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Introduction

Context & motiv:

m Modern mechanical systems
P Ever-increasing demand for more efficient systems
P Lighter, more slender structures
» Smaller functional clearances
m Nonlinear vibrations
» Multiple solutions
> Bifurcations
» Amplitude-jumps, quasi-periodic & chaotic solutions, etc.
m Bifurcations are not accounted for during the design stage

> Discovered during testing/operation
P At best, detected using a posteriori stability/bifurcation analysis
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P Ever-increasing demand for more efficient systems
P Lighter, more slender structures
» Smaller functional clearances

m Nonlinear vibrations

» Multiple solutions
> Bifurcations
» Amplitude-jumps, quasi-periodic & chaotic solutions, etc.

m Bifurcations are not accounted for during the design stage

> Discovered during testing/operation
P At best, detected using a posteriori stability/bifurcation analysis

m In recent years, development of bifurcation tracking techniques for parametric analyses
m Optimization of bifurcations

P Alternative to bifurcation tracking analyses capable of handling a large number of design parameters
» Enforce bifurcations to occur at targeted locations
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Introduction
Outline

m Formulation of the optimization problem
m Computational nonlinear analysis

m Results
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Formulation of the optimization problem Objective function
urcation measure

Error measure

m Formulation of the optimization problem
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Formulation of the optimization problem Objective function

Optimization problem

We consider dynamical systems under the following form:

R(q, 1)

Il
o

Solution curve:
m Continuum of solutions under variation of u
m Bifurcation points — qualitative and quantitative changes in the dynamics at values i,

m Usually detected by monitoring scalar test functions g whose zeros indicate a bifurcation

Let 7 and P denote the sets of target and predicted bifurcations, respectively

1/|7’\
minimize |T — PlW¥(x) Z H
* |T| TET 7(x
Bifurcation measure Error measure
subject to b} < x; < b}’ Vie [1,p]

m Discontinuous objective function — Gradient-free optimizer (from NLOPT.JL)
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Formulation of the optimization problem Objective function
Bifurcation measure
Error measure

Bifurcation measure

Bifurcation measure: Encourage the presence of bifurcations on the solution curve
IT = Pl¥(x)
m |7 — P| — vanishes when the number of bifurcations on the curve equals the number of targets
m W(x) — pushes the optimizer towards states were many bifurcations occur

m W(x) — 0 when many bifurcations are detected.
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Formulation of the optimization problem 5 function
Bifurc n me
Error measure

Error measure

Error measure: Match bifurcations to targeted locations

mz 11 ‘ e

TET ©(x)eP

/1P|

Formulation with arithmetic and geometric means:

m Errors for all combinations of targets and predictions
m Mitigates the risk of several bifurcations matched to the same target

m Equals zero when all targets are matched

Predictions 7 and targets 7 can be:

m Frequencies
m A measure of states (infinity norm, L2 norm, etc.)
m Both
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Computation of periodic solutions

Computational nonlinear analysis

Bifurcation analy

m Computational nonlinear analysis
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Computation of periodic solutions
Bifurcation analysis

Computational nonlinear analysis

Harmonic Balance Method

HBM-AFT
oo Npy ) B IFFT )
q(t) — Re (Z &kelkm> ~ Re Z ake:km q q(),q(t)
k=0 k=0 (
fa £(0.6,9
. e . FFT
R(G,Q) =Z(Q)g+fu(@) —fx =0
Arclength continuation
Q

Prediction
a5 &, (3R) = ()
A£G Apk ) \Bkr1) —\1
Correction
P(§, 1, 5) = (A3)" (A§) + Ap® — As* =0
W
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- . ! Computation of periodic solutions
Computational nonlinear analysis " " .
7 Bifurcation analysis

Bifurcation analysis

Local stability - Hill's method
()

Quadratic eigenvalue problem (QEP)

2 5 C E a -
(XM 42+ 2(w) + 0gF w (@)) 7 =0
A:f = IQNh+1 M S() # ‘o ———> NeimarkSacker bifurcation
C= V®2M+ [2,\,,7 1®C S() =0 Saddle-node bifureation
0] R(A)
S(A) #— % =3 Neimark-Sacker bifurcation

'Linearization’ of the QEP

c %R Y] 0
A -0
{— [IN(ZNh+1)] 0 :| [0 IN(2N/.,+1):|

Bifurcation detection

Scalar test function g evaluated by solving a bordered linear system

4 o (5)=0)

Where A depends on the bifurcation of interest. A = 94R for fold bifurcations

w
N =-3 Period doubling bifurcation

10/19
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oscillator
ent model with ROM

Results

m Results
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Duffing oscillator
Finite element model with ROM

Results

Duffing oscillator - target frequencies

mx + cx 4+ kx + kyx® = F cos(Qt)

m Optimization variables: m, ¢, k , k,/
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Results ith ROM

Duffing oscillator - target amplitudes and frequencies

mx + cx 4+ kx + kyx® = F cos(Qt)

m Optimization variables: m, ¢, k , k,/
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Duffing oscillator

Finite element model with ROM
Results

Duffing oscillator - objective function

3
v

Amplitude of harmonic 1
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Objective function
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|

Objective function minimum when:
m all targets are matched with at least one bifurcation

m AND the number of bifurcations equals the number of targets
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Duffing oscillator
Finite element model with ROM

Results

Finite element model with ROM

0.70 m

m 2D Euler bernoulli beam elements - Craig-Bampton ROM

m 120 optim. variables (element-wise height/width, length and nonlinear coeff)
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Duffing oscillator
Finite element model with ROM
Results

Finite element model with ROM

0.70 m

m 2D Euler bernoulli beam elements - Craig-Bampton ROM

m 120 optim. variables (element-wise height/width, length and nonlinear coeff)
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Duffing oscillator

Finite element model with ROM
Results

Finite element model with ROM
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Conclusion & perspectives

Conclusion

m Optimization framework to enforce the appearance of bifurcation points at targeted locations

P Capable of handling multiple bifurcations of different types simultaneously
» Handles target frequencies, amplitudes, both, ...

m Relatively high number of optimization parameters (x~ 1e2)

m Extension to high-dimensional FE models

» Development of parametric ROMs
» Development of meta-models

m Investigation of global optimization algorithms
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