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The wave equation, state differential equation
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So with the variables z1 = p (% and xy = 8@‘ the p.d.e. becomes
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We have generalised this to our class of first order
port-Hamiltonian equations.
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Port-Hamiltonian partial differential equations

Our model class are p.d.e.’s of the form

ox 0
- ,t - P - P H ,t
Ot(< ) ( ]()Q+ 0>[ z(¢,1)]
with
> (¢, t) R, ( €a,b], t >0
P> P is an invertible, symmetric real n X n-matrix,
> [y is a skew-symmetric real n X n-matrix,

» H(() is a symmetric, invertible n x n-matrix with
mlI < H(¢) < MI for some m, M > 0.

The energy/Hamiltonian is defined as
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Power balance

For the Port-Hamiltonian p.d.e. with energy/Hamiltonian
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Power balance

For the Port-Hamiltonian p.d.e. with energy/Hamiltonian
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it is not hard to show that along solutions; homework
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Thus the change of internal energy goes via the boundary of the
spatial domain, i.e. power balance.
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The energy is given by

i =3 [ o0 (2icn) +10 (ien)

with p is the mass density, and 7" is Young's modulus.

Of course, we want that our solutions have (keep) finite energy. So
the initial state must satisfy

;/olp(o (aa?“))? +7(0) (%‘f(oﬂc < oo,

This indicates that our states must be functions (of the spatial
variable)
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The wave equation, state

ow
We chooce for the state variables as 21 := p—— (the momentum),

ot

Tg 1= glc (the strain). With this choice the energy
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Since M1 > H(¢) > ml, we see that finite energy condition
implies that the state should satisfy for all ¢ > 0:
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The wave equation, state and state space

The functions [0,1] 3 ¢~ f(¢) € R? which satisfy

1
s ac < o
form the linear space L2((0,1); R?).

However, the “energy” is still used to measure the size of z, i.e.,
the norm

1 rt
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This norm is linked with the inner product
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The wave equation, state and state space

So based on the energy of our system, we have chosen our state
space as X = L?((0,1); R?) with the inner product

1
i =5 [ FQ MO0

We have that || f||% is precisely the energy.

So our state X is also called the energy space, i.e, the space
consisting of all state/shapes/------ with finite energy.

Note that we already rewrote the p.d.e. model of the vibrating
string in our state variables.
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Instead of seeing the state as a function of time and space, we see
it as a function of time (which at each time depends on the spatial
variable). So
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The wave equation, change of view point

Instead of seeing the state as a function of time and space, we see
it as a function of time (which at each time depends on the spatial
variable). So

x((,t) becomes (z(t)) ().

We see the solution map a mapping from initial state to
state-at-time-t, i.e.
xog — x(t)
T(t)
Thus (short hand) x(t) = T'(t)zo. What properties do we expect
from the solution mapping T'(¢)?
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We denote the state space by X. Thus our solution map
Xoxg—=xzt)=T{t)xg € X

Properties
» T'(0) = I (the identity)
» T'(t) is linear. That is axg + ST — ax(t) + BZ(t) (linearity
of the p.d.e).
» T'(t1 + to) = T(t1)T(t2), because of the time invariance, of
the p.d.e. any time may be chosen as initial time.

» T(t)xo € X forall zyp € X. Thus ||z(t)||x < oo whenever
lxol|x < oo. In particular, ||z(t)]|x < m(t)||zo| for some
function m(t).

» For all xg € X there holds
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Semigroup

So the only “unexpected” property is
T(t)l’o — X0 if ¢ J, 0

This the strong continuity.
It tells that the solution becomes more and more the initial state
when time get smaller and smaller.
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Semigroup

We introduce some notation. £(X) denotes the set of linear and
bounded operators from X to X. Thus if Q € £(X), then

> Qazo + i) = aQ(zo) + BQ(Zo), and
» there exists a ¢ > 0 such that for all zg € X,
1Q (o)l < gllwoll-

Definition
A strongly continuous semigroup (Cp-semigroup) is an operator
valued function, (T'());>q, from [0,00) to £(X) which satisfies

> T0)=1
> T(t)T(s)=T(t+s), t,sel0,00)
» For all xp € X there holds

lim T(t)zo = 0.
i (t)xo = xo



Semigroup, example

Let @ be a (complex or real) number, then

eat

is a Cp-semigroup on X = R.



Semigroup, example

Let @ be a (complex or real) number, then

eat

is a Cp-semigroup on X = R.
Let A be a (square) matrix, then

T(t) == e

is a Cy-semigroup on the state space X = R". Homework



Contraction semigroup
Definition
The Co-semigroup (T'(t)),~ is contraction semigroup if
|T(t)xo|| < ||zol| for all t > 0 and for all zy € X.
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T (t)zo|| = ||zo| for all ¢ and for all zg € X.



Contraction semigroup
Definition
The Co-semigroup (T'(t)),~ is contraction semigroup if
|T(t)xo|| < ||zol| for all t > 0 and for all zy € X.
It is a unitary group if

T (t)zo|| = ||zo| for all ¢ and for all zg € X.
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Solution pH-system

We known that etz is the solution of
z(t) = Ax(t), z(0) =x0 € R"

How about our port-Hamiltonian partial differential equation?
For our port-Hamiltonian equation we have that the state is
directly linked to the energy. So the p.d.e. must tell us what
happens with the energy.
We have that

A(t) = 5 [(Ha)" (C.HPL (Ha) (G,8)]
So the boundary conditions must tell us what happens with this
term.
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Port-Hamiltonian partial differential equations

Given our port-Hamiltonian partial differential equation

Xt = (Pt B) QG 1)

with the properties on Py, P; and H.

We need to add boundary conditions to this p.d.e. That are
conditions in x((, t) for ¢ equal to a or b.

We write these boundary conditions as

W {H(b)x(b,t)] _o.

with Wg a matrix.

Question:  Which boundary conditions lead to unique solutions?
We answer this question by using semigroup theory. However, we
do it only for contraction semigroups.
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Port-Hamiltonian p.d.e., existence of solutions

Theorem (Le Gorrec, Maschke & Zwart '05, Jacob & Zwart
'11)

Assume the (standard) conditions on Py, Py and H. Assume
further that Wy is a n X 2n matrix of full rank.

Then the solution map is a contraction Cy-semigroup on X
(energy space) if and only if

H<0.

The solution map is a unitary Cy-group (i.e. || T(t)zo] = ||zo
Vxo,Vt) if and only if

1

H=0.
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Example: the wave equation

Now we check the conditions.

0
’Pl:L 0

> Py =0, so skew-symmetric.
> 1f0<m < T(),p(¢)"t < M for all ¢, then

H(C) = [P(Co)_l T?C)] satisfy mIy < H(() < M.

» Wpg has rank 2.
> H=0.

Thus the solution map is a unitary group on the energy space.

} is an invertible 2 x 2 matrix (n = 2).
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Summary

What we have introduced is:
» A general concept of state and state space.
» A general concept of the solution map.

» Question: How to formulate state/state space for a partial
differential equation?
We study an example first.
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Example (Transport equation)
On the spatial domain [0, 1] consider the p.d.e.
ow ow
i = — >
w(l,t) = 0

w(¢,0) = wo(C) (given).

As state z(t) we choose w at a time t.
> So x(t) = w(-t), or (z(t)) (€) = w((, ).
> As state space we choose L?(0,1).
» If we now introduce & (t) = %—Llf(,t) and Ax(t) = %(,t)
then the p.d.e. becomes

At

z(t) = Ax(t).
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State differential equation

So the p.d.e.
ow ow
E(CJE) = FC(C,t% CE [071]7 t >0,
w(l,t) = 0

w(¢,0) = wo(Q) (given).

can with x(t) = w(-,t), @(t) = %—?(-,t), and Az(t) := 8—’5(-,7&), be
written as abstract differential equation:

z(t) = Ax(t), x(0) = wp.

Where is the boundary condition?
Another problem: The (spatial) derivative does not exist for all
z(t) € L*(0,1).
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More on A

We see that A is a mapping working for a fixed ¢, i.e., so for
f € L?(0,1) we can define Af as

T

(AN©) = 3¢

We want that A maps into X, and so we only take the derivative
of f € X when the answer lies in X again. So

D(A )—{feXl—eXf ) =0}
Since the boundary condition is an essential part of the p.d.e. and

since it is a condition in the spatial direction. It is added to the
domain of A.



Summary on A

So the p.d.e.
ow ow
E(C?t) - %(C?t% CG [071]7 t207
w(l,t) = 0

w(¢,0) = wo(¢)
is written as the abstract differential equation:
@(t) = Az(t),  2(0) = zo = wo
with z(t) = w(-,t) € X = L?(0,1), and

(Af) () = jﬁ(g)

with domain:

D(A>={f€X\ZJ£€X,f(1):0}-
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Port-Hamiltonian p.d.e., state space

Given our port-Hamiltonian partial differential equation with
boundary conditions

2t = (P R) OG0

0 = wy [

with the properties on Py, P; and H.
> As state we choose z(t) = z(-, ).

P As state space we choose the energy space, i.e.,
X = L%((0,1); R™) with inner product

b
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Port-Hamiltonian p.d.e., state space formulation
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Port-Hamiltonian p.d.e., state space formulation

With the state z(t) = z(-,t) and X = L?((0,1); R") our
port-Hamiltonian p.d.e. with boundary conditions;

Tien = (P R) O

0 = wy [H00)]

becomes
i(t) = Az(t),

where

Az = ( jC+PO> (Ha]

with domain

D(A) = {x €X| dC(Hx) € X,Wg [;{ésgim = o} :



A and T'(t)

We have now written our p.d.e.’s as
z(t) = Az(t)

and our solutions as

What is their relation?



A and T'(t)

We have now written our p.d.e.’s as
z(t) = Az(t)

and our solutions as

What is their relation?
We begin by studying the question when X is finite-dimensional.
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Finding A

Let A be given as

then

Problem: Suppose now that you know only e*. How would you
find A back?

Answer Evaluate the derivative of the semigroup at ¢t = 0.
Since LeA = Ae?t, we have

d a
— —o= A.
3¢ =0



A and T'(t)

Theorem
Assume that (T'(t)), is the solution map of our p.d.e., then for
those xo € X for which the following limit exists

T _
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tl0 t
we have that T
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A and T'(t)

Theorem
Assume that (T'(t)), is the solution map of our p.d.e., then for
those xo € X for which the following limit exists

T(t —
lim ( )iUO 1707
tl0 t
we have that T
t —
Azo = lim L0~ 20
tl0 t

Furthermore, D(A) consists of precisely those xy € X for which
the limit exists.
A is named the infinitesimal generator of the Cy-semigroup

(T(1))y>0- .
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A and T'(t)

Lemma
If vo € D(A), then fort > 0, T(t)xq is differentiable, and

% (T(t)zy) = AT()0.
So x(t) := T'(t)xo is a solution (classical) of
x(t) = Ax(t), z(0) = xg

For xo € X, T(t)x¢ is called a weak solution.
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A and T'(t)

So given the (general) Cyp-semigroup (T'(t)),~, we could try to
find A by differentiating it at ¢ = 0. -

Problem: Solution is most times not known.

However, A is know (or can be defined from the p.d.e.). So the
natural question is how to find (7'(t)),~ from A.

Note there is a difference between knowing the existence of a
solution and having the form /expression of the solution. The
expression for the solution can be hard/impossible to find. So we
concentrate on existence.

We do this for a special class of Cy-semigroups.
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1T (t)xol| < ||zoll for all t > 0 and for all zp € X.



Recall: Contraction semigroup
Definition
The Co-semigroup (1'(t)),~ is contraction semigroup if

1T (t)xol| < ||zoll for all t > 0 and for all zp € X.

1T (#)xoll

ol




Contraction semigroup

We known that
IT(t)ao|* = (T (t)wo, T()0)-
For o € D(A), we have that the derivative of T'(¢)z( equals

AT(t)l’o.
So if we differentiate ||T(t)zo|?, we find

%HT(t)CL‘oHQ = (AT (t)zo, T (t)xo) + (T (t)xo, AT (t)x0).



Contraction semigroup

So we know:
%HT(t)ar:oH2 = (AT (t)xo, T(t)xo) + (T (t)x0, AT (t)x0).

Now we choose t = 0.



Contraction semigroup
So we know:
d
%HT(WEOHZ = (AT (t)xo, T(t)xo) + (T (t)x0, AT (t)x0).

Now we choose ¢ = 0. We know that 7'(0)z¢ = xg. Thus at time
equal to zero, we find

i xo||? = (Axg,x o, Azg).
o (1T (@)oll )t:O (Azo, z0) + (20, AZ0)



Contraction semigroup
So we know:
d
%HT(WEOHZ = (AT (t)xo, T(t)xo) + (T (t)x0, AT (t)x0).

Now we choose ¢ = 0. We know that 7'(0)z¢ = xg. Thus at time
equal to zero, we find

i xo||? = (Axg,x o, Azg).
g (1T (@)oll )t:O (Azo, z0) + (20, AZ0)

So if T'(t) is a contraction semigroup, then
d 2
(Azo, 20) + (w0, Azo) = — [T ()2o|” [t=0= 0.

This has to hold for all zy € D(A).



Contraction semigroup

Theorem (Lumer-Phillips)

Let A be a densely defined operator, then A generates a
contraction semigroup on X if and only if

1. (Azo, zo) + (z0, Axo) < 0 for all o € D(A).
2. The range of A — I is the whole of X .



Contraction semigroup

Theorem (Lumer-Phillips)

Let A be a densely defined operator, then A generates a
contraction semigroup on X if and only if

1. (Azo, zo) + (z0, Axo) < 0 for all o € D(A).

2. The range of A — I is the whole of X .

Condition 1 comes from 4||T'(t)zo||? < 0. So for pH this is

equivalent to H(t) < 0. Note that Condition 2 seems to be
missing in our existence theorem for pH systems.



Contraction semigroup

Example
Consider on the state space X = L?(0, 1) the operator A which is
given as
daf
Af = — 0,1
f=g0 €€ [0,1]

with the domain
D(A) = {fe€L*0,1)] f is absolutely continuous,

df B
@ € L*(0,1) and f(1) = o} .

Let us check the properties:
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Example: Contraction semigroup
» A is densely defined in L?(0,1).
>

(Az, z)+(z, Ax)

L —
=/O 00

d¢+/01x<<>




Example: Contraction semigroup

» A is densely defined in L?(0,1).
>

(Az, z)+(z, Ax)

1 dl‘ . 1 dl’

_ /O o (cyrtcyic + /0 #(0) ()¢
1 d -

- | 5 @] ac

— 2O,

=0—|z(0)* <0.



Example: Contraction semigroup

» A is densely defined in L?(0,1).
>

(Az, z)+(z, Ax)

X —_— 1 X
= [0+ [ w05

1 P
- | % [et0rt0] ac
= |2(¢)*],
=0—|z(0)* <0.

» To see if the range of (A — 1) is e erythlng we have for every
f € L*0,1) tosolve (A — Iz =



Example: Contraction semigroup

Solving (A — I)xz = f means solving
dx
¢

with boundary condition z(1) = 0.

©) —z(Q)=f(), ¢e(01)



Example: Contraction semigroup

Solving (A — I)xz = f means solving
dx
d¢

with boundary condition (1) = 0. The solution of this differential

equation with the given boundary value is

©) —z(Q)=f(), ¢e(01)

1
£(¢) = — /C € F(€)de.



Example: Contraction semigroup

Conclusion:
df

Af:dicv

¢€l0,1]

with the domain
D(A) = {feL20 1)]—6L2(0 1) and f(1) = }

generates a contraction semigroup on X = L?(0,1).



Example: Contraction semigroup

Conclusion:
df

Af:dicv

¢€l0,1]

with the domain
D(A) = {feL20 1)]—6L2(0 1) and f(1) = }

generates a contraction semigroup on X = L?(0,1).
Note that A can also been seen as a pH system! Homework



States




Port-Hamiltonian Systems

Inputs and Outputs



Port-Hamiltonian systems with inputs and outputs
We are interested in boundary controls and boundary observations.

S = (g 1) pratt)

(Ha)(b)
(Hz)(a)

(Hx)(b)

u(t) = Wpa [ ] ,0=Wg [(Hx)((a)] y(t) =We {(Hx)(a)



Port-Hamiltonian systems with inputs and outputs

We are interested in boundary controls and boundary observations.
ox 0
—((,t)= | A=+ P t
S0 = (Pt ) e

w0y = Wa [(HO] 0 < i[OO, y0) < we [ (0]

Example: Wave equation

0w 1
W(CJ) = —=

" (€) a¢
%@\/\J_\Ly u(t) = T() a’?(l,t)? = %(07”
S ow



Port-Hamiltonian systems with inputs and outputs
We are interested in boundary controls and boundary observations.
ox 0
—((,t)= | Pi=— + F, t
S0 = (Pt ) e

w0y = Wa [(HO] 0 < i[OO, y0) < we [ (0]

Example: Wave equation

0%w 1 0 ow
SR = g TOgEe)
%@\/\J_\Ly u(t) = T(l)aa%(lvt)7 0:%(()7”
u) = 2

Question: Is this a well-posed linear system?



Well-posedness of port-Hamiltonian systems
State space X = L?((a,b); R™) with (the energy) norm

b
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Well-posedness of port-Hamiltonian systems
State space X = L?((a,b); R™) with (the energy) norm

b
1915 =5 | FOTHEQ £

Definition
The port-Hamiltonian system is called well-posed, if
> Az = PlC;lC [Hz] + Py [Hz] with domain
D(A) = {x €X| CZH:C € X, [WBJ] [(Hx)(b)] = 0}

)

is the generator of a Cpy-semigroup on X.



Well-posedness of port-Hamiltonian systems
State space X = L?((a,b); R™) with (the energy) norm

b
1915 =5 | FOTHEQ £

Definition
The port-Hamiltonian system is called well-posed, if

> Az = Plc;lc [Hz] + Py [Hz] with domain

D(A) = {x €X| jCH:c € X, [WBJ] [(%x)(b)] = o}

)

is the generator of a Cpy-semigroup on X.
» There are tg, my, > 0:

to

to
MW@+A|MUW“W%“ﬂW§+AHWW%4
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Let Wp = [S//B’l} be a full rank real matrix of size n x 2n.
B,2

PyH can be factorized as PyH(¢) = ST A(C)S(C) with A
diagonal.

Assume: A, S are continuously differentiable
Theorem (Z, Le Gorrec, Maschke, Villegas '10)
If Ax = (Plﬁ + P(]) [Hz] generates a Cyy-semigroup, then the
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Well-posedness of port-Hamiltonian systems

Let Wp = [S//B’l} be a full rank real matrix of size n x 2n.
B,2

PyH can be factorized as PyH(¢) = ST A(C)S(C) with A
diagonal.

Assume: A, S are continuously differentiable

Theorem (Z, Le Gorrec, Maschke, Villegas '10)

If Ax = (Plﬁ + P(]) [Hz] generates a Cyy-semigroup, then the
port-Hamiltonian system is well-posed.

Remark: We even have a regular system.



Example: Wave equation

0w

. o

1

0

Gt =~

u(t)

p(C)
7(1)

¢
ow
aC

)

(1,1),

ow
('TC(C’ t)]
ow



Example: Wave equation
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Example: Wave equation

0w 1 0 ow
E : W(Cat) PGER {T(C)ac(évt)]
= ) = TG0, 0= 00
1) = 22 0,1)
0 T 7—7“70]2175__1
PH = - — §7IAS,
=3 o] - h; SES

with v > 0 und 72 =



Example: Wave equation

0w 1 9
E%\J\_/\L: atQ(C,t)p«)aC{ (OGC(C’ )]
ow ow
= ut) = T Z7 (11, 0= 520.1)
ow
y(t) = 5 (1L1)
_Jo 1 7—7][’7 0] 5w 5| o
PH = = = S7IAS,
== 710 S]]

with v > 0 und 72 = %

So if T" and p are continuously differentiable, then the controlled
wave equation is well-posed.



Exercises

1. Show that for a pH system there holds:

_dH 1

(t) = (1) = 5 [ (0P () ()]

2. Show that e is a Cj-semigroup, when A is a (square) matrix.
3. Show that Af = 4 with domain D(A) = {f € L*(0,1) | f is

such that j—é € L%(0,1) and f(1) = 0} can be associated to a
pH system.



Exercise

4 a Show that the connected wave equations shown below can be
written as a pH system,
b Show that for no force (u = 0) we have that the solution map
is a contraction semigroup.
¢ Assume that we measure the velocity of the (vertical moving)
middle bar. Show that the system is well-posed.

u
II

\_/"v/—\

|




