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port-Hamiltonian equations.
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Port-Hamiltonian partial differential equations

Our model class are p.d.e.’s of the form
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(ζ, t) =

(
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∂
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)
[Hx(ζ, t)]

with

I x(ζ, t) ∈ Rn, ζ ∈ [a, b], t ≥ 0

I P1 is an invertible, symmetric real n× n-matrix,

I P0 is a skew-symmetric real n× n-matrix,

I H(ζ) is a symmetric, invertible n× n-matrix with
mI ≤ H(ζ) ≤MI for some m,M > 0.

The energy/Hamiltonian is defined as

H(t) = H(x(·, t)) =
1

2

∫ b

a
x(ζ, t)TH(ζ)x(ζ, t)dζ.
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Power balance

For the Port-Hamiltonian p.d.e. with energy/Hamiltonian

H(x(·, t)) =
1

2

∫ b

a
x(ζ, t)TH(ζ)x(ζ, t)dζ,

it is not hard to show that along solutions; homework

Ḣ(t) =
dH

dt
(x(·, t)) =

1

2

[
(Hx)T (ζ, t)P1 (Hx) (ζ, t)

]b
a

Thus the change of internal energy goes via the boundary of the
spatial domain, i.e. power balance.
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The wave equation, energy
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The wave equation, state

We chooce for the state variables as x1 := ρ
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implies that the state should satisfy for all t ≥ 0:∫ 1
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∥∥∥∥[x1(ζ, t)x2(ζ, t)

]∥∥∥∥2 dζ <∞



The wave equation, state

We chooce for the state variables as x1 := ρ
∂w

∂t
(the momentum),

x2 :=
∂w

∂ζ
(the strain). With this choice the energy

1

2

∫ 1

0
ρ(ζ)

(
∂w

∂t
(ζ, t)

)2

+ T (ζ)

(
∂w

∂ζ
(ζ, t)

)2

becomes

1

2

∫ 1

0

[
x1(ζ, t)
x2(ζ, t)

]T [ 1
ρ(ζ) 0

0 T (ζ)

] [
x1(ζ, t)
x2(ζ, t)

]
dζ.

Since MI > H(ζ) > mI, we see that finite energy condition
implies that the state should satisfy for all t ≥ 0:∫ 1

0

∥∥∥∥[x1(ζ, t)x2(ζ, t)

]∥∥∥∥2 dζ <∞



The wave equation, state

We chooce for the state variables as x1 := ρ
∂w

∂t
(the momentum),

x2 :=
∂w

∂ζ
(the strain). With this choice the energy

1

2

∫ 1

0
ρ(ζ)

(
∂w

∂t
(ζ, t)

)2

+ T (ζ)

(
∂w

∂ζ
(ζ, t)

)2

becomes

1

2

∫ 1

0

[
x1(ζ, t)
x2(ζ, t)

]T [ 1
ρ(ζ) 0

0 T (ζ)

] [
x1(ζ, t)
x2(ζ, t)

]
dζ.

Since MI > H(ζ) > mI, we see that finite energy condition
implies that the state should satisfy for all t ≥ 0:∫ 1

0

∥∥∥∥[x1(ζ, t)x2(ζ, t)

]∥∥∥∥2 dζ <∞



The wave equation, state

We chooce for the state variables as x1 := ρ
∂w

∂t
(the momentum),

x2 :=
∂w

∂ζ
(the strain). With this choice the energy

1

2

∫ 1

0
ρ(ζ)

(
∂w

∂t
(ζ, t)

)2

+ T (ζ)

(
∂w

∂ζ
(ζ, t)

)2

becomes

1

2

∫ 1

0

[
x1(ζ, t)
x2(ζ, t)

]T [ 1
ρ(ζ) 0

0 T (ζ)

] [
x1(ζ, t)
x2(ζ, t)

]
dζ.

Since MI > H(ζ) > mI, we see that finite energy condition
implies that the state should satisfy for all t ≥ 0:∫ 1

0

∥∥∥∥[x1(ζ, t)x2(ζ, t)

]∥∥∥∥2 dζ <∞



The wave equation, state and state space

The functions [0, 1] 3 ζ 7→ f(ζ) ∈ R2 which satisfy∫ 1

0
‖f(ζ)‖2 dζ <∞

form the linear space L2((0, 1);R2).

However, the “energy” is still used to measure the size of x, i.e.,
the norm

‖f‖2X =
1

2

∫ 1

0
f(ζ)>H(ζ)f(ζ)dζ.

This norm is linked with the inner product

〈f, g〉X =
1

2

∫ 1

0
f(ζ)>H(ζ)g(ζ)dζ

We see that ‖f‖2X = 〈f, f〉X .
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The wave equation, state and state space

So based on the energy of our system, we have chosen our state
space as X = L2((0, 1);R2) with the inner product

〈f, g〉X =
1

2

∫ 1

0
f(ζ)>H(ζ)g(ζ)dζ.

We have that ‖f‖2X is precisely the energy.

So our state X is also called the energy space, i.e, the space
consisting of all state/shapes/· · · · · · with finite energy.
Note that we already rewrote the p.d.e. model of the vibrating
string in our state variables.

∂

∂t

[
x1
x2

]
(ζ, t) =

[
0 1
1 0

]
︸ ︷︷ ︸

=P1

∂

∂ζ


[ 1
ρ(ζ) 0

0 T (ζ)

]
︸ ︷︷ ︸

=H

x(ζ, t)

 .



The wave equation, state and state space

So based on the energy of our system, we have chosen our state
space as X = L2((0, 1);R2) with the inner product

〈f, g〉X =
1

2

∫ 1

0
f(ζ)>H(ζ)g(ζ)dζ.

We have that ‖f‖2X is precisely the energy.
So our state X is also called the energy space, i.e, the space
consisting of all state/shapes/· · · · · · with finite energy.

Note that we already rewrote the p.d.e. model of the vibrating
string in our state variables.

∂

∂t

[
x1
x2

]
(ζ, t) =

[
0 1
1 0

]
︸ ︷︷ ︸

=P1

∂

∂ζ


[ 1
ρ(ζ) 0

0 T (ζ)

]
︸ ︷︷ ︸

=H

x(ζ, t)

 .



The wave equation, state and state space

So based on the energy of our system, we have chosen our state
space as X = L2((0, 1);R2) with the inner product

〈f, g〉X =
1

2

∫ 1

0
f(ζ)>H(ζ)g(ζ)dζ.

We have that ‖f‖2X is precisely the energy.
So our state X is also called the energy space, i.e, the space
consisting of all state/shapes/· · · · · · with finite energy.
Note that we already rewrote the p.d.e. model of the vibrating
string in our state variables.

∂

∂t

[
x1
x2

]
(ζ, t) =

[
0 1
1 0

]
︸ ︷︷ ︸

=P1

∂

∂ζ


[ 1
ρ(ζ) 0

0 T (ζ)

]
︸ ︷︷ ︸

=H

x(ζ, t)

 .



The wave equation, change of view point

Instead of seeing the state as a function of time and space, we see
it as a function of time (which at each time depends on the spatial
variable). So

x(ζ, t) becomes (x(t)) (ζ).

We see the solution map a mapping from initial state to
state-at-time-t, i.e.

x0 −→︸︷︷︸
T (t)

x(t)

Thus (short hand) x(t) = T (t)x0. What properties do we expect
from the solution mapping T (t)?



The wave equation, change of view point

Instead of seeing the state as a function of time and space, we see
it as a function of time (which at each time depends on the spatial
variable). So

x(ζ, t) becomes (x(t)) (ζ).

We see the solution map a mapping from initial state to
state-at-time-t, i.e.

x0 −→︸︷︷︸
T (t)

x(t)

Thus (short hand) x(t) = T (t)x0.

What properties do we expect
from the solution mapping T (t)?



The wave equation, change of view point

Instead of seeing the state as a function of time and space, we see
it as a function of time (which at each time depends on the spatial
variable). So

x(ζ, t) becomes (x(t)) (ζ).

We see the solution map a mapping from initial state to
state-at-time-t, i.e.

x0 −→︸︷︷︸
T (t)

x(t)

Thus (short hand) x(t) = T (t)x0. What properties do we expect
from the solution mapping T (t)?



Semigroup

We denote the state space by X. Thus our solution map

X 3 x0 7→ x(t) = T (t)x0 ∈ X

Properties

I T (0) = I (the identity)

I T (t) is linear. That is αx0 + βx̃0 7→ αx(t) + βx̃(t) (linearity
of the p.d.e).

I T (t1 + t2) = T (t1)T (t2), because of the time invariance, of
the p.d.e. any time may be chosen as initial time.

I T (t)x0 ∈ X for all x0 ∈ X. Thus ‖x(t)‖X <∞ whenever
‖x0‖X <∞. In particular, ‖x(t)‖X ≤ m(t)‖x0‖ for some
function m(t).

I For all x0 ∈ X there holds

lim
t↓0
‖T (t)x0 − x0‖X = 0 or lim

t↓0
T (t)x0 = x0.
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function m(t).
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t↓0
‖T (t)x0 − x0‖X = 0 or lim
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T (t)x0 = x0.
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It tells that the solution becomes more and more the initial state
when time get smaller and smaller.
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Semigroup

We introduce some notation. L(X) denotes the set of linear and
bounded operators from X to X. Thus if Q ∈ L(X), then
I Q(αx0 + βx̃0) = αQ(x0) + βQ(x̃0), and
I there exists a q ≥ 0 such that for all x0 ∈ X,

‖Q(x0)‖ ≤ q‖x0‖.

Definition
A strongly continuous semigroup (C0-semigroup) is an operator
valued function, (T (t))t≥0, from [0,∞) to L(X) which satisfies

I T (0) = I

I T (t)T (s) = T (t+ s), t, s ∈ [0,∞)

I For all x0 ∈ X there holds

lim
t↓0

T (t)x0 = x0.
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Semigroup, example

Let a be a (complex or real) number, then

eat

is a C0-semigroup on X = R.

Let A be a (square) matrix, then

T (t) := eAt

is a C0-semigroup on the state space X = Rn. Homework
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Contraction semigroup

Definition
The C0-semigroup (T (t))t≥0 is contraction semigroup if

‖T (t)x0‖ ≤ ‖x0‖ for all t ≥ 0 and for all x0 ∈ X.

It is a unitary group if

‖T (t)x0‖ = ‖x0‖ for all t and for all x0 ∈ X.

�

‖x0‖

‖T (t)x0‖

t →

↑

0
0
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Solution pH-system

We known that eAtx0 is the solution of

ẋ(t) = Ax(t), x(0) = x0 ∈ Rn

How about our port-Hamiltonian partial differential equation?
For our port-Hamiltonian equation we have that the state is
directly linked to the energy. So the p.d.e. must tell us what
happens with the energy.
We have that

Ḣ(t) =
1

2

[
(Hx)T (ζ, t)P1 (Hx) (ζ, t)

]b
a
.

So the boundary conditions must tell us what happens with this
term.
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ẋ(t) = Ax(t), x(0) = x0 ∈ Rn

How about our port-Hamiltonian partial differential equation?
For our port-Hamiltonian equation we have that the state is
directly linked to the energy. So the p.d.e. must tell us what
happens with the energy.
We have that
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Port-Hamiltonian partial differential equations

Given our port-Hamiltonian partial differential equation

∂x

∂t
(ζ, t) =

(
P1

∂

∂ζ
+ P0

)
[H(ζ)x(ζ, t)]

with the properties on P0, P1 and H.

We need to add boundary conditions to this p.d.e. That are
conditions in x(ζ, t) for ζ equal to a or b.
We write these boundary conditions as

WB

[
H(b)x(b, t)
H(a)x(a, t)

]
= 0.

with WB a matrix.
Question: Which boundary conditions lead to unique solutions?
We answer this question by using semigroup theory. However, we
do it only for contraction semigroups.
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Port-Hamiltonian p.d.e., existence of solutions

Theorem (Le Gorrec, Maschke & Zwart ’05, Jacob & Zwart
’11)

Assume the (standard) conditions on P0, P1 and H. Assume
further that WB is a n× 2n matrix of full rank.

Then the solution map is a contraction C0-semigroup on X
(energy space) if and only if

Ḣ ≤ 0.

The solution map is a unitary C0-group (i.e. ‖T (t)x0‖ = ‖x0‖,
∀x0, ∀t) if and only if

Ḣ = 0.
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Example: the wave equation

∂2w

∂t2
(ζ, t) =

1

ρ(ζ)

∂

∂ζ

[
T (ζ)

∂w

∂ζ
(ζ, t)

]
∂w

∂t
(0, t) = T (1)

∂w

∂ζ
(1, t) = 0

We begin by writing the boundary conditions with the space
variable x1 = ρ∂w∂t , x2 = ∂w

∂ζ ,

[
0
0

]
=

[
T (1)∂w∂ζ (1, t)

∂w
∂t (0, t)

]
=

[
0 1 0 0
0 0 1 0

]
︸ ︷︷ ︸

=WB


∂w
∂t (1, t)

T (1)∂w∂ζ (1, t)
∂w
∂t (0, t)

T (0)∂w∂ζ (0, t)


=

[
0 1 0 0
0 0 1 0

] [
H(1)x(1, t)
H(0)x(0, t)

]
.
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Example: the wave equation

Now we check the conditions.

I P1 =

[
0 1
1 0

]
is an invertible 2× 2 matrix (n = 2).

I P0 = 0, so skew-symmetric.

I If 0 < m ≤ T (ζ), ρ(ζ)−1 ≤M for all ζ, then

H(ζ) =

[
ρ(ζ)−1 0

0 T (ζ)

]
satisfy mI2 ≤ H(ζ) ≤MI2.

I WB has rank 2.

I Ḣ = 0.

Thus the solution map is a unitary group on the energy space.
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Summary

What we have introduced is:

I A general concept of state and state space.

I A general concept of the solution map.

I Question: How to formulate state/state space for a partial
differential equation?
We study an example first.
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Example (Transport equation)

On the spatial domain [0, 1] consider the p.d.e.

∂w

∂t
(ζ, t) =

∂w

∂ζ
(ζ, t), ζ ∈ [0, 1], t ≥ 0,

w(1, t) = 0

w(ζ, 0) = w0(ζ) (given).

�

As state x(t) we choose w at a time t.

I So x(t) = w(·, t), or (x(t)) (ζ) = w(ζ, t).

I As state space we choose L2(0, 1).

I If we now introduce ẋ(t) = ∂w
∂t (·, t) and Ax(t) = ∂w

∂ζ (·, t),
then the p.d.e. becomes

ẋ(t) = Ax(t).
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State differential equation

So the p.d.e.

∂w

∂t
(ζ, t) =

∂w

∂ζ
(ζ, t), ζ ∈ [0, 1], t ≥ 0,

w(1, t) = 0

w(ζ, 0) = w0(ζ) (given).

can with x(t) = w(·, t), ẋ(t) = ∂w
∂t (·, t), and Ax(t) := ∂w

∂ζ (·, t), be
written as abstract differential equation:

ẋ(t) = Ax(t), x(0) = w0.

Where is the boundary condition?
Another problem: The (spatial) derivative does not exist for all
x(t) ∈ L2(0, 1).
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ẋ(t) = Ax(t), x(0) = w0.

Where is the boundary condition?
Another problem: The (spatial) derivative does not exist for all
x(t) ∈ L2(0, 1).



More on A

We see that A is a mapping working for a fixed t, i.e., so for
f ∈ L2(0, 1) we can define Af as

(Af) (ζ) =
df

dζ
(ζ)

We want that A maps into X, and so we only take the derivative
of f ∈ X when the answer lies in X again. So

D(A) = {f ∈ X | df
dζ
∈ X,

f(1) = 0

}.

Since the boundary condition is an essential part of the p.d.e. and
since it is a condition in the spatial direction. It is added to the
domain of A.
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Summary on A

So the p.d.e.

∂w

∂t
(ζ, t) =

∂w

∂ζ
(ζ, t), ζ ∈ [0, 1], t ≥ 0,

w(1, t) = 0

w(ζ, 0) = w0(ζ)

is written as the abstract differential equation:

ẋ(t) = Ax(t), x(0) = x0 = w0

with x(t) = w(·, t) ∈ X = L2(0, 1), and

(Af) (ζ) =
df

dζ
(ζ)

with domain:

D(A) = {f ∈ X | df
dζ
∈ X, f(1) = 0}.



Port-Hamiltonian p.d.e., state space

Given our port-Hamiltonian partial differential equation with
boundary conditions

∂x

∂t
(ζ, t) =

(
P1

∂

∂ζ
+ P0

)
[H(ζ)x(ζ, t)]

0 = WB

[
H(b)x(b, t)
H(a)x(a, t)

]
with the properties on P0, P1 and H.

I As state we choose x(t) = x(·, t).

I As state space we choose the energy space, i.e.,
X = L2((0, 1);Rn) with inner product

〈f, g〉X =
1

2

∫ b

a
f(ζ)>H(ζ)g(ζ)dζ.
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Port-Hamiltonian p.d.e., state space formulation

With the state x(t) = x(·, t) and X = L2((0, 1);Rn) our
port-Hamiltonian p.d.e. with boundary conditions;
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d

dζ
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)
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with domain

D(A) =

{
x ∈ X | d

dζ
(Hx) ∈ X,WB

[
H(b)x(b)
H(a)x(a)

]
= 0

}
.



Port-Hamiltonian p.d.e., state space formulation

With the state x(t) = x(·, t) and X = L2((0, 1);Rn) our
port-Hamiltonian p.d.e. with boundary conditions;

∂x

∂t
(ζ, t) =

(
P1

∂

∂ζ
+ P0

)
[H(ζ)x(ζ, t)]

0 = WB

[
H(b)x(b, t)
H(a)x(a, t)

]
becomes
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A and T (t)

We have now written our p.d.e.’s as

ẋ(t) = Ax(t)

and our solutions as
x(t) = T (t)x0

What is their relation?

We begin by studying the question when X is finite-dimensional.
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Finding A

Let A be given as

A =

(
1 2
0 3

)
,

then

eAt =

(
et e3t − et
0 e3t

)
.

Problem: Suppose now that you know only eAt. How would you
find A back?
Answer Evaluate the derivative of the semigroup at t = 0.
Since d

dte
At = AeAt, we have

d

dt
eAt |t=0= A.
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A and T (t)

Theorem
Assume that (T (t))t≥0 is the solution map of our p.d.e., then for
those x0 ∈ X for which the following limit exists

lim
t↓0

T (t)x0 − x0
t

,

we have that

Ax0 = lim
t↓0

T (t)x0 − x0
t

.

Furthermore, D(A) consists of precisely those x0 ∈ X for which
the limit exists.
A is named the infinitesimal generator of the C0-semigroup
(T (t))t≥0. �
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A and T (t)

Lemma
If x0 ∈ D(A), then for t > 0, T (t)x0 is differentiable, and

d

dt
(T (t)x0) = AT (t)x0.

So x(t) := T (t)x0 is a solution (classical) of

ẋ(t) = Ax(t), x(0) = x0

For x0 ∈ X, T (t)x0 is called a weak solution. �
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A and T (t)

So given the (general) C0-semigroup (T (t))t≥0, we could try to
find A by differentiating it at t = 0.

Problem: Solution is most times not known.
However, A is know (or can be defined from the p.d.e.). So the
natural question is how to find (T (t))t≥0 from A.
Note there is a difference between knowing the existence of a
solution and having the form/expression of the solution. The
expression for the solution can be hard/impossible to find. So we
concentrate on existence.
We do this for a special class of C0-semigroups.
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Recall: Contraction semigroup

Definition
The C0-semigroup (T (t))t≥0 is contraction semigroup if

‖T (t)x0‖ ≤ ‖x0‖ for all t ≥ 0 and for all x0 ∈ X.

�

‖x0‖

‖T (t)x0‖

t →

↑

0
0
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Contraction semigroup

We known that

‖T (t)x0‖2 = 〈T (t)x0, T (t)x0〉.

For x0 ∈ D(A), we have that the derivative of T (t)x0 equals
AT (t)x0.
So if we differentiate ‖T (t)x0‖2, we find

d

dt
‖T (t)x0‖2 = 〈AT (t)x0, T (t)x0〉+ 〈T (t)x0, AT (t)x0〉.



Contraction semigroup

So we know:

d

dt
‖T (t)x0‖2 = 〈AT (t)x0, T (t)x0〉+ 〈T (t)x0, AT (t)x0〉.

Now we choose t = 0.

We know that T (0)x0 = x0. Thus at time
equal to zero, we find

d

dt

(
‖T (t)x0‖2

)∣∣∣∣
t=0

= 〈Ax0, x0〉+ 〈x0, Ax0〉.

So if T (t) is a contraction semigroup, then

〈Ax0, x0〉+ 〈x0, Ax0〉 =
d

dt
‖T (t)x0‖2 |t=0≤ 0.

This has to hold for all x0 ∈ D(A).
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Contraction semigroup

Theorem (Lumer-Phillips)

Let A be a densely defined operator, then A generates a
contraction semigroup on X if and only if

1. 〈Ax0, x0〉+ 〈x0, Ax0〉 ≤ 0 for all x0 ∈ D(A).

2. The range of A− I is the whole of X.

�

Condition 1 comes from d
dt‖T (t)x0‖2 ≤ 0. So for pH this is

equivalent to Ḣ(t) ≤ 0. Note that Condition 2 seems to be
missing in our existence theorem for pH systems.
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Contraction semigroup

Example

Consider on the state space X = L2(0, 1) the operator A which is
given as

Af =
df

dζ
, ζ ∈ [0, 1]

with the domain

D(A) =
{
f ∈ L2(0, 1) | f is absolutely continuous,

df

dζ
∈ L2(0, 1) and f(1) = 0

}
.

Let us check the properties:



Example: Contraction semigroup

I A is densely defined in L2(0, 1).

I

〈Ax, x〉+〈x,Ax〉

=

∫ 1

0

dx

dζ
(ζ)x(ζ)dζ +

∫ 1

0
x(ζ)

dx

dζ
(ζ)dζ

=

∫ 1

0

d

dζ

[
x(ζ)x(ζ)

]
dζ

= |x(ζ)|2
∣∣1
0

= 0− |x(0)|2 ≤ 0.

I To see if the range of (A− I) is everything, we have for every
f ∈ L2(0, 1) to solve (A− I)x = f .
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Example: Contraction semigroup

Solving (A− I)x = f means solving

dx

dζ
(ζ)− x(ζ) = f(ζ), ζ ∈ (0, 1)

with boundary condition x(1) = 0.

The solution of this differential
equation with the given boundary value is

x(ζ) = −
∫ 1

ζ
eζ−ξf(ξ)dξ.

�
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Example: Contraction semigroup

Conclusion:

Af =
df

dζ
, ζ ∈ [0, 1]

with the domain

D(A) =

{
f ∈ L2(0, 1) | df

dζ
∈ L2(0, 1) and f(1) = 0

}
generates a contraction semigroup on X = L2(0, 1).

Note that A can also been seen as a pH system! Homework
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Port-Hamiltonian Systems

Inputs and Outputs



Port-Hamiltonian systems with inputs and outputs

We are interested in boundary controls and boundary observations.

∂x

∂t
(ζ, t) =

(
P1

∂

∂ζ
+ P0

)
[Hx(t)]

u(t) = WB,1

[
(Hx)(b)
(Hx)(a)

]
, 0 = WB,2

[
(Hx)(b)
(Hx)(a)

]
, y(t) = WC

[
(Hx)(b)
(Hx)(a)

]

Example: Wave equation

∂2w

∂t2
(ζ, t) =

1

ρ(ζ)

∂

∂ζ

[
T (ζ)

∂w

∂ζ
(ζ, t)

]
u(t) = T (1)

∂w

∂ζ
(1, t), 0 =

∂w

∂t
(0, t)

y(t) =
∂w

∂t
(1, t)

Question: Is this a well-posed linear system?
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Question: Is this a well-posed linear system?



Well-posedness of port-Hamiltonian systems

State space X=L2((a, b);Rn) with (the energy) norm

‖f‖2X =
1

2

∫ b

a
f(ζ)TH(ζ)f(ζ)dζ.

Definition
The port-Hamiltonian system is called well-posed, if

I Ax = P1
d

dζ
[Hx] + P0 [Hx] with domain

D(A) =

{
x ∈ X | d

dζ
Hx ∈ X,

[
WB,1

WB,2

] [
(Hx)(b)
(Hx)(a)

]
= 0

}
is the generator of a C0-semigroup on X.

I There are t0,mt0 > 0:

‖x(t0)‖2X +

∫ t0

0
‖y(t)‖2dt ≤ mt0

[
‖x(0)‖2X +

∫ t0

0
‖u(t)‖2dt

]
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Well-posedness of port-Hamiltonian systems

Let WB :=

[
WB,1

WB,2

]
be a full rank real matrix of size n× 2n.

P1H can be factorized as P1H(ζ) = S−1(ζ)∆(ζ)S(ζ) with ∆
diagonal.

Assume: ∆, S are continuously differentiable

Theorem (Z, Le Gorrec, Maschke, Villegas ’10)

If Ax =
(
P1

d
dζ + P0

)
[Hx] generates a C0-semigroup, then the

port-Hamiltonian system is well-posed.

Remark: We even have a regular system.
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Example: Wave equation
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γ −γ
1
ρ
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ρ

] [
γ 0
0 −γ

] [ 1
2γ

ρ
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− 1
2γ

ρ
2

]
= S−1∆S,

with γ > 0 und γ2 = T
ρ .[
WB,1

WB,2

]
=

[
0 1 0 0
0 0 1 0

]
.

So if T and ρ are continuously differentiable, then the controlled
wave equation is well-posed.
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Exercises

1. Show that for a pH system there holds:

Ḣ(t) =
dH

dt
(x(·, t)) =

1

2

[
(Hx)T (ζ, t)P1 (Hx) (ζ, t)

]b
a

2. Show that eAt is a C0-semigroup, when A is a (square) matrix.

3. Show that Af = df
dζ with domain D(A) = {f ∈ L2(0, 1) | f is

such that df
dζ ∈ L2(0, 1) and f(1) = 0} can be associated to a

pH system.



Exercise

4 a Show that the connected wave equations shown below can be
written as a pH system,

b Show that for no force (u = 0) we have that the solution map
is a contraction semigroup.

c Assume that we measure the velocity of the (vertical moving)
middle bar. Show that the system is well-posed.
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