

Analyse multiparamétrique du comportement magnéto-vibro-acoustique de moteurs électriques

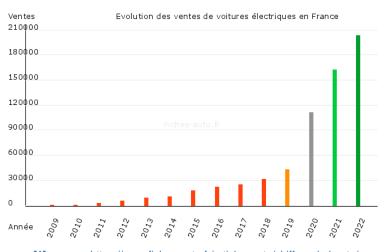
Liwaa Abou Chakra - Bertrand Lallemand - Franck Massa - Thomas Henneron - Stéphane Clénet

Simulation numérique en électromagnétique et dynamique

Réduction de modèle

Analyse multiparamétrique et prise en compte de l'excentricité

Contexte général et objectifs de l'étude



Conception et dimensionnement de machines électriques

- Regain d'intérêt pour les moteurs électriques (développement de voitures 100 % électriques ou hybrides)
- Amélioration constante de l'efficacité énergétique, de la compacité, de la masse

Validation de normes environnementales de plus en plus sévères

- Réduction des nuisances sonores et amélioration du confort de l'usager
- Meilleure compréhension des phénomènes physiques à l'origine de niveaux vibro-acoustiques

[1] source: https://www.fiches-auto.fr/articles-auto/chiffres-de-l-auto/s-1941-evolution-du-nombre-de-voitures-electriques-vendues-enfrance.php

Contexte général et objectifs de l'étude

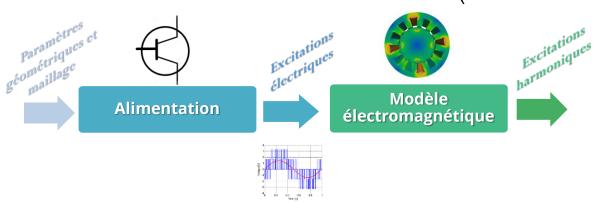
Nécessité de prendre en compte les incertitudes

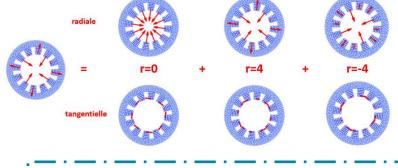
- Perturbation du fonctionnement nominal de la machine électrique
 - Variabilités dimensionnelles
 - Variabilités matérielles
 - Variabilités sur les conditions d'assemblage (excentricités statiques ou dynamiques, efforts d'assemblage...)
 - Différences de polarisation des pôles
 - Alimentation électrique et la commande
- Influence sur la répartition spatiale et temporelle des forces électromagnétiques
- Apparition de nouvelles sources de vibrations et de bruit
- Choix du couplage entre les disciplines et hypothèses de résolution

Simulation numérique en électromagnétique et dynamique

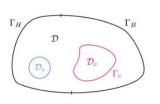
Réduction de modèle

Analyse multiparamétrique et prise en compte de l'excentricité



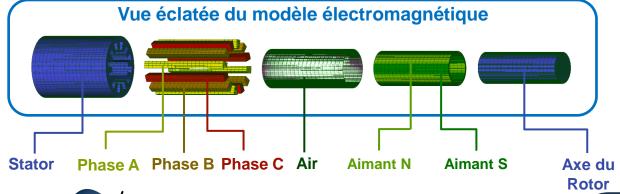

Simulation numérique en électromagnétique

Discrétisation du problème par éléments finis


Modélisation 2D extrudé ou 3D (avec fonction des défauts pris en compte)

Equations du problème :

$$egin{cases} m{rot}m{H} = m{J}_s & ext{avec} & m{H} imes m{n}|_{\Gamma_H} = 0 \ divm{B} = 0 & ext{avec} & m{B} \cdot m{n}|_{\Gamma_B} = 0 \ m{H} = m{v}_{m{B}}m{B} \end{cases}$$

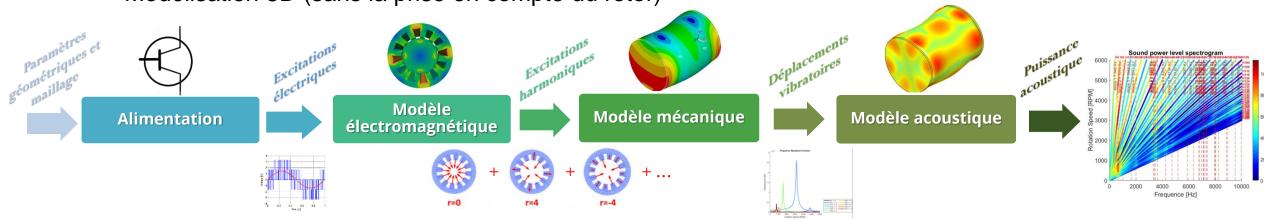

Calcul des forces magnétiques :

$$\mathbf{F}_{s} = -\frac{\partial}{\partial s} \int_{D} \left[\int_{0}^{\mathbf{B}} \mathbf{H} d\mathbf{B} \right]_{\mathbf{B} = cte} dv$$

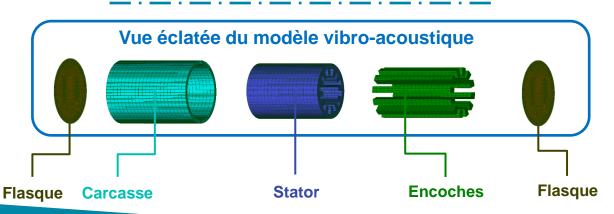
$$\mathbf{M}_{oldsymbol{A}_{oldsymbol{ heta}}}oldsymbol{A}_{oldsymbol{ heta}}=oldsymbol{g}_{oldsymbol{ heta}}$$

$$\mathbf{M}_{A_{\theta}} = \int_{\mathcal{D}} \mathbf{v}_{B} rot \phi_{i} \cdot rot \phi_{j} \ d\mathcal{D} \quad \text{et} \quad g_{\theta} = \int_{\mathcal{D}} (J_{s} \cdot \phi_{i}) \ d\mathcal{D}$$

avec



Simulation numérique en vibro-acoustique


Discrétisation du problème par éléments finis

Modélisation 3D (sans la prise en compte du rotor)

Equation du problème :

$$\rho \frac{\partial^2 \boldsymbol{d}}{\partial t^2} - div(\boldsymbol{\sigma}) = \boldsymbol{f}$$

Equations discrètes du problème mécanique :

$$\mathbf{M}\ddot{\boldsymbol{u}}(t) + \mathbf{C}\dot{\boldsymbol{u}}(t) + \mathbf{K}\boldsymbol{u}(t) = \mathbf{f}(t)$$

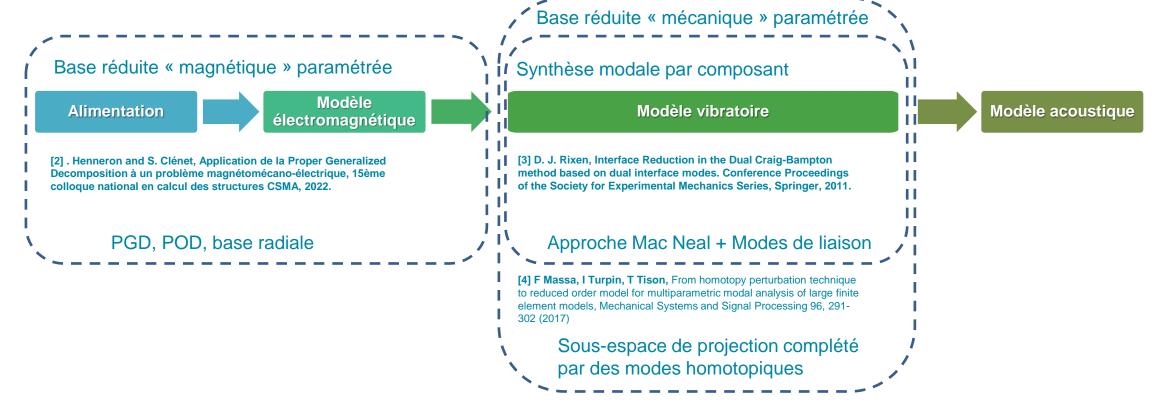
Equations discrètes du problème acoustique :

$$W(f) = \rho_0 c_0 S \sigma_a(f) |v_n^2|/2$$
 et $L_w(f) = 10 \log_{10} \left(\frac{W(f)}{W_0}\right)$

Simulation numérique en électromagnétique et dynamique

Réduction de modèle

Analyse multiparamétrique et prise en compte de l'excentricité


09/11/2023

Réduction de modèle

Définition de plusieurs niveaux de réduction de modèles

- Maitrise des temps de calcul en tout en conservant un degré de précision élevé
 - Synthèse modale par composant
 - Base réduite « mécanique » paramétrée
 - Base réduite « magnétique » paramétrée

Double condensation modale

Premier niveau de condensation

$$\begin{pmatrix} \bar{\mathbf{M}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \ddot{\mathbf{u}} \\ \ddot{\lambda} \end{pmatrix} + \begin{pmatrix} \bar{\mathbf{C}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \dot{\mathbf{u}} \\ \dot{\lambda} \end{pmatrix} + \begin{pmatrix} \bar{\mathbf{K}} & \mathbf{B}^T \\ \mathbf{B} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ \lambda \end{pmatrix} = \begin{pmatrix} \bar{\mathbf{f}} \\ \mathbf{0} \end{pmatrix}$$

$$\bar{\mathbf{M}} = diag(\bar{\mathbf{M}}^{(1)}, \cdots, \bar{\mathbf{M}}^{(n)}) \quad ; \quad \bar{\mathbf{C}} = diag(\bar{\mathbf{C}}^{(1)}, \cdots, \bar{\mathbf{C}}^{(n)}) \quad ; \quad \bar{\mathbf{K}} = diag(\bar{\mathbf{K}}^{(1)}, \cdots, \bar{\mathbf{K}}^{(n)}) \quad ; \quad \bar{\mathbf{K}} = diag(\bar{\mathbf{K}}^{(1)}, \cdots, \bar{\mathbf{K}}^{(n)}$$

$$\mathbf{u} = \begin{pmatrix} \mathbf{u}^{(1)} \\ \vdots \\ \mathbf{u}^{(n)} \end{pmatrix} \qquad ; \qquad \mathbf{\bar{f}} = \begin{pmatrix} \mathbf{\bar{f}}^{(1)} \\ \vdots \\ \mathbf{\bar{f}}^{(n)} \end{pmatrix} \qquad ; \qquad \mathbf{B} = \begin{pmatrix} \mathbf{B}^{(1)} \\ \vdots \\ \mathbf{B}^{(n)} \end{pmatrix}^T$$

Les coordonnées physiques sont ensuite exprimées en fonction des coordonnées modales et des efforts de liaisons λ en utilisant la matrice T_{DCB}

$$\begin{pmatrix} \mathbf{u} \\ \boldsymbol{\lambda} \end{pmatrix} = \begin{pmatrix} \boldsymbol{\Phi} & -\mathbf{G_r} \mathbf{B}^T \\ \mathbf{0} & \mathbf{I} \end{pmatrix} \begin{pmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\lambda} \end{pmatrix} = \mathbf{T}_{DCB} \begin{pmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\lambda} \end{pmatrix}$$

Second niveau de condensation

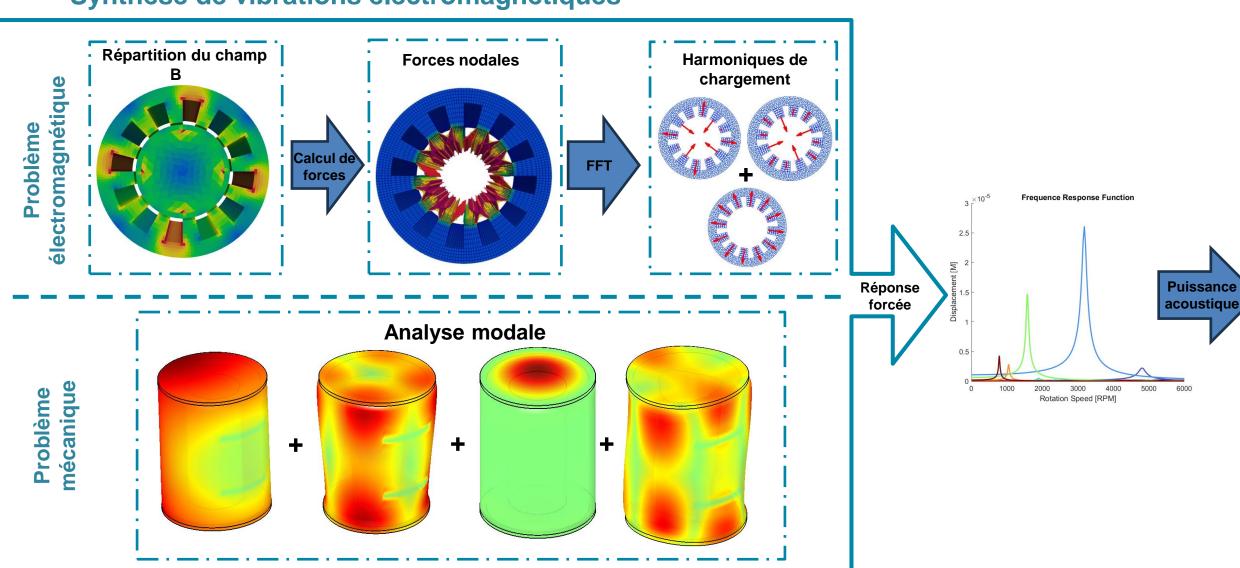
Réduire le nombre d'inconnues de liaisons à

$$\begin{pmatrix} \mathbf{u} \\ \boldsymbol{\lambda} \end{pmatrix} = \mathbf{T}_{DCB}' \begin{pmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\lambda}' \end{pmatrix} = \mathbf{T}_{DCB} \mathbf{T}_{D} \begin{pmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\lambda}' \end{pmatrix} = \mathbf{T}_{DCB} \begin{pmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Psi} \end{pmatrix} \begin{pmatrix} \boldsymbol{\alpha} \\ \boldsymbol{\lambda}' \end{pmatrix}$$

Simulation numérique en électromagnétique et dynamique

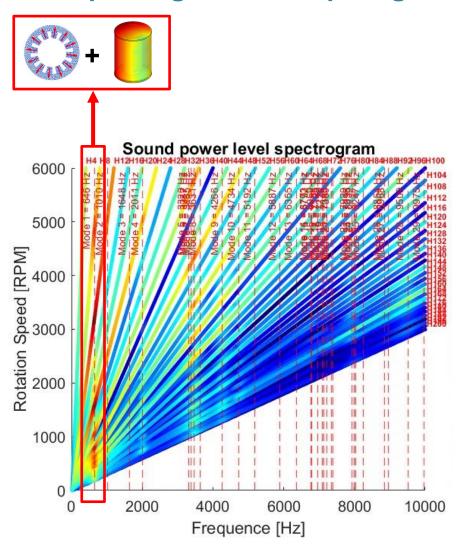
Réduction de modèle

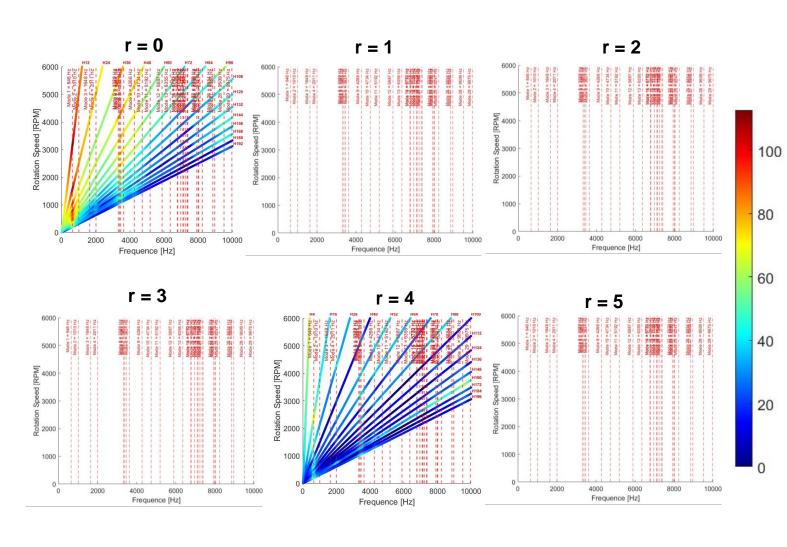
Analyse multiparamétrique et prise en compte de l'excentricité



Résultats déterministes

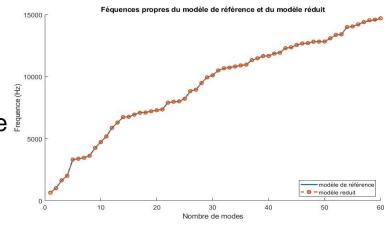
Synthèse de vibrations électromagnétiques

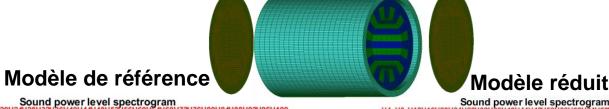


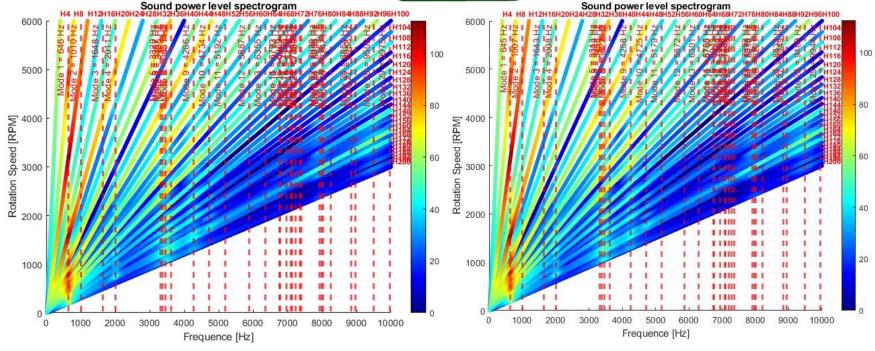


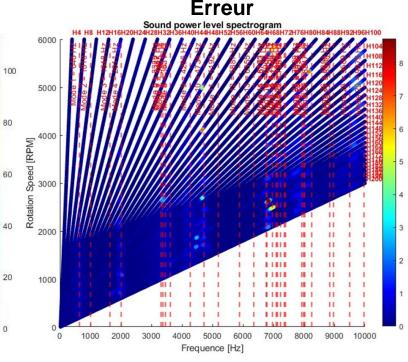
Résultats déterministes

Spectrogramme et spatiogrammes du niveau de puissance sonore

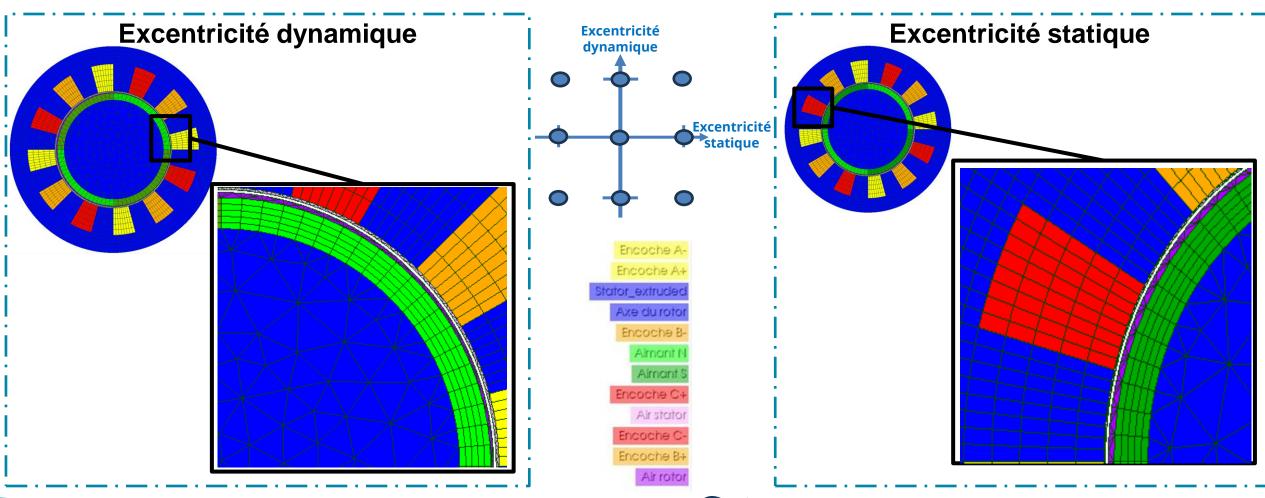



Résultats déterministes



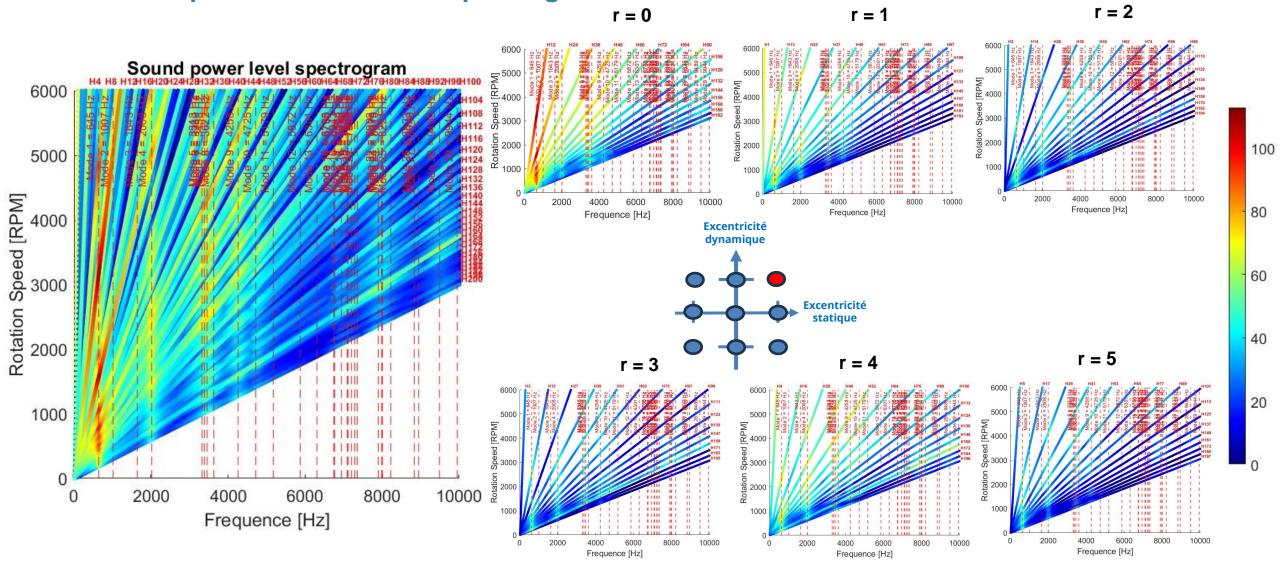

Validation de la synthèse modale et calcul du spectrogramme

- 8.33% (384/4608) des ddl d'interfaces sont retenus
- Erreur <0.5% est observée pour l'ensemble du spectre fréquentiel
- Temps de calcul du modèle réduit égal à 1/20 du modèle de référence



Résultats de l'analyse multiparamétrique

- Prise en compte de l'excentricité statique et dynamique
 - Excentricité dynamique: Déplacement du rotor de 25% de l'épaisseur de l'entrefer la machine
 - Excentricité statique: Déplacement du stator de 25% de l'épaisseur de l'entrefer la machine



Résultats de l'analyse multiparamétrique

Effet de perturbations sur le spectrogramme

Conclusion et perspectives

- Développement de modèles numériques réduits paramétrés pour la simulation des comportements magnéto-vibro-acoustique
 - Validation de la stratégie de synthèse modale
 - Optimisation des bases de projection
 - Intégration des différentes réductions de modèles
- Analyse multiparamétrique avec la prise en compte d'incertitudes
 - Défauts d'excentricité statique et dynamique
 - Pôles mal positionnés
 - Aimantation déséquilibrée
 - Amplitude du courant déséquilibrée
- Prise en compte de défauts géométriques altérant les deux disciplines
 - Modification de la géométrie des dents du stator
 - Intégration du rotor et des paliers en analyse dynamique
 - Utilisation simultanée des réductions de modèles

Positionnement des travaux par rapport au GDR

Etude du couplage entre les deux physiques

- Prise en compte des non-linéarités des liaisons
- Résolution itérative multi-physique
- Analyse dynamique non-linéaire

Merci pour votre attention

Liwaa ABOU CHAKRA

Email: liwaa.abouchakra@uphf.fr

