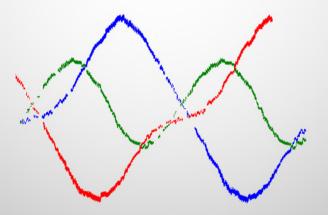


Optimisation du dimensionnement de la chaîne électrique d'un système de micro-cogénération

Projet CETI - ANR

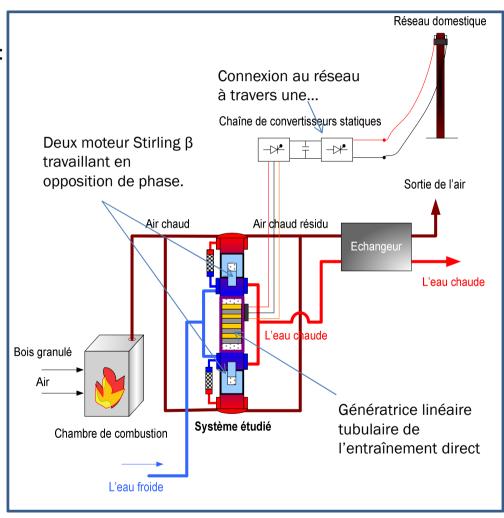
Thu Thuy DANG, doctorante
Marie RUELLAN, Maître de conférence
Laurent PREVOND, Maître de conférence
Hamid BEN AHMED, Maître de conférence – HDR


Equipe SETE, Laboratoire SATIE – UMR 8029, ENS Cachan

Plan

- 1) Introduction générale
- 2) Couplage des modèles Banc d'essai virtuel
- 3) Analyse des résultats
- 4) Optimisation de la chaîne électrique
- 5) Etude de rentabilité du système
- 6) Conclusions et perspectives

Introduction générale


Vision globale d'un système complexe

Notre système est constitué principalement de:

- 1 moteur Stirling « double effet »,
- 1 génératrice à induction linéaire tubulaire,
- 1 chaîne de convertisseurs statiques.

Démarche scientifique:

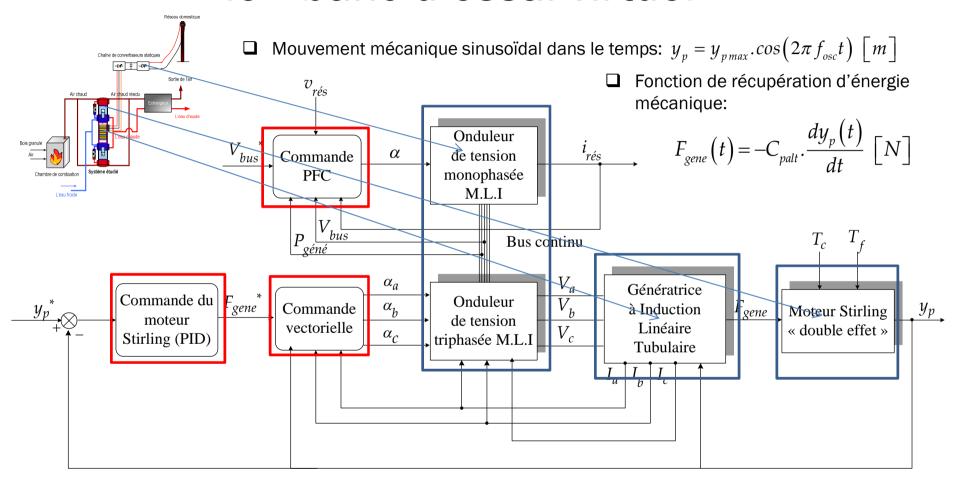
- Division des tâches:
- ☐ FEMTO-ST: Modélisation et réalisation du moteur Stirling « double effet » ✓
- □ SATIE: Modélisation et réalisation de la chaîne électrique, contrôle/ commande global ✓
- ➤ Couplage des modèles ✓
- ➤ Assemblage des prototypes pour tests opérationnels <a>
 ∑

Couplage des modèles Banc d'essai virtuel

Thu Thuy 7

Réalisation du couplage des modèles

Etat des connaissances sur le système

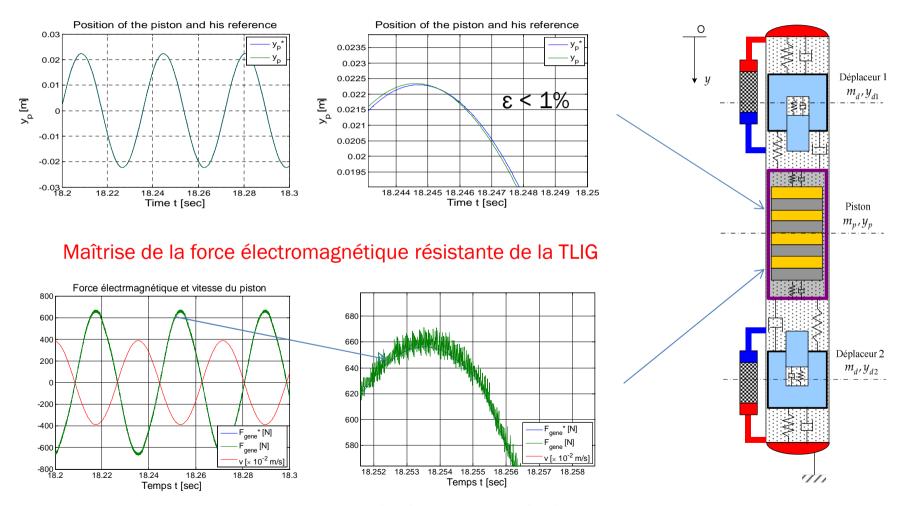

	Etude théorique		Validation expérimentale	
	Modèle analytique	Stratégie de	Du modèle	De la stratégie de
		commande	analytique	commande
Moteur Stirling « double effet »	✓ (Equipe FEMTO)	✓	×	×
Génératrice à induction linéaire tubulaire	✓	✓	✓	✓
Chaîne des convertisseurs statiques de puissance	✓	✓	✓	×

Banc d'essai virtuel indispensable

Nota: Les détails des modèles sont en annexes

Réalisation du couplage des modèles ou le « banc d'essai virtuel »

Synoptique du modèle globale

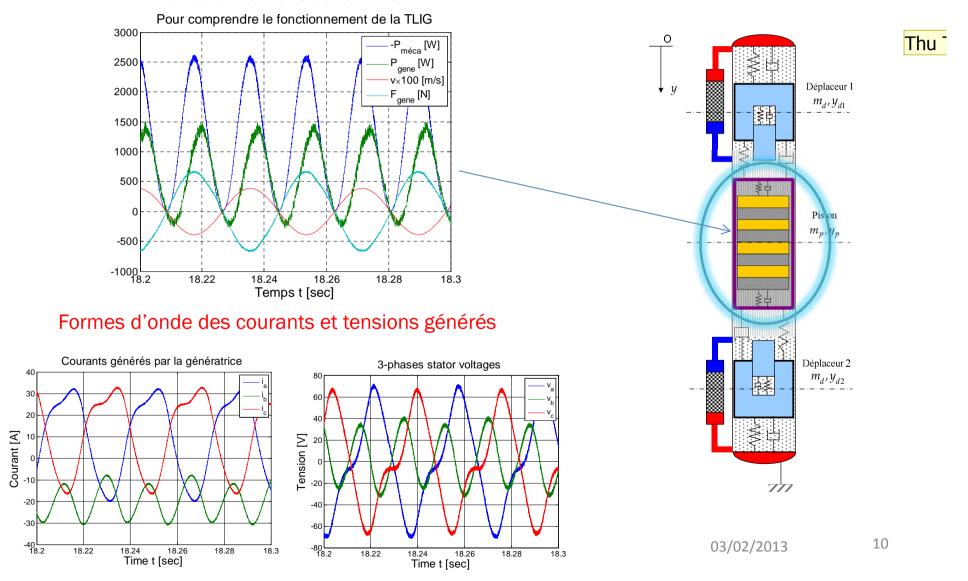

La commande vectorielle de la machine à induction linéaire tubulaire a été étudiée et validée expérimentalement sur un prototype (Annexe).

Analyse des résultats du banc d'essai virtuel

Analyse des formes d'onde

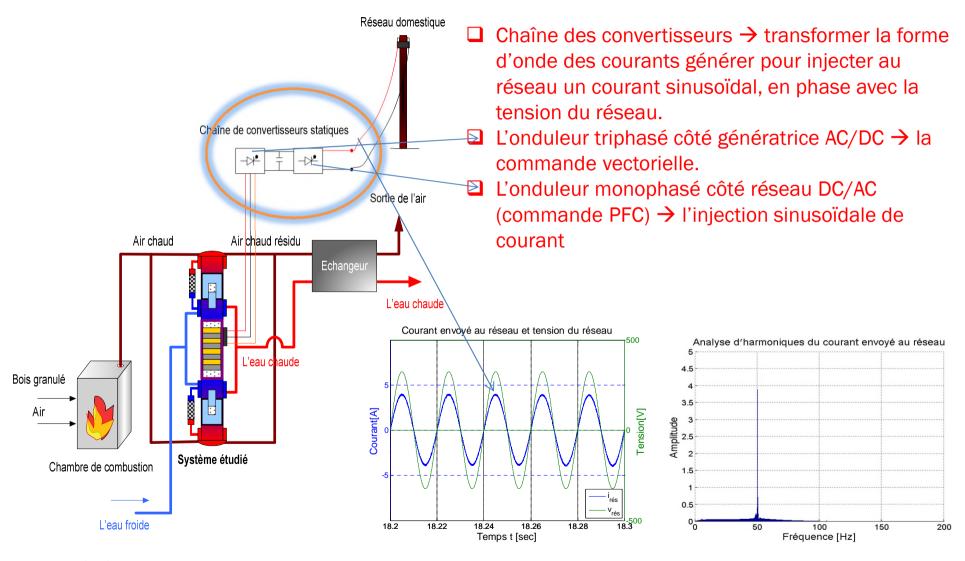
Résultats du banc d'essai virtuel

Mouvement du piston du moteur Stirling « double effet »



Thu Thuy DANG - Journées de microcogénération, Paris, 2013

Analyse des formes d'onde


Résultats du banc d'essai virtuel

Fonctionnement de la TLIG

Analyse des formes d'onde

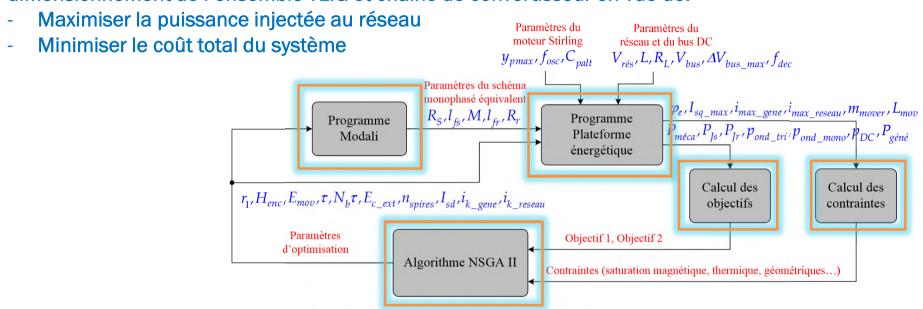
Résultats du banc d'essai virtuel

Bilan de puissance du système

Résultats du banc d'essai virtuel

Point de fonctionnement : $y_{pmax} = 0.0223 [\text{m}]$ $\omega_{osc} = 174 [\text{rad/s}]$	Puissance active [W]	Pertes [W]	Rendement
Puissance mécanique générée par le m. Stirling	1255,2		
Puissance électrique générée par la TLIG	537,5		
Pertes joules statoriques		249,5	
Pertes joules rotoriques		468,0	
Rendement de la conversion mécano-électrique			42,8 %
Pertes dans le convertisseur côté génératrice		104,2	
Pertes dans le convertisseur côté réseau		7,1	
Pertes dans le condensateur du bus DC		0,2	
Puissance électrique injectée au réseau	426,0		
Rendement global			33,9 %

Amélioration possible du bilan de puissance du système


[→] optimisation de la chaîne électrique (génératrice + convertisseurs statiques) Pour rappel, la chaîne thermo-mécanique est ici fixe.

Optimisation de la chaîne électrique

Présentation du processus d'optimisation

Objectif:

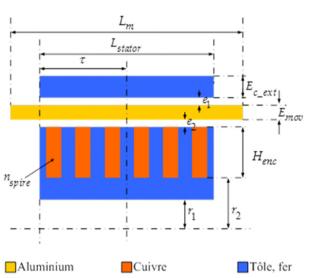
Avec un dimensionnement fixe du moteur Stirling « double effet » 1250 W, optimiser le dimensionnement de l'ensemble TLIG et chaîne de convertisseur en vue de:

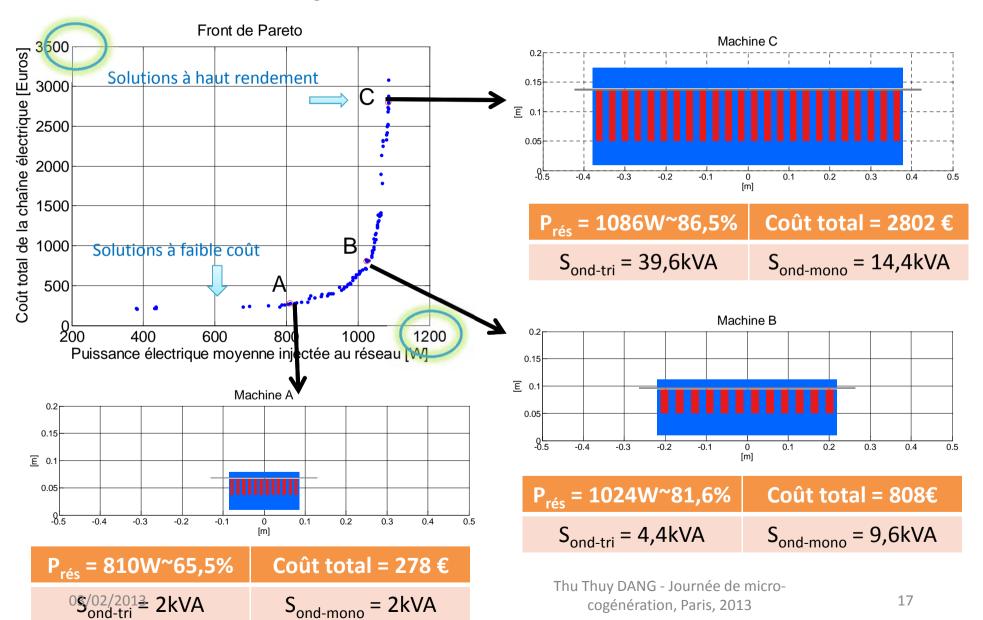
Entrées fixes du processus d'optimisation

Grandeurs	Valeurs fixes considérées	Unités
Course du piston	2,23	cm
Fréquence d'oscillation	174	Rad/s
Coefficient de frottement visqueux	167,1	Nm ⁻¹ s
Puissance mécanique moyenne/maximale	1250/2500	W
Force résistante maximale	660	N
Vitesse du mover maximale	3,9	m/s ₁₄

Les paramètres d'optimisation

	Paramètres	Notations	Min.	Max.	Unités	
	Rayon externe de l'axe	r_2	10	50	mm	-
nes	Hauteur des encoches	$H_{\it enc}$	1	190	mm	
triq	Epaisseur du mover	E_{mov}	1	5	mm	-
omé	Longueur de pas polaire	τ	10	500	mm	
gé(Nombre de pairs de pôle	$N_{b}\tau$	1	150		n spire
Variables géométriques	Epaisseur de la culasse externe	E_{c_ext}	10	50	mm	
\ \	Nombre de spires par encoche	$n_{\it spire}$	1	1000	_	□A1
Variables onctionnelles	Courant magnétisant	I_{sd}	1	100	Α	ď
	Calibre de courant de l'onduleur côté génératrice	i_{k_gene}	1	100	A	u
V. Vijono	Calibre de courant de	i, Thu⊤rseau Thu⊤rnuy DA cogéné	.NG - <u>1</u> ourn ration, Pari		ro- А	




Illustration des paramètres d'optimisation relatifs à la TLIG

Fonctions des objectifs et contraintes

Désignations	Fonctions	Remarques
Objectif 1	$f_{\textit{Objectif}1} = -P_{\textit{r\'es}} = - \left[P_{\textit{g\'en\'e}} - \left(p_{\textit{ond_tri}} + p_{\textit{ond_mono}} + p_{\textit{DC}} \right) \right]$	Calculée par le modèle global
Objectif 2	$f_{Objectif2} = C_{chaîne} = C_{TLIG} + C_{ond_tri} + C_{ond_mono}$	Calculée par le modèle global
3 contraintes géométriques	$r_1 \le r_2$ $r_7 \le r_{max} = 0,25$ $r_{max} = 1,0$	
Contrainte de la masse du piston/mover	$m_{mover} = \rho_{Al}.V_{mover} \le 6.4 \text{ (kg)}$	
Contrainte de la densité maximale du courant statorique	$J_{enc_max} \le J_{max} = 10$	
Contrainte de la saturation magnétique dans les culasses	$B_{c_{-}ext} = \frac{\varphi_{e}}{\pi \left(r_{7}^{2} - r_{6}^{2}\right)} \le B_{sat}$ $B_{c_{-}int} = \frac{\varphi_{e}}{\pi \left(r_{7}^{2} - r_{1}^{2}\right)} \le B_{sat}$	
Contrainte du dimensionnement des convertisseurs statiques	$i_{max_gene} = max(i_{Ti}, i_{Di}) \le i_{calibre} = i_{k_gene}$ $i_{max_reseau} = max(i_{ti}, i_{di}) \le i_{calibre} = i_{k_reseau}$	
Contrainte de la tension maximale	$max\left(\left v_{a,b,c}\left(t\right)\right \right) \leq \frac{V_{bus}}{2}$	
Contrainte de fonctionnement du système	$f_{O\!bjectif1} = -P_{r\!e\!s} \leq 0$	

Pour plus de détails sur le programme Modali et l'algorithme génétiques NSGA-II, le lecteur intéressé pourra consulter les références citées à la fin de la présentation.

Analyse du front de Pareto

Etude de rentabilité du système de micro-cogénération

Méthode et hypothèses de calcul de rentabilité du micro-cogénérateur

Objectif: Grâce au gain de revente d'électricité, trouver une configuration optimale qui offre un temps de retour minimal sur les coûts d'investissement et d'utilisation du système.

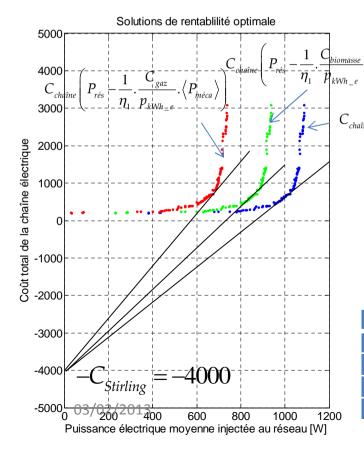
Hypothèses simplificatrices:

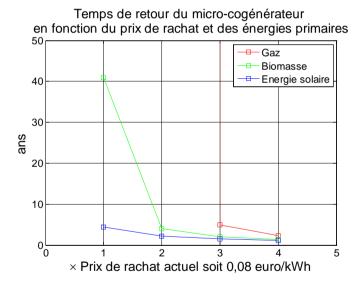
- ightharpoonup Coût du moteur Stirling est fixe: $C_{\it Stirling} = 4000$ €
- Trois énergies primaires considérées: gaz (0,07€/kWh), biomasse (0,03€/kWh), solaire(0€/kWh).
- Coût de maintenance et de réparation négligé.
- \succ Le système fonctionne en pleine charge tout au long de l'année: $\tau_{an} = 8760 \; h$
- > Rendement du moteur Stirling est fixe à 50%.
- Efficacité de la combustion des énergies primaires 100%
- > Toute production électrique sera vendue.

Le temps de rentabilité est trouvé quand l'équivalence suivante est atteinte:

$$\underbrace{p_{kWh_e}.P_{r\acute{e}s}.10^{-3}.t}_{\text{gain de la revente d'électricit\'e}} = \underbrace{C_{gaz,biomasse}.\frac{\left\langle P_{m\acute{e}ca} \right\rangle}{\eta_1}.10^{-3}.t}_{\text{coût des \'energies primaires}} + \underbrace{C_{Stirling} + C_{cha\^{i}ne}}_{\text{coût d'investissement}}$$

$$C_{o3/o2/2013} = \left(p_{kWh_e}.10^{-3}.t\right) \left(P_{restu} \frac{1}{T_{huy}} \frac{C_{gaz,biomasse}}{DANG-Journée} \left(P_{restu}\right) - C_{Stirling}\right) - C_{Stirling}$$
Caractéristique de rentabilité


19


Résultats de rentabilité

$$C_{chaîne} = \left(p_{kWh_{-}e}.10^{-3}.t\right)\left(P_{r\acute{e}s} - \frac{1}{\eta_{1}}.\frac{C_{gaz,biomasse}}{p_{kWh_{-}e}}.\langle P_{m\acute{e}ca}\rangle\right) - C_{Stirling} \qquad \qquad \mathbf{y(x)} = \mathbf{Ax + B}$$

La solution de cette équation est l'intersection entre la caractéristique $C_{chaîne}(P_{rés})$ et la caractéristique de la rentabilité ci-dessus.

A est minimisé lorsque la caractéristique de rentabilité est tangentielle avec la courbe C_{chaîne}(P_{rés})

Tarif de rachat (€/kWh)	Gaz naturel	Biomasse	Energie solaire
4 × Prix de rachat actuel	2,4 ans	1,4 ans	1,1 ans
3 × Prix de rachat actuel	5,0 ans	2,1 ans	1,5 ans
2 × Prix de rachat actuel	infini	4,0 ans	2,2 ans
1 × Prix de rachat actuel	infini	41 ans	2@,4 ans

Conclusions et perspectives

Conclusions

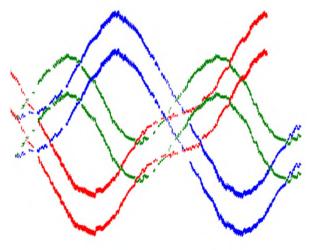
us avons traité l'étude d'un système de micro-cogénération de structure très innovante: Le moteur Stirling « double effet »: deux moteurs β en opposition de phase. La génératrice à induction linéaire tubulaire dont le secondaire est le piston lui-même La chaîne des convertisseurs statiques: AC/DC triphasé + DC/AC monophasé, connectant le système au réseau domestique.
us avons considéré un couplage des modèles dans une simulation globale appelée « banc essai virtuel »:
Boucle externe d'asservissement de la position du moteur Stirling par une commande P.I.D. Sa consigne est sinusoïdale de l'amplitude 2,23 cm, de fréquence 174 rad/s (fréquence naturelle). Le moteur fournit 1250W mécanique.
Boucle interne de la commande vectorielle de la force électromagnétique. Sa consigne est aussi sinusoïdale, élaborée par le correcteur P.I.D de la boucle externe. La force est résistante vis-à-vis du mouvement du piston/ mover, de l'amplitude 670N, en opposition de phase avec la vitesse d'amplitude 3,9 m/s. Obtention des formes d'onde particulières des courants et tension générés.
Transformation des formes d'onde des courants avant de les envoyer au réseau sous forme sinusoïdale en phase avec la tension du réseau.

Conclusions

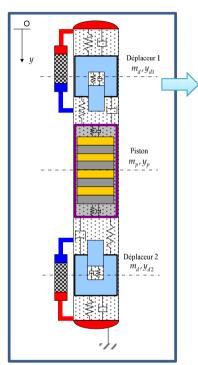
	us avons traité l'étude d'optimisation du dimensionnement de la chaîne électrique: La chaîne thermo-mécanique est fixée à une géométrie qui fournit 1250W. Recherche des solutions de l'ensemble (génératrice + convertisseurs) qui maximisent le puissance injectée au réseau et qui minimisent le coût total.
No	us avons obtenu des solutions sous forme d'un front de Pareto:
	Les solutions qui maximisent le rendement global atteignent plus de 80%, avec les coûts d'environs 3000 €, soit 2,6 €/W _é .
	Les solutions qui minimisent le coût total présentent les rendement globaux d'environs 60%, pour les coûts de l'ordre de 250 €, soit 0,3 €/W _é .
No	us avons considéré un calcul de rentabilité du micro-cogénérateur:
	Le méthode consiste à calculer la rentabilité du système en supposant que le coût du moteur Stirling et de la partie thermique est fixe. Parmi les configurations optimales de la chaîne électrique, le temps de retour du système global minimal est ainsi trouvé sans avoir recours à une optimisation globale du micro-Co générateur (chaîne thermodynamique + chaîne électrique).
	Le prix de rachat et les sources d'énergies primaires, deux facteurs importants d'influence vis-
	à-vis de la rentabilité du système, sont considérés.
	Le temps de retour obtenu sont à prendre comme des indications.

Perspectives

L'étude d'optimisation du système global


- ☐ Moteur Stirling « double effet »
- ☐ Chaîne électrique

D'autres structure de la génératrice linéaire tubulaire → A aimants permanents.


Annexes

Etude des modèles séparément

Thu Thuy 11

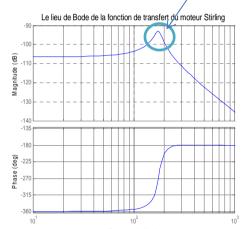
Modèle thermo-mécanique du moteur Stirling « double effet »et sa commande P.I.D

Modèle mécanique par la loi Newton [1][2]:

$$m_{p}\ddot{y}_{p} = A_{p}P_{f1} - A_{p}P_{f2} - A_{pi}P_{b1} + A_{pi}P_{b2} - C_{Hp}\dot{y}_{p} - C_{palt}.\dot{y}_{p}$$

$$m_{d1}\ddot{y}_{d1} = A_{p}P_{c1} - (A_{p} - A_{r})P_{f1} - A_{r}P_{m1} - C_{Hd}\dot{y}_{d1} - C_{d1alt}\dot{y}_{d1}$$

$$m_{d2}\ddot{y}_{d2} = -A_{p}P_{c2} + (A_{p} - A_{r})P_{f2} + A_{r}P_{m2} - C_{Hd}\dot{y}_{d2} - C_{d2alt}\dot{y}_{d2}$$


Modèle thermodynamique par la méthode Schmidt [1][3]:

Expressions des **pressions** dans différents espaces du moteur en fonction des paramètres géométriques, températures et pression initiale [1][3]:

$$P_{f1} = ? P_{f2} = ? P_{c1} = ? P_{c2} = ?$$

 $P_{b1} = ? P_{b2} = ? P_{m1} = ? P_{m2} = ?$

Fréquence naturelle

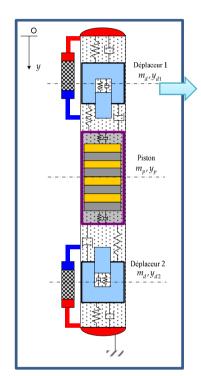
Thu Thuv

Modèle de vibration mécanique de 3 ddls avec les coefficients de raideurs et d'amortisseurs

$$\begin{bmatrix} \ddot{y}_p \\ \ddot{y}_{d1} \\ \ddot{y}_{d2} \end{bmatrix} = \begin{bmatrix} K_{pp} & K_{pd1} & K_{pd2} \\ K_{d1p} & K_{d1d1} & 0 \\ K_{d2p} & 0 & K_{d2d2} \end{bmatrix} \begin{bmatrix} y_p \\ y_{d1} \\ y_{d2} \end{bmatrix} + \begin{bmatrix} D_{pp} & D_{pd1} & D_{pd2} \\ D_{d1p} & D_{d1d1} & 0 \\ D_{d2p} & 0 & D_{d2d2} \end{bmatrix} \begin{bmatrix} \dot{y}_p \\ \dot{y}_{d1} \\ \dot{y}_{d2} \end{bmatrix}$$

La cinématique du système est représentée par le schéma de masses – ressorts – amortisseurs [1]

$$\frac{Y_p(p)}{F_{gene}(p)} = G. \frac{p^2 + N_1 p + N_0}{p^4 + D_3 p^3 + D_2 p^2 + D_1 p + D_0}$$

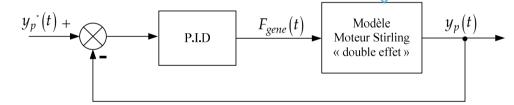

Système non-linéaire

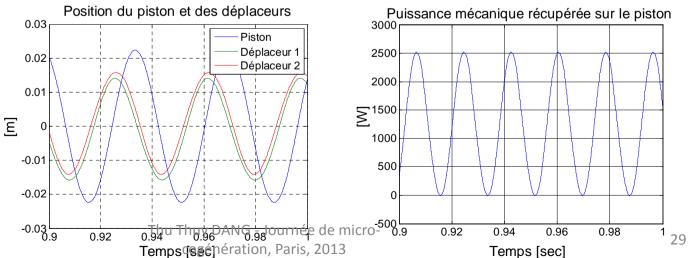
Géométrie d'un moteur Stirling « double effet » 1100 W

	Paramètres géométriques	3		
	$A_p = 0.0121 \text{ m}^2$	$V_{EF} = 3.1467.10^{-4} \text{ m}^3$	$Y_{pc} = 0.15 \text{ m}$	$m_p = 6 \text{ kg}$
	$A_d = 0.0121 \text{ m}^2$	$V_{EC} = 4,2072.10^{-4} \text{ m}^3$	$Y_{de} = 0.1 \text{ m}$	$m_d = 0.3 \text{ kg}$
$\overline{0+D_0}$	$A_{pi} = 0.0113 \text{ m}^2$	$V_r = 8,765.10^{-4} \text{ m}^3$	$V_{ini_b} = 78.10^{-4} \text{ m}^3$	
	$A_r = 9,6211.10^{-4} \text{ m}^2$		$V_{ini_{m}} = 1,4432.10^{-4} \text{ m}^3$	
	Paramètres thermiques e	t mécaniques		
	ANG6500Mrnée de n	****	$C_{Hp} = 20 \text{ Nm}^{-1} \text{s}$	$y_{pmax} = 0.0223 \text{ m}$
cogér	$rac{16}{7}$ ra $rac{1}{5}$ 20 $ m K$ aris, 2013		$C_{Hd} = 15 \text{ Nm}^{-1}\text{s}$	

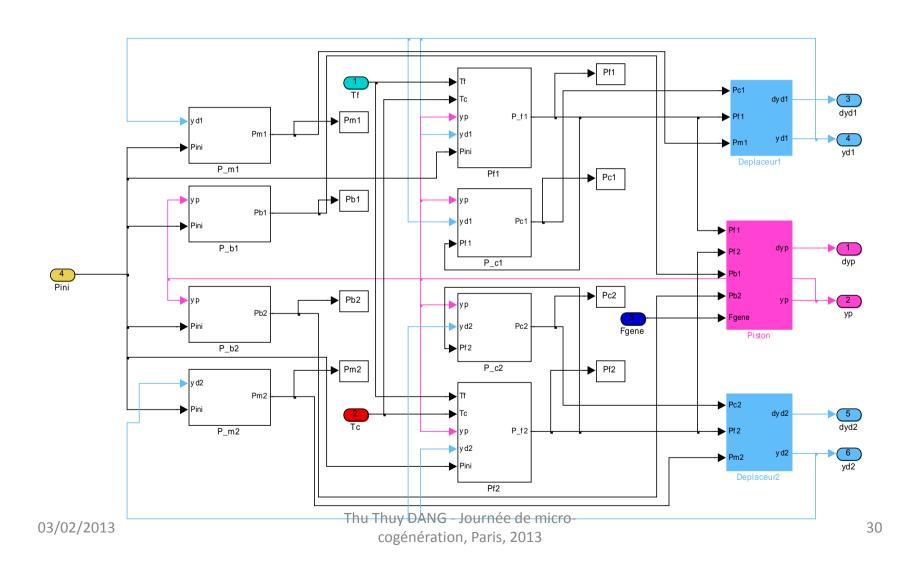
Thu Thuy 12

Modèle thermo-mécanique du moteur Stirling « double effet »et sa commande P.I.D

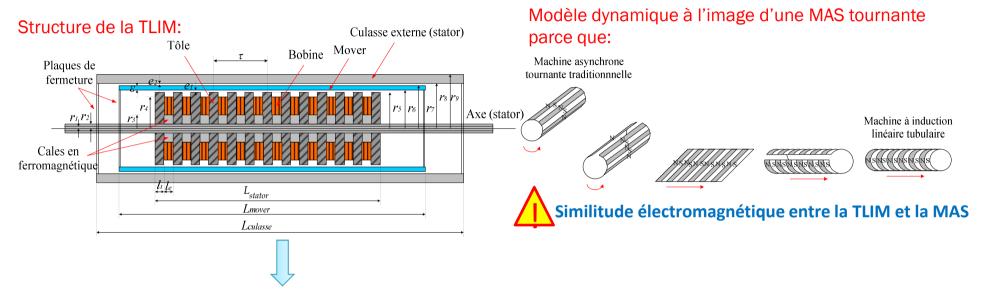

La cinématique du système est représentée par le schéma de masses – ressorts – amortisseurs [1] Modèle mécanique par la loi Newton [1][2]:


$$\begin{split} m_{p}\ddot{y}_{p} &= A_{p}P_{f1} - A_{p}P_{f2} - A_{pi}P_{b1} + A_{pi}P_{b2} - C_{Hp}\dot{y}_{p} - C_{palt}.\dot{y}_{p} \\ m_{d1}\ddot{y}_{d1} &= A_{p}P_{c1} - \left(A_{p} - A_{r}\right)P_{f1} - A_{r}P_{m1} - C_{Hd}\dot{y}_{d1} - C_{d1alt}\dot{y}_{d1} \\ m_{d2}\ddot{y}_{d2} &= -A_{p}P_{c2} + \left(A_{p} - A_{r}\right)P_{f2} + A_{r}P_{m2} - C_{Hd}\dot{y}_{d2} - C_{d2alt}\dot{y}_{d2} \end{split}$$

 $\begin{array}{c|c}
T_c \\
\hline
T_f \\
P_{ini} \\
\hline
F_{gene}(t)
\end{array}$ Modèle Moteur Stirling « double effet » $\begin{array}{c}
y_p(t) \\
\hline
y_{d1}(t) \\
\hline
y_{d2}(t)
\end{array}$

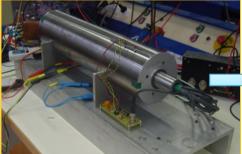

Asservissement de la position du piston avec une commande P.I.D

$$K(p) = \frac{K_{PID}}{p} (1 + T_1 p) (1 + T_2 p)$$
 $y_p^*(t) + y_p^*(t) + y_p^*($



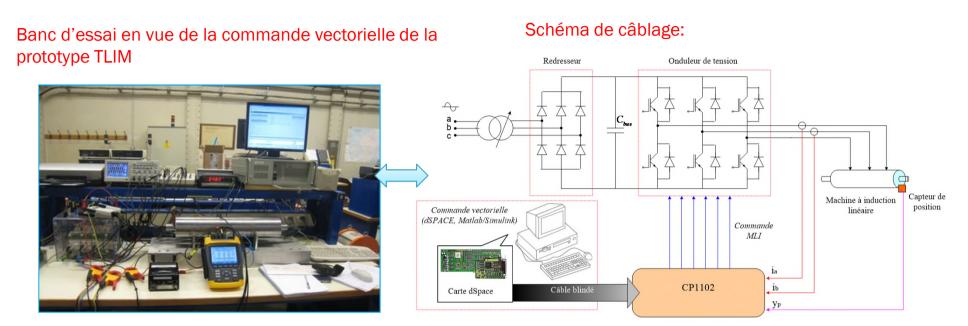
Détails de la simulation du moteur Stirling « double effet »

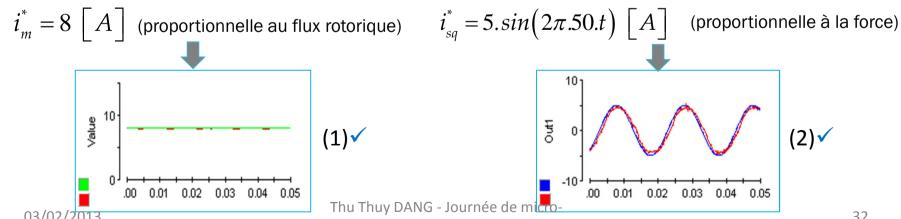
Thu Thuy 13


Modèle de la machine à induction linéaire tubulaire (TLIM) et sa commande

Premier prototype de la TLIM, SATIE-CNAM, 2007

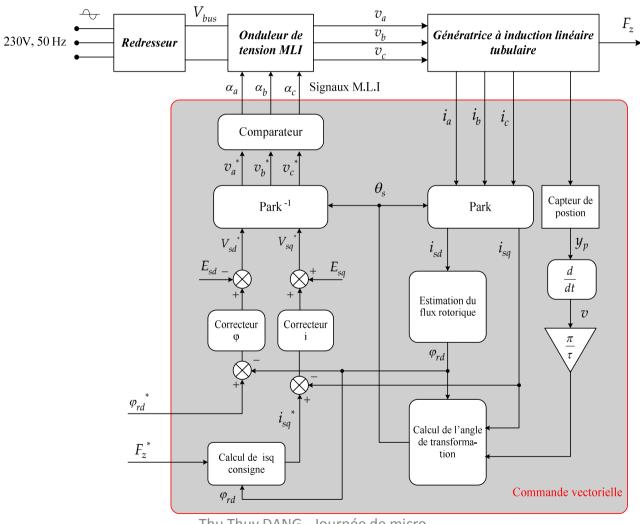
Identification des paramètres de la TLIM sur le prototype




Grandeurs	Notations	Valeurs	Unités
Inductance mutuelle cyclique	M	6,50	mH
Inductance cyclique statorique	L_{s}	9,68	mH
Inductance cyclique rotorique	L_r	8,31	mH
Résistance statorique	R_{s}	0,3	Ω
Résistance rotorique	R_{r}	2,0	Ω
Coefficient de Blondel	σ	0,475	
Constant de temps rotorique	$ au_r$	4,15	ms
Longueur de pas polaire	τ	4,8	cm
Masse du mover	m _{mover}	0,7	kg

Thu Thuy 14

Validation expérimentale de la commande vectorielle de la TLIM



Objectif: Asservir la force électromagnétique de la TLIM en mode moteur selon la consigne suivante:

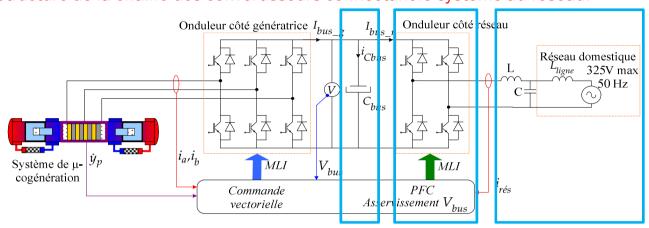

Validation expérimentale de la commande vectorielle applique applique e la TLIM : (1) Force (2) Flux rotorique

Schéma de principe de la commande vectorielle à flux orienté

Modèle de la chaîne des convertisseurs statiques de puissance et la commande PFC

Structure de la chaîne des convertisseurs connectant le système au réseau:

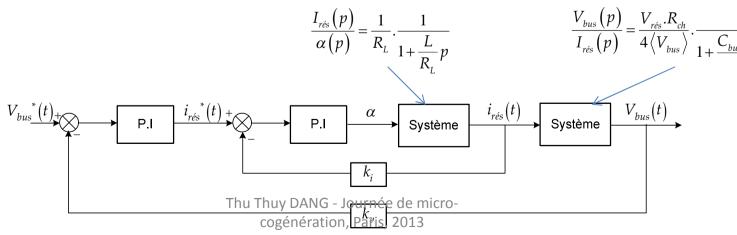
Objectif: Injection de courant sinusoïdal au réseau, en phase avec la tension.

$$i_{rés}(t) = I_{rés}.sin(\omega t)$$

$$v_{r\acute{e}s}(t) = V_{r\acute{e}s}.sin(\omega t)$$

Modèle de l'onduleur monophasé côté réseau

$$V_{ond} = (2\alpha - 1).V_{bus}$$


03/02/2013

$$V_{bus} = 400 \ge V_{r\acute{e}s}$$

Fonction de transfert entre le courant injecté au réseau et le rapport cyclique:

Fonction de transfert entre la tension du bus continu et le courant injecté au réseau :

34

Bibliographie

[1]	Isabel GARCIA-BURREL, "Modélisation, commande et optimisation d'un système de micro-cogénération par moteur Stirling "double effet" et générateur asynchrone linéaire," ENS Cachan, Thèse de doctorat 2007.
12.1	Pierre FRANCOIS, "Contribution à la modélisation électromagnétique d'un générateur linéaire à induction appliquée à un micro-cogénérateur Stirling à piston libre," ENS Cachan, Thèse de doctorat 2011.
[3]	Philippe NIKA and François LANZETTA, "Thermodynamique des moteurs Stirling," <i>Revue 3EI</i> , no. 57, pp. 9-17, Juin 2009.
141	Julien BOUCHER, François LANZETTA, and Philippe NIKA, "Optimization of a dual free piston Stirling engine," <i>Applied Thermal Engineering</i> , no. 27, pp. 802-811, 2007.
151	Marie RUELLAN, Thu Thuy DANG, and Hamid BEN AHMED, "Optimisation de la chaîne électrique d'un système de microcogénération linéaire," <i>Conférence EF</i> , 2011.
[6]	I BOLDEA and Syed A. NASAR, Linear electric actuators and generators, Cambridge University Press, Ed., 1997.
171	K Deb, A Prata, and R Agrawal, "A fast and Elitist Genetic Algorithm: NSGA II," <i>IEEE Transactions on evolutionary computation</i> , vol. 6, no. 2, pp. 182-197, April 2002.
[8]	Nicolas BERNARD, Bernard MULTON, and Hamid BEN AHMED, "Le Redresseur MLI en Absorption Sinusoïdale de Courant," <i>La Revue 3EI</i> .
[9]	Sylvie BEGOT et al., "Modèle pour conception/ optimisation d'un moteur Stirling à pistons libres "mécanique"," 2010.