1} and \mathcal{H}. Assume further that W_{B} is a $n \times 2 n$ matrix of full rank.
Then the solution map is a contraction C_{0}-semigroup on X (energy space) if and only if

$$
\dot{H} \leq 0
$$

The solution map is a unitary C_{0}-group (i.e. $\left\|T(t) x_{0}\right\|=\left\|x_{0}\right\|$, $\left.\forall x_{0}, \forall t\right)$ if and only if

$$
\dot{H}=0
$$

Example: the wave equation

$$
\begin{aligned}
\frac{\partial^{2} w}{\partial t^{2}}(\zeta, t) & =\frac{1}{\rho(\zeta)} \frac{\partial}{\partial \zeta}\left[T(\zeta) \frac{\partial w}{\partial \zeta}(\zeta, t)\right] \\
\frac{\partial w}{\partial t}(0, t) & =T(1) \frac{\partial w}{\partial \zeta}(1, t)=0
\end{aligned}
$$

Example: the wave equation

$$
\begin{aligned}
\frac{\partial^{2} w}{\partial t^{2}}(\zeta, t) & =\frac{1}{\rho(\zeta)} \frac{\partial}{\partial \zeta}\left[T(\zeta) \frac{\partial w}{\partial \zeta}(\zeta, t)\right] \\
\frac{\partial w}{\partial t}(0, t) & =T(1) \frac{\partial w}{\partial \zeta}(1, t)=0
\end{aligned}
$$

We begin by writing the boundary conditions with the space variable $x_{1}=\rho \frac{\partial w}{\partial t}, x_{2}=\frac{\partial w}{\partial \zeta}$,

$$
\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
T(1) \frac{\partial w}{\partial \zeta}(1, t) \\
\frac{\partial w}{\partial t}(0, t)
\end{array}\right]
$$

Example: the wave equation

$$
\begin{aligned}
\frac{\partial^{2} w}{\partial t^{2}}(\zeta, t) & =\frac{1}{\rho(\zeta)} \frac{\partial}{\partial \zeta}\left[T(\zeta) \frac{\partial w}{\partial \zeta}(\zeta, t)\right] \\
\frac{\partial w}{\partial t}(0, t) & =T(1) \frac{\partial w}{\partial \zeta}(1, t)=0
\end{aligned}
$$

We begin by writing the boundary conditions with the space variable $x_{1}=\rho \frac{\partial w}{\partial t}, x_{2}=\frac{\partial w}{\partial \zeta}$,

$$
\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
T(1) \frac{\partial w}{\partial \zeta}(1, t) \\
\frac{\partial w}{\partial t}(0, t)
\end{array}\right]=\underbrace{\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]}_{=W_{B}}\left[\begin{array}{c}
\frac{\partial w}{\partial t}(1, t) \\
T(1) \frac{\partial w}{\partial \zeta}(1, t) \\
\frac{\partial w}{\partial t}(0, t) \\
T(0) \frac{\partial w}{\partial \zeta}(0, t)
\end{array}\right]
$$

Example: the wave equation

$$
\begin{aligned}
\frac{\partial^{2} w}{\partial t^{2}}(\zeta, t) & =\frac{1}{\rho(\zeta)} \frac{\partial}{\partial \zeta}\left[T(\zeta) \frac{\partial w}{\partial \zeta}(\zeta, t)\right] \\
\frac{\partial w}{\partial t}(0, t) & =T(1) \frac{\partial w}{\partial \zeta}(1, t)=0
\end{aligned}
$$

We begin by writing the boundary conditions with the space variable $x_{1}=\rho \frac{\partial w}{\partial t}, x_{2}=\frac{\partial w}{\partial \zeta}$,

$$
\begin{aligned}
{\left[\begin{array}{l}
0 \\
0
\end{array}\right] } & =\left[\begin{array}{c}
T(1) \frac{\partial w}{\partial \zeta}(1, t) \\
\frac{\partial w}{\partial t}(0, t)
\end{array}\right]=\underbrace{\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]}_{=W_{B}}\left[\begin{array}{c}
\frac{\partial w}{\partial t}(1, t) \\
T(1) \frac{\partial w}{\partial \zeta}(1, t) \\
\frac{\partial w}{\partial t}(0, t) \\
T(0) \frac{\partial w}{\partial \zeta}(0, t)
\end{array}\right] \\
& =\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
\mathcal{H}(1) x(1, t) \\
\mathcal{H}(0) x(0, t)
\end{array}\right] .
\end{aligned}
$$

Example: the wave equation

Now we check the conditions.

- $P_{1}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ is an invertible 2×2 matrix $(n=2)$.

Example: the wave equation

Now we check the conditions.

- $P_{1}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ is an invertible 2×2 matrix $(n=2)$.
- $P_{0}=0$, so skew-symmetric.

Example: the wave equation

Now we check the conditions.

- $P_{1}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ is an invertible 2×2 matrix $(n=2)$.
- $P_{0}=0$, so skew-symmetric.
- If $0<m \leq T(\zeta), \rho(\zeta)^{-1} \leq M$ for all ζ, then

$$
\mathcal{H}(\zeta)=\left[\begin{array}{cc}
\rho(\zeta)^{-1} & 0 \\
0 & T(\zeta)
\end{array}\right] \text { satisfy } m I_{2} \leq \mathcal{H}(\zeta) \leq M I_{2}
$$

Example: the wave equation

Now we check the conditions.

- $P_{1}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ is an invertible 2×2 matrix $(n=2)$.
- $P_{0}=0$, so skew-symmetric.
- If $0<m \leq T(\zeta), \rho(\zeta)^{-1} \leq M$ for all ζ, then
$\mathcal{H}(\zeta)=\left[\begin{array}{cc}\rho(\zeta)^{-1} & 0 \\ 0 & T(\zeta)\end{array}\right]$ satisfy $m I_{2} \leq \mathcal{H}(\zeta) \leq M I_{2}$.
- W_{B} has rank 2.

Example: the wave equation

Now we check the conditions.

- $P_{1}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ is an invertible 2×2 matrix $(n=2)$.
- $P_{0}=0$, so skew-symmetric.
- If $0<m \leq T(\zeta), \rho(\zeta)^{-1} \leq M$ for all ζ, then

$$
\mathcal{H}(\zeta)=\left[\begin{array}{cc}
\rho(\zeta)^{-1} & 0 \\
0 & T(\zeta)
\end{array}\right] \text { satisfy } m I_{2} \leq \mathcal{H}(\zeta) \leq M I_{2}
$$

- W_{B} has rank 2 .
- $\dot{H}=0$.

Thus the solution map is a unitary group on the energy space.

Summary

What we have introduced is:

- A general concept of state and state space.
- A general concept of the solution map.

Summary

What we have introduced is:

- A general concept of state and state space.
- A general concept of the solution map.
- Question: How to formulate state/state space for a partial differential equation?

Summary

What we have introduced is:

- A general concept of state and state space.
- A general concept of the solution map.
- Question: How to formulate state/state space for a partial differential equation?
We study an example first.

Example (Transport equation)

On the spatial domain $[0,1]$ consider the p.d.e.

$$
\begin{aligned}
\frac{\partial w}{\partial t}(\zeta, t) & =\frac{\partial w}{\partial \zeta}(\zeta, t), \quad \zeta \in[0,1], t \geq 0 \\
w(1, t) & =0 \\
w(\zeta, 0) & =w_{0}(\zeta) \quad \text { (given) }
\end{aligned}
$$

Example (Transport equation)

On the spatial domain $[0,1]$ consider the p.d.e.

$$
\begin{aligned}
\frac{\partial w}{\partial t}(\zeta, t) & =\frac{\partial w}{\partial \zeta}(\zeta, t), \quad \zeta \in[0,1], t \geq 0 \\
w(1, t) & =0 \\
w(\zeta, 0) & =w_{0}(\zeta) \quad \text { (given) }
\end{aligned}
$$

As state $x(t)$ we choose w at a time t.

Example (Transport equation)

On the spatial domain $[0,1]$ consider the p.d.e.

$$
\begin{aligned}
\frac{\partial w}{\partial t}(\zeta, t) & =\frac{\partial w}{\partial \zeta}(\zeta, t), \quad \zeta \in[0,1], t \geq 0 \\
w(1, t) & =0 \\
w(\zeta, 0) & =w_{0}(\zeta) \quad \text { (given) }
\end{aligned}
$$

As state $x(t)$ we choose w at a time t.

- So $x(t)=w(\cdot, t)$, or

Example (Transport equation)
On the spatial domain $[0,1]$ consider the p.d.e.

$$
\begin{aligned}
\frac{\partial w}{\partial t}(\zeta, t) & =\frac{\partial w}{\partial \zeta}(\zeta, t), \quad \zeta \in[0,1], t \geq 0 \\
w(1, t) & =0 \\
w(\zeta, 0) & =w_{0}(\zeta) \quad \text { (given) }
\end{aligned}
$$

As state $x(t)$ we choose w at a time t.

- So $x(t)=w(\cdot, t)$, or $(x(t))(\zeta)=w(\zeta, t)$.

Example (Transport equation)
On the spatial domain $[0,1]$ consider the p.d.e.

$$
\begin{aligned}
\frac{\partial w}{\partial t}(\zeta, t) & =\frac{\partial w}{\partial \zeta}(\zeta, t), \quad \zeta \in[0,1], t \geq 0 \\
w(1, t) & =0 \\
w(\zeta, 0) & =w_{0}(\zeta) \quad \text { (given) }
\end{aligned}
$$

As state $x(t)$ we choose w at a time t.

- So $x(t)=w(\cdot, t)$, or $(x(t))(\zeta)=w(\zeta, t)$.
- As state space we choose $L^{2}(0,1)$.

Example (Transport equation)

On the spatial domain $[0,1]$ consider the p.d.e.

$$
\begin{aligned}
\frac{\partial w}{\partial t}(\zeta, t) & =\frac{\partial w}{\partial \zeta}(\zeta, t), \quad \zeta \in[0,1], t \geq 0 \\
w(1, t) & =0 \\
w(\zeta, 0) & =w_{0}(\zeta) \quad \text { (given) }
\end{aligned}
$$

As state $x(t)$ we choose w at a time t.

- So $x(t)=w(\cdot, t)$, or $(x(t))(\zeta)=w(\zeta, t)$.
- As state space we choose $L^{2}(0,1)$.
- If we now introduce $\dot{x}(t)=\frac{\partial w}{\partial t}(\cdot, t)$ and $A x(t)=\frac{\partial w}{\partial \zeta}(\cdot, t)$, then the p.d.e. becomes

$$
\dot{x}(t)=A x(t)
$$

State differential equation

So the p.d.e.

$$
\begin{aligned}
\frac{\partial w}{\partial t}(\zeta, t) & =\frac{\partial w}{\partial \zeta}(\zeta, t), \quad \zeta \in[0,1], t \geq 0 \\
w(1, t) & =0 \\
w(\zeta, 0) & =w_{0}(\zeta) \quad \text { (given) }
\end{aligned}
$$

can with $x(t)=w(\cdot, t), \dot{x}(t)=\frac{\partial w}{\partial t}(\cdot, t)$, and $A x(t):=\frac{\partial w}{\partial \zeta}(\cdot, t)$, be written as abstract differential equation:

$$
\dot{x}(t)=A x(t), \quad x(0)=w_{0}
$$

State differential equation

So the p.d.e.

$$
\begin{aligned}
\frac{\partial w}{\partial t}(\zeta, t) & =\frac{\partial w}{\partial \zeta}(\zeta, t), \quad \zeta \in[0,1], t \geq 0 \\
w(1, t) & =0 \\
w(\zeta, 0) & =w_{0}(\zeta) \quad \text { (given) }
\end{aligned}
$$

can with $x(t)=w(\cdot, t), \dot{x}(t)=\frac{\partial w}{\partial t}(\cdot, t)$, and $A x(t):=\frac{\partial w}{\partial \zeta}(\cdot, t)$, be written as abstract differential equation:

$$
\dot{x}(t)=A x(t), \quad x(0)=w_{0}
$$

Where is the boundary condition?

State differential equation

So the p.d.e.

$$
\begin{aligned}
\frac{\partial w}{\partial t}(\zeta, t) & =\frac{\partial w}{\partial \zeta}(\zeta, t), \quad \zeta \in[0,1], t \geq 0 \\
w(1, t) & =0 \\
w(\zeta, 0) & =w_{0}(\zeta) \quad \text { (given) }
\end{aligned}
$$

can with $x(t)=w(\cdot, t), \dot{x}(t)=\frac{\partial w}{\partial t}(\cdot, t)$, and $A x(t):=\frac{\partial w}{\partial \zeta}(\cdot, t)$, be written as abstract differential equation:

$$
\dot{x}(t)=A x(t), \quad x(0)=w_{0}
$$

Where is the boundary condition?
Another problem: The (spatial) derivative does not exist for all $\overline{x(t)} \in L^{2}(0,1)$.

More on A

We see that A is a mapping working for a fixed t, i.e., so for $f \in L^{2}(0,1)$ we can define $A f$ as

$$
(A f)(\zeta)=\frac{d f}{d \zeta}(\zeta)
$$

More on A

We see that A is a mapping working for a fixed t, i.e., so for $f \in L^{2}(0,1)$ we can define $A f$ as

$$
(A f)(\zeta)=\frac{d f}{d \zeta}(\zeta)
$$

We want that A maps into X, and so we only take the derivative of $f \in X$ when the answer lies in X again. So

$$
D(A)=\left\{f \in X \left\lvert\, \frac{d f}{d \zeta} \in X\right.\right.
$$

More on A

We see that A is a mapping working for a fixed t, i.e., so for $f \in L^{2}(0,1)$ we can define $A f$ as

$$
(A f)(\zeta)=\frac{d f}{d \zeta}(\zeta)
$$

We want that A maps into X, and so we only take the derivative of $f \in X$ when the answer lies in X again. So

$$
D(A)=\left\{f \in X \left\lvert\, \frac{d f}{d \zeta} \in X\right.\right.
$$

Since the boundary condition is an essential part of the p.d.e. and since it is a condition in the spatial direction. It is added to the domain of A.

More on A

We see that A is a mapping working for a fixed t, i.e., so for $f \in L^{2}(0,1)$ we can define $A f$ as

$$
(A f)(\zeta)=\frac{d f}{d \zeta}(\zeta)
$$

We want that A maps into X, and so we only take the derivative of $f \in X$ when the answer lies in X again. So

$$
D(A)=\left\{f \in X \left\lvert\, \frac{d f}{d \zeta} \in X\right., f(1)=0\right\}
$$

Since the boundary condition is an essential part of the p.d.e. and since it is a condition in the spatial direction. It is added to the domain of A.

Summary on A

So the p.d.e.

$$
\begin{aligned}
\frac{\partial w}{\partial t}(\zeta, t) & =\frac{\partial w}{\partial \zeta}(\zeta, t), \quad \zeta \in[0,1], t \geq 0 \\
w(1, t) & =0 \\
w(\zeta, 0) & =w_{0}(\zeta)
\end{aligned}
$$

is written as the abstract differential equation:

$$
\dot{x}(t)=A x(t), \quad x(0)=x_{0}=w_{0}
$$

with $x(t)=w(\cdot, t) \in X=L^{2}(0,1)$, and

$$
(A f)(\zeta)=\frac{d f}{d \zeta}(\zeta)
$$

with domain:

$$
D(A)=\left\{f \in X \left\lvert\, \frac{d f}{d \zeta} \in X\right., f(1)=0\right\}
$$

Port-Hamiltonian p.d.e., state space

Given our port-Hamiltonian partial differential equation with boundary conditions

$$
\begin{aligned}
\frac{\partial x}{\partial t}(\zeta, t) & =\left(P_{1} \frac{\partial}{\partial \zeta}+P_{0}\right)[\mathcal{H}(\zeta) x(\zeta, t)] \\
0 & =W_{B}\left[\begin{array}{l}
\mathcal{H}(b) x(b, t) \\
\mathcal{H}(a) x(a, t)
\end{array}\right]
\end{aligned}
$$

with the properties on P_{0}, P_{1} and \mathcal{H}.

Port-Hamiltonian p.d.e., state space

Given our port-Hamiltonian partial differential equation with boundary conditions

$$
\begin{aligned}
\frac{\partial x}{\partial t}(\zeta, t) & =\left(P_{1} \frac{\partial}{\partial \zeta}+P_{0}\right)[\mathcal{H}(\zeta) x(\zeta, t)] \\
0 & =W_{B}\left[\begin{array}{l}
\mathcal{H}(b) x(b, t) \\
\mathcal{H}(a) x(a, t)
\end{array}\right]
\end{aligned}
$$

with the properties on P_{0}, P_{1} and \mathcal{H}.

- As state we choose $x(t)=x(\cdot, t)$.

Port-Hamiltonian p.d.e., state space

Given our port-Hamiltonian partial differential equation with boundary conditions

$$
\begin{aligned}
\frac{\partial x}{\partial t}(\zeta, t) & =\left(P_{1} \frac{\partial}{\partial \zeta}+P_{0}\right)[\mathcal{H}(\zeta) x(\zeta, t)] \\
0 & =W_{B}\left[\begin{array}{l}
\mathcal{H}(b) x(b, t) \\
\mathcal{H}(a) x(a, t)
\end{array}\right]
\end{aligned}
$$

with the properties on P_{0}, P_{1} and \mathcal{H}.

- As state we choose $x(t)=x(\cdot, t)$.
- As state space we choose the energy space, i.e., $X=L^{2}\left((0,1) ; \mathbb{R}^{n}\right)$ with inner product

$$
\langle f, g\rangle_{X}=\frac{1}{2} \int_{a}^{b} f(\zeta)^{\top} \mathcal{H}(\zeta) g(\zeta) d \zeta
$$

Port-Hamiltonian p.d.e., state space formulation

With the state $x(t)=x(\cdot, t)$ and $X=L^{2}\left((0,1) ; \mathbb{R}^{n}\right)$ our port-Hamiltonian p.d.e. with boundary conditions;

$$
\begin{aligned}
\frac{\partial x}{\partial t}(\zeta, t) & =\left(P_{1} \frac{\partial}{\partial \zeta}+P_{0}\right)[\mathcal{H}(\zeta) x(\zeta, t)] \\
0 & =W_{B}\left[\begin{array}{l}
\mathcal{H}(b) x(b, t) \\
\mathcal{H}(a) x(a, t)
\end{array}\right]
\end{aligned}
$$

becomes

Port-Hamiltonian p.d.e., state space formulation

With the state $x(t)=x(\cdot, t)$ and $X=L^{2}\left((0,1) ; \mathbb{R}^{n}\right)$ our port-Hamiltonian p.d.e. with boundary conditions;

$$
\begin{aligned}
\frac{\partial x}{\partial t}(\zeta, t) & =\left(P_{1} \frac{\partial}{\partial \zeta}+P_{0}\right)[\mathcal{H}(\zeta) x(\zeta, t)] \\
0 & =W_{B}\left[\begin{array}{c}
\mathcal{H}(b) x(b, t) \\
\mathcal{H}(a) x(a, t)
\end{array}\right]
\end{aligned}
$$

becomes

$$
\dot{x}(t)=A x(t)
$$

where

$$
A x=\left(P_{1} \frac{d}{d \zeta}+P_{0}\right)[\mathcal{H} x]
$$

with domain

$$
D(A)=\left\{x \in X \left\lvert\, \frac{d}{d \zeta}(\mathcal{H} x) \in X\right., W_{B}\left[\begin{array}{c}
\mathcal{H}(b) x(b) \\
\mathcal{H}(a) x(a)
\end{array}\right]=0\right\} .
$$

A and $T(t)$

We have now written our p.d.e.'s as

$$
\dot{x}(t)=A x(t)
$$

and our solutions as

$$
x(t)=T(t) x_{0}
$$

What is their relation?

A and $T(t)$

We have now written our p.d.e.'s as

$$
\dot{x}(t)=A x(t)
$$

and our solutions as

$$
x(t)=T(t) x_{0}
$$

What is their relation?
We begin by studying the question when X is finite-dimensional.

Finding A

Let A be given as

$$
A=\left(\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right)
$$

then

$$
e^{A t}=\left(\begin{array}{cc}
e^{t} & e^{3 t}-e^{t} \\
0 & e^{3 t}
\end{array}\right)
$$

Finding A

Let A be given as

$$
A=\left(\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right)
$$

then

$$
e^{A t}=\left(\begin{array}{cc}
e^{t} & e^{3 t}-e^{t} \\
0 & e^{3 t}
\end{array}\right)
$$

Problem: Suppose now that you know only $e^{A t}$. How would you find A back?

Finding A

Let A be given as

$$
A=\left(\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right)
$$

then

$$
e^{A t}=\left(\begin{array}{cc}
e^{t} & e^{3 t}-e^{t} \\
0 & e^{3 t}
\end{array}\right)
$$

Problem: Suppose now that you know only $e^{A t}$. How would you find A back?
Answer Evaluate the derivative of the semigroup at $t=0$. Since $\frac{d}{d t} e^{A t}=A e^{A t}$, we have

$$
\left.\frac{d}{d t} e^{A t}\right|_{t=0}=A
$$

A and $T(t)$

Theorem
Assume that $(T(t))_{t \geq 0}$ is the solution map of our p.d.e., then for those $x_{0} \in X$ for which the following limit exists

$$
\lim _{t \downarrow 0} \frac{T(t) x_{0}-x_{0}}{t}
$$

we have that

$$
A x_{0}=\lim _{t \downarrow 0} \frac{T(t) x_{0}-x_{0}}{t}
$$

A and $T(t)$

Theorem
Assume that $(T(t))_{t \geq 0}$ is the solution map of our p.d.e., then for those $x_{0} \in X$ for which the following limit exists

$$
\lim _{t \downarrow 0} \frac{T(t) x_{0}-x_{0}}{t}
$$

we have that

$$
A x_{0}=\lim _{t \downarrow 0} \frac{T(t) x_{0}-x_{0}}{t}
$$

Furthermore, $D(A)$ consists of precisely those $x_{0} \in X$ for which the limit exists.

A and $T(t)$

Theorem
Assume that $(T(t))_{t \geq 0}$ is the solution map of our p.d.e., then for those $x_{0} \in X$ for which the following limit exists

$$
\lim _{t \downarrow 0} \frac{T(t) x_{0}-x_{0}}{t}
$$

we have that

$$
A x_{0}=\lim _{t \downarrow 0} \frac{T(t) x_{0}-x_{0}}{t}
$$

Furthermore, $D(A)$ consists of precisely those $x_{0} \in X$ for which the limit exists.
A is named the infinitesimal generator of the C_{0}-semigroup
$(T(t))_{t \geq 0}$.

A and $T(t)$

Lemma

If $x_{0} \in D(A)$, then for $t>0, T(t) x_{0}$ is differentiable, and

$$
\frac{d}{d t}\left(T(t) x_{0}\right)=A T(t) x_{0}
$$

A and $T(t)$

Lemma

If $x_{0} \in D(A)$, then for $t>0, T(t) x_{0}$ is differentiable, and

$$
\frac{d}{d t}\left(T(t) x_{0}\right)=A T(t) x_{0}
$$

So $x(t):=T(t) x_{0}$ is a solution (classical) of

$$
\dot{x}(t)=A x(t), \quad x(0)=x_{0}
$$

A and $T(t)$

Lemma

If $x_{0} \in D(A)$, then for $t>0, T(t) x_{0}$ is differentiable, and

$$
\frac{d}{d t}\left(T(t) x_{0}\right)=A T(t) x_{0}
$$

So $x(t):=T(t) x_{0}$ is a solution (classical) of

$$
\dot{x}(t)=A x(t), \quad x(0)=x_{0}
$$

For $x_{0} \in X, T(t) x_{0}$ is called a weak solution.

A and $T(t)$

So given the (general) C_{0}-semigroup $(T(t))_{t \geq 0}$, we could try to find A by differentiating it at $t=0$.

A and $T(t)$

So given the (general) C_{0}-semigroup $(T(t))_{t \geq 0}$, we could try to find A by differentiating it at $t=0$.
Problem: Solution is most times not known.

A and $T(t)$

So given the (general) C_{0}-semigroup $(T(t))_{t \geq 0}$, we could try to find A by differentiating it at $t=0$.
Problem: Solution is most times not known.
However, A is know (or can be defined from the p.d.e.). So the natural question is how to find $(T(t))_{t \geq 0}$ from A.

A and $T(t)$

So given the (general) C_{0}-semigroup $(T(t))_{t \geq 0}$, we could try to find A by differentiating it at $t=0$.
Problem: Solution is most times not known.
However, A is know (or can be defined from the p.d.e.). So the natural question is how to find $(T(t))_{t \geq 0}$ from A. Note there is a difference between knowing the existence of a solution and having the form/expression of the solution. The expression for the solution can be hard/impossible to find. So we concentrate on existence.

A and $T(t)$

So given the (general) C_{0}-semigroup $(T(t))_{t \geq 0}$, we could try to find A by differentiating it at $t=0$.
Problem: Solution is most times not known.
However, A is know (or can be defined from the p.d.e.). So the natural question is how to find $(T(t))_{t \geq 0}$ from A. Note there is a difference between knowing the existence of a solution and having the form/expression of the solution. The expression for the solution can be hard/impossible to find. So we concentrate on existence.
We do this for a special class of C_{0}-semigroups.

Recall: Contraction semigroup

Definition
The C_{0}-semigroup $(T(t))_{t \geq 0}$ is contraction semigroup if

$$
\left\|T(t) x_{0}\right\| \leq\left\|x_{0}\right\| \quad \text { for all } t \geq 0 \text { and for all } x_{0} \in X
$$

Recall: Contraction semigroup

Definition
The C_{0}-semigroup $(T(t))_{t \geq 0}$ is contraction semigroup if

$$
\left\|T(t) x_{0}\right\| \leq\left\|x_{0}\right\| \quad \text { for all } t \geq 0 \text { and for all } x_{0} \in X
$$

Contraction semigroup

We known that

$$
\left\|T(t) x_{0}\right\|^{2}=\left\langle T(t) x_{0}, T(t) x_{0}\right\rangle
$$

For $x_{0} \in D(A)$, we have that the derivative of $T(t) x_{0}$ equals $A T(t) x_{0}$.
So if we differentiate $\left\|T(t) x_{0}\right\|^{2}$, we find

$$
\frac{d}{d t}\left\|T(t) x_{0}\right\|^{2}=\left\langle A T(t) x_{0}, T(t) x_{0}\right\rangle+\left\langle T(t) x_{0}, A T(t) x_{0}\right\rangle
$$

Contraction semigroup

So we know:

$$
\frac{d}{d t}\left\|T(t) x_{0}\right\|^{2}=\left\langle A T(t) x_{0}, T(t) x_{0}\right\rangle+\left\langle T(t) x_{0}, A T(t) x_{0}\right\rangle
$$

Now we choose $t=0$.

Contraction semigroup

So we know:

$$
\frac{d}{d t}\left\|T(t) x_{0}\right\|^{2}=\left\langle A T(t) x_{0}, T(t) x_{0}\right\rangle+\left\langle T(t) x_{0}, A T(t) x_{0}\right\rangle
$$

Now we choose $t=0$. We know that $T(0) x_{0}=x_{0}$. Thus at time equal to zero, we find

$$
\left.\frac{d}{d t}\left(\left\|T(t) x_{0}\right\|^{2}\right)\right|_{t=0}=\left\langle A x_{0}, x_{0}\right\rangle+\left\langle x_{0}, A x_{0}\right\rangle
$$

Contraction semigroup

So we know:

$$
\frac{d}{d t}\left\|T(t) x_{0}\right\|^{2}=\left\langle A T(t) x_{0}, T(t) x_{0}\right\rangle+\left\langle T(t) x_{0}, A T(t) x_{0}\right\rangle
$$

Now we choose $t=0$. We know that $T(0) x_{0}=x_{0}$. Thus at time equal to zero, we find

$$
\left.\frac{d}{d t}\left(\left\|T(t) x_{0}\right\|^{2}\right)\right|_{t=0}=\left\langle A x_{0}, x_{0}\right\rangle+\left\langle x_{0}, A x_{0}\right\rangle
$$

So if $T(t)$ is a contraction semigroup, then

$$
\left\langle A x_{0}, x_{0}\right\rangle+\left\langle x_{0}, A x_{0}\right\rangle=\left.\frac{d}{d t}\left\|T(t) x_{0}\right\|^{2}\right|_{t=0} \leq 0
$$

This has to hold for all $x_{0} \in D(A)$.

Contraction semigroup

Theorem (Lumer-Phillips)

Let A be a densely defined operator, then A generates a contraction semigroup on X if and only if

1. $\left\langle A x_{0}, x_{0}\right\rangle+\left\langle x_{0}, A x_{0}\right\rangle \leq 0$ for all $x_{0} \in D(A)$.
2. The range of $A-I$ is the whole of X.

Contraction semigroup

Theorem (Lumer-Phillips)

Let A be a densely defined operator, then A generates a contraction semigroup on X if and only if

1. $\left\langle A x_{0}, x_{0}\right\rangle+\left\langle x_{0}, A x_{0}\right\rangle \leq 0$ for all $x_{0} \in D(A)$.
2. The range of $A-I$ is the whole of X.

Condition 1 comes from $\frac{d}{d t}\left\|T(t) x_{0}\right\|^{2} \leq 0$. So for pH this is equivalent to $\dot{H}(t) \leq 0$. Note that Condition 2 seems to be missing in our existence theorem for pH systems.

Contraction semigroup

Example

Consider on the state space $X=L^{2}(0,1)$ the operator A which is given as

$$
A f=\frac{d f}{d \zeta}, \quad \zeta \in[0,1]
$$

with the domain

$$
\begin{aligned}
D(A)=\left\{f \in L^{2}(0,1) \mid\right. & f \text { is absolutely continuous, } \\
& \left.\frac{d f}{d \zeta} \in L^{2}(0,1) \text { and } f(1)=0\right\}
\end{aligned}
$$

Let us check the properties:

Example: Contraction semigroup

- A is densely defined in $L^{2}(0,1)$.

Example: Contraction semigroup

- A is densely defined in $L^{2}(0,1)$.

$$
\langle A x, x\rangle+\langle x, A x\rangle
$$

$$
=
$$

Example: Contraction semigroup

- A is densely defined in $L^{2}(0,1)$.

$$
\begin{aligned}
\langle A x, x\rangle+ & \langle x, A x\rangle \\
& =\int_{0}^{1} \frac{d x}{d \zeta}(\zeta) \overline{x(\zeta)} d \zeta+\int_{0}^{1} x(\zeta) \frac{\overline{d x}(\zeta)}{d \zeta} d \zeta
\end{aligned}
$$

Example: Contraction semigroup

- A is densely defined in $L^{2}(0,1)$.

$$
\begin{aligned}
\langle A x, x\rangle+ & \langle x, A x\rangle \\
& =\int_{0}^{1} \frac{d x}{d \zeta}(\zeta) \overline{x(\zeta)} d \zeta+\int_{0}^{1} x(\zeta) \frac{\overline{d x}(\zeta)}{d \zeta} d \zeta \\
& =\int_{0}^{1} \frac{d}{d \zeta}[x(\zeta) \overline{x(\zeta)}] d \zeta \\
& =\left.|x(\zeta)|^{2}\right|_{0} ^{1} \\
& =0-|x(0)|^{2} \leq 0
\end{aligned}
$$

Example: Contraction semigroup

- A is densely defined in $L^{2}(0,1)$.

$$
\begin{aligned}
\langle A x, x\rangle+ & \langle x, A x\rangle \\
& =\int_{0}^{1} \frac{d x}{d \zeta}(\zeta) \overline{x(\zeta)} d \zeta+\int_{0}^{1} x(\zeta) \frac{\overline{d x}(\zeta)}{d \zeta} d \zeta \\
& =\int_{0}^{1} \frac{d}{d \zeta}[x(\zeta) \overline{x(\zeta)}] d \zeta \\
& =\left.|x(\zeta)|^{2}\right|_{0} ^{1} \\
& =0-|x(0)|^{2} \leq 0
\end{aligned}
$$

- To see if the range of $(A-I)$ is everything, we have for every $f \in L^{2}(0,1)$ to solve $(A-I) x=f$.

Example: Contraction semigroup

Solving $(A-I) x=f$ means solving

$$
\frac{d x}{d \zeta}(\zeta)-x(\zeta)=f(\zeta), \quad \zeta \in(0,1)
$$

with boundary condition $x(1)=0$.

Example: Contraction semigroup

Solving $(A-I) x=f$ means solving

$$
\frac{d x}{d \zeta}(\zeta)-x(\zeta)=f(\zeta), \quad \zeta \in(0,1)
$$

with boundary condition $x(1)=0$. The solution of this differential equation with the given boundary value is

$$
x(\zeta)=-\int_{\zeta}^{1} e^{\zeta-\xi} f(\xi) d \xi
$$

Example: Contraction semigroup

Conclusion:

$$
A f=\frac{d f}{d \zeta}, \quad \zeta \in[0,1]
$$

with the domain

$$
D(A)=\left\{f \in L^{2}(0,1) \left\lvert\, \frac{d f}{d \zeta} \in L^{2}(0,1)\right. \text { and } f(1)=0\right\}
$$

generates a contraction semigroup on $X=L^{2}(0,1)$.

Example: Contraction semigroup

Conclusion:

$$
A f=\frac{d f}{d \zeta}, \quad \zeta \in[0,1]
$$

with the domain

$$
D(A)=\left\{f \in L^{2}(0,1) \left\lvert\, \frac{d f}{d \zeta} \in L^{2}(0,1)\right. \text { and } f(1)=0\right\}
$$

generates a contraction semigroup on $X=L^{2}(0,1)$.
Note that A can also been seen as a pH system! Homework

States

Port-Hamiltonian Systems

Inputs and Outputs

Port-Hamiltonian systems with inputs and outputs

We are interested in boundary controls and boundary observations.

$$
\begin{aligned}
& \frac{\partial x}{\partial t}(\zeta, t)=\left(P_{1} \frac{\partial}{\partial \zeta}+P_{0}\right)[\mathcal{H} x(t)] \\
& u(t)=W_{B, 1}\left[\begin{array}{l}
(\mathcal{H} x)(b) \\
(\mathcal{H} x)(a)
\end{array}\right], 0=W_{B, 2}\left[\begin{array}{l}
(\mathcal{H} x)(b) \\
(\mathcal{H} x)(a)
\end{array}\right], y(t)=W_{C}\left[\begin{array}{l}
(\mathcal{H} x)(b) \\
(\mathcal{H} x)(a)
\end{array}\right]
\end{aligned}
$$

Port-Hamiltonian systems with inputs and outputs

We are interested in boundary controls and boundary observations.

$$
\begin{aligned}
& \frac{\partial x}{\partial t}(\zeta, t)=\left(P_{1} \frac{\partial}{\partial \zeta}+P_{0}\right)[\mathcal{H} x(t)] \\
& u(t)=W_{B, 1}\left[\begin{array}{l}
(\mathcal{H} x)(b) \\
(\mathcal{H} x)(a)
\end{array}\right], 0=W_{B, 2}\left[\begin{array}{l}
(\mathcal{H} x)(b) \\
(\mathcal{H} x)(a)
\end{array}\right], y(t)=W_{C}\left[\begin{array}{l}
(\mathcal{H} x)(b) \\
(\mathcal{H} x)(a)
\end{array}\right]
\end{aligned}
$$

Example: Wave equation

$$
\begin{aligned}
\frac{\partial^{2} w}{\partial t^{2}}(\zeta, t) & =\frac{1}{\rho(\zeta)} \frac{\partial}{\partial \zeta}\left[T(\zeta) \frac{\partial w}{\partial \zeta}(\zeta, t)\right] \\
u(t) & =T(1) \frac{\partial w}{\partial \zeta}(1, t), \quad 0=\frac{\partial w}{\partial t}(0, t) \\
y(t) & =\frac{\partial w}{\partial t}(1, t)
\end{aligned}
$$

Port-Hamiltonian systems with inputs and outputs

We are interested in boundary controls and boundary observations.

$$
\begin{aligned}
& \frac{\partial x}{\partial t}(\zeta, t)=\left(P_{1} \frac{\partial}{\partial \zeta}+P_{0}\right)[\mathcal{H} x(t)] \\
& u(t)=W_{B, 1}\left[\begin{array}{l}
(\mathcal{H} x)(b) \\
(\mathcal{H} x)(a)
\end{array}\right], 0=W_{B, 2}\left[\begin{array}{l}
(\mathcal{H} x)(b) \\
(\mathcal{H} x)(a)
\end{array}\right], y(t)=W_{C}\left[\begin{array}{l}
(\mathcal{H} x)(b) \\
(\mathcal{H} x)(a)
\end{array}\right]
\end{aligned}
$$

Example: Wave equation

$$
\begin{aligned}
\frac{\partial^{2} w}{\partial t^{2}}(\zeta, t) & =\frac{1}{\rho(\zeta)} \frac{\partial}{\partial \zeta}\left[T(\zeta) \frac{\partial w}{\partial \zeta}(\zeta, t)\right] \\
u(t) & =T(1) \frac{\partial w}{\partial \zeta}(1, t), \quad 0=\frac{\partial w}{\partial t}(0, t) \\
y(t) & =\frac{\partial w}{\partial t}(1, t)
\end{aligned}
$$

Question: Is this a well-posed linear system?

Well-posedness of port-Hamiltonian systems

State space $X=L^{2}\left((a, b) ; \mathbb{R}^{n}\right)$ with (the energy) norm

$$
\|f\|_{X}^{2}=\frac{1}{2} \int_{a}^{b} f(\zeta)^{T} \mathcal{H}(\zeta) f(\zeta) d \zeta
$$

Well-posedness of port-Hamiltonian systems

State space $X=L^{2}\left((a, b) ; \mathbb{R}^{n}\right)$ with (the energy) norm

$$
\|f\|_{X}^{2}=\frac{1}{2} \int_{a}^{b} f(\zeta)^{T} \mathcal{H}(\zeta) f(\zeta) d \zeta
$$

Definition

The port-Hamiltonian system is called well-posed, if

- $A x=P_{1} \frac{d}{d \zeta}[\mathcal{H} x]+P_{0}[\mathcal{H} x]$ with domain

$$
D(A)=\left\{x \in X \left\lvert\, \frac{d}{d \zeta} \mathcal{H} x \in X\right.,\left[\begin{array}{l}
W_{B, 1} \\
W_{B, 2}
\end{array}\right]\left[\begin{array}{l}
(\mathcal{H} x)(b) \\
(\mathcal{H} x)(a)
\end{array}\right]=0\right\}
$$

is the generator of a C_{0}-semigroup on X.

Well-posedness of port-Hamiltonian systems

State space $X=L^{2}\left((a, b) ; \mathbb{R}^{n}\right)$ with (the energy) norm

$$
\|f\|_{X}^{2}=\frac{1}{2} \int_{a}^{b} f(\zeta)^{T} \mathcal{H}(\zeta) f(\zeta) d \zeta
$$

Definition

The port-Hamiltonian system is called well-posed, if

- $A x=P_{1} \frac{d}{d \zeta}[\mathcal{H} x]+P_{0}[\mathcal{H} x]$ with domain

$$
D(A)=\left\{x \in X \left\lvert\, \frac{d}{d \zeta} \mathcal{H} x \in X\right.,\left[\begin{array}{l}
W_{B, 1} \\
W_{B, 2}
\end{array}\right]\left[\begin{array}{l}
(\mathcal{H} x)(b) \\
(\mathcal{H} x)(a)
\end{array}\right]=0\right\}
$$

is the generator of a C_{0}-semigroup on X.

- There are $t_{0}, m_{t_{0}}>0$:

$$
\left\|x\left(t_{0}\right)\right\|_{X}^{2}+\int_{0}^{t_{0}}\|y(t)\|^{2} d t \leq m_{t_{0}}\left[\|x(0)\|_{X}^{2}+\int_{0}^{t_{0}}\|u(t)\|^{2} d t\right]
$$

Well-posedness of port-Hamiltonian systems

$$
\text { Let } W_{B}:=\left[\begin{array}{l}
W_{B, 1} \\
W_{B, 2}
\end{array}\right] \text { be a full rank real matrix of size } n \times 2 n \text {. }
$$

Well-posedness of port-Hamiltonian systems

Let $W_{B}:=\left[\begin{array}{l}W_{B, 1} \\ W_{B, 2}\end{array}\right]$ be a full rank real matrix of size $n \times 2 n$. $P_{1} \mathcal{H}$ can be factorized as $P_{1} \mathcal{H}(\zeta)=S^{-1}(\zeta) \Delta(\zeta) S(\zeta)$ with Δ diagonal.

Well-posedness of port-Hamiltonian systems

Let $W_{B}:=\left[\begin{array}{l}W_{B, 1} \\ W_{B, 2}\end{array}\right]$ be a full rank real matrix of size $n \times 2 n$. $P_{1} \mathcal{H}$ can be factorized as $P_{1} \mathcal{H}(\zeta)=S^{-1}(\zeta) \Delta(\zeta) S(\zeta)$ with Δ diagonal.

Assume: Δ, S are continuously differentiable

Well-posedness of port-Hamiltonian systems

Let $W_{B}:=\left[\begin{array}{l}W_{B, 1} \\ W_{B, 2}\end{array}\right]$ be a full rank real matrix of size $n \times 2 n$. $P_{1} \mathcal{H}$ can be factorized as $P_{1} \mathcal{H}(\zeta)=S^{-1}(\zeta) \Delta(\zeta) S(\zeta)$ with Δ diagonal.

Assume: Δ, S are continuously differentiable
Theorem (Z, Le Gorrec, Maschke, Villegas '10)
If $A x=\left(P_{1} \frac{d}{d \zeta}+P_{0}\right)[\mathcal{H} x]$ generates a C_{0}-semigroup, then the port-Hamiltonian system is well-posed.

Well-posedness of port-Hamiltonian systems

Let $W_{B}:=\left[\begin{array}{l}W_{B, 1} \\ W_{B, 2}\end{array}\right]$ be a full rank real matrix of size $n \times 2 n$. $P_{1} \mathcal{H}$ can be factorized as $P_{1} \mathcal{H}(\zeta)=S^{-1}(\zeta) \Delta(\zeta) S(\zeta)$ with Δ diagonal.

Assume: Δ, S are continuously differentiable
Theorem (Z, Le Gorrec, Maschke, Villegas '10)
If $A x=\left(P_{1} \frac{d}{d \zeta}+P_{0}\right)[\mathcal{H} x]$ generates a C_{0}-semigroup, then the port-Hamiltonian system is well-posed.
Remark: We even have a regular system.

Example: Wave equation

$$
\begin{aligned}
\frac{\partial^{2} w}{\partial t^{2}}(\zeta, t) & =\frac{1}{\rho(\zeta)} \frac{\partial}{\partial \zeta}\left[T(\zeta) \frac{\partial w}{\partial \zeta}(\zeta, t)\right] \\
u(t) & =T(1) \frac{\partial w}{\partial \zeta}(1, t), \quad 0=\frac{\partial w}{\partial t}(0, t) \\
y(t) & =\frac{\partial w}{\partial t}(1, t)
\end{aligned}
$$

Example: Wave equation

$$
\begin{aligned}
& \square_{y}^{u} \frac{\partial^{2} w}{\partial t^{2}}(\zeta, t)=\frac{1}{\rho(\zeta)} \frac{\partial}{\partial \zeta}\left[T(\zeta) \frac{\partial w}{\partial \zeta}(\zeta, t)\right] \\
& u(t)=T(1) \frac{\partial w}{\partial \zeta}(1, t), \quad 0=\frac{\partial w}{\partial t}(0, t) \\
& y(t)=\frac{\partial w}{\partial t}(1, t) \\
& P_{1} \mathcal{H}=\left[\begin{array}{cc}
0 & T \\
\frac{1}{\rho} & 0
\end{array}\right]=\left[\begin{array}{cc}
\gamma & -\gamma \\
\frac{1}{\rho} & \frac{1}{\rho}
\end{array}\right]\left[\begin{array}{cc}
\gamma & 0 \\
0 & -\gamma
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{2 \gamma} & \frac{\rho}{2} \\
-\frac{1}{2 \gamma} & \frac{\rho}{2}
\end{array}\right]=S^{-1} \Delta S,
\end{aligned}
$$

with $\gamma>0$ und $\gamma^{2}=\frac{T}{\rho}$.

Example: Wave equation

$$
\begin{aligned}
& \square_{y}^{u} \frac{\partial^{2} w}{\partial t^{2}}(\zeta, t)=\frac{1}{\rho(\zeta)} \frac{\partial}{\partial \zeta}\left[T(\zeta) \frac{\partial w}{\partial \zeta}(\zeta, t)\right] \\
& u(t)=T(1) \frac{\partial w}{\partial \zeta}(1, t), \quad 0=\frac{\partial w}{\partial t}(0, t) \\
& y(t)=\frac{\partial w}{\partial t}(1, t) \\
& P_{1} \mathcal{H}=\left[\begin{array}{cc}
0 & T \\
\frac{1}{\rho} & 0
\end{array}\right]=\left[\begin{array}{cc}
\gamma & -\gamma \\
\frac{1}{\rho} & \frac{1}{\rho}
\end{array}\right]\left[\begin{array}{cc}
\gamma & 0 \\
0 & -\gamma
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{2 \gamma} & \frac{\rho}{2} \\
-\frac{1}{2 \gamma} & \frac{\rho}{2}
\end{array}\right]=S^{-1} \Delta S,
\end{aligned}
$$

with $\gamma>0$ und $\gamma^{2}=\frac{T}{\rho}$.

$$
\left[\begin{array}{l}
W_{B, 1} \\
W_{B, 2}
\end{array}\right]=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Example: Wave equation

$$
\begin{aligned}
& \square_{y}^{u} \frac{\partial^{2} w}{\partial t^{2}}(\zeta, t)=\frac{1}{\rho(\zeta)} \frac{\partial}{\partial \zeta}\left[T(\zeta) \frac{\partial w}{\partial \zeta}(\zeta, t)\right] \\
& u(t)=T(1) \frac{\partial w}{\partial \zeta}(1, t), \quad 0=\frac{\partial w}{\partial t}(0, t) \\
& y(t)=\frac{\partial w}{\partial t}(1, t) \\
& P_{1} \mathcal{H}=\left[\begin{array}{cc}
0 & T \\
\frac{1}{\rho} & 0
\end{array}\right]=\left[\begin{array}{cc}
\gamma & -\gamma \\
\frac{1}{\rho} & \frac{1}{\rho}
\end{array}\right]\left[\begin{array}{cc}
\gamma & 0 \\
0 & -\gamma
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{2 \gamma} & \frac{\rho}{2} \\
-\frac{1}{2 \gamma} & \frac{\rho}{2}
\end{array}\right]=S^{-1} \Delta S, \\
& \text { with } \gamma>0 \text { und } \gamma^{2}=\frac{T}{\rho} \text {. } \\
& {\left[\begin{array}{l}
W_{B, 1} \\
W_{B, 2}
\end{array}\right]=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] .}
\end{aligned}
$$

So if T and ρ are continuously differentiable, then the controlled wave equation is well-posed.

Exercises

1. Show that for a pH system there holds:

$$
\dot{H}(t)=\frac{d H}{d t}(x(\cdot, t))=\frac{1}{2}\left[(\mathcal{H} x)^{T}(\zeta, t) P_{1}(\mathcal{H} x)(\zeta, t)\right]_{a}^{b}
$$

2. Show that $e^{A t}$ is a C_{0}-semigroup, when A is a (square) matrix.
3. Show that $A f=\frac{d f}{d \zeta}$ with domain $D(A)=\left\{f \in L^{2}(0,1) \mid f\right.$ is such that $\frac{d f}{d \zeta} \in L^{2}(0,1)$ and $\left.f(1)=0\right\}$ can be associated to a pH system.

Exercise

4 a Show that the connected wave equations shown below can be written as a pH system,
b Show that for no force ($u=0$) we have that the solution map is a contraction semigroup.
c Assume that we measure the velocity of the (vertical moving) middle bar. Show that the system is well-posed.

