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A Duffing oscillator exhibits complex resonant dynamics
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Can we experimentally identify this bifurcation diagram
iIn @ model-less manner?



Historical perspective
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PLL and SCBC identify responses under harmonic forcing
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u(t) = U sin(Qt)

— PLL and SCBC fix Q2 or U and adjust the other
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Limitation of existing derivative-free approaches
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ACBC identifies responses under harmonic forcing

x(t)
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d
= () + s (8) u(t) = ka = (x*(8) — x())
— U,f(t) + unf(t)

Non-invasive if u,((t) = 0 — = p sin(wt + ¢)

ur(t) = p sin(wt + ¢) Unr(t) =0

— Modifies x;(¢) until p = p* — Enforce x;,¢(t) = x,7(t)



ACBC goes through bifurcations in a derivative-free manner

— Modifies x7(t) = o sin(t)
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Amplitude

ACBC fails for secondary resonances




Unlike ACBC, x-ACBC uncovers secondary resonances

u(t) = uf(t) + unf,r(t) + Unfnr (t) = p sin(wt + ¢)

Unfr (t) =0

Enforces x, ¢, (t) = x,,(t) and
reaches the desired branch

uf(t) = p sin(wt + ¢) Unfnr (t)=0

— Modifies x;(¢) until p = p* — Enforce x, ¢, (t) = Xpfnr(t)
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Influence of the resonant non-fundamental harmonic
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Influence of the resonant non-fundamental harmonic
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Experimental validation on an electronic Duffing oscillator

f‘ Xf xf

107* % +1.49 x107*x + 1.75x + 0.99 x3 = p sinwt = f(¢t)
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ACBC fully identifies the complex resonant behavior
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Conclusions

A first: x-ACBC can identify all resonances of a Duffing oscillator
including its subharmonic and ultrasubharmonic resonances.

ACBC can also be applied to autonomous systems to uncover fixed
points and limit cycles.
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3 LIEGE

Stay tuned, an article is on the way!

alexandre.spits@uliege.be
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