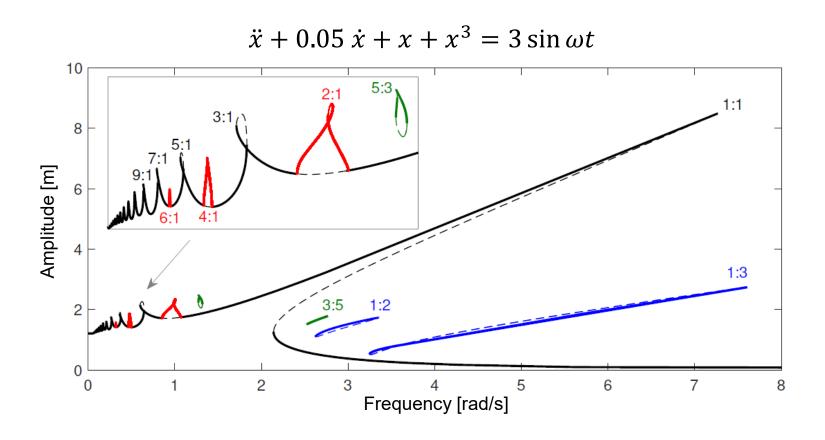
A model- and derivative-free arclength continuation method for tracing bifurcation diagrams in nonlinear systems

University of Liège, Belgium

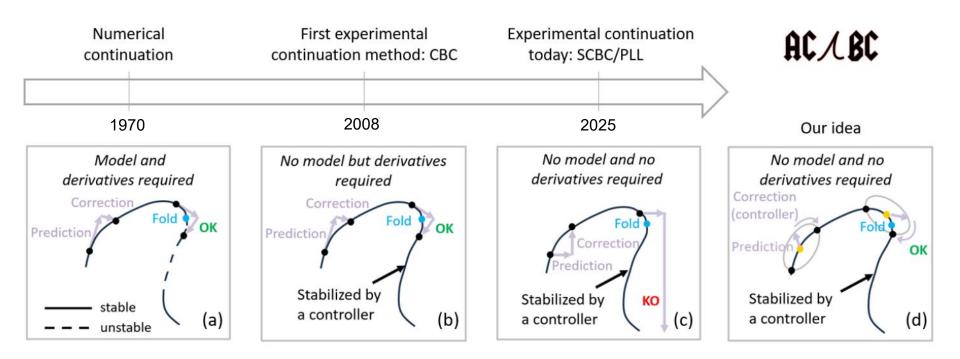
Alexandre Spits
Ghislain Raze
Gaëtan Kerschen

A Duffing oscillator exhibits complex resonant dynamics

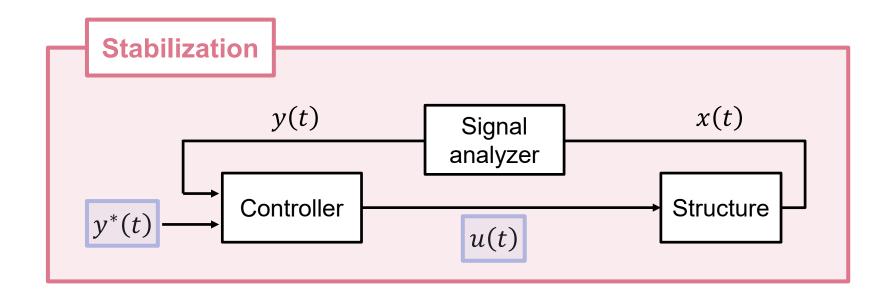


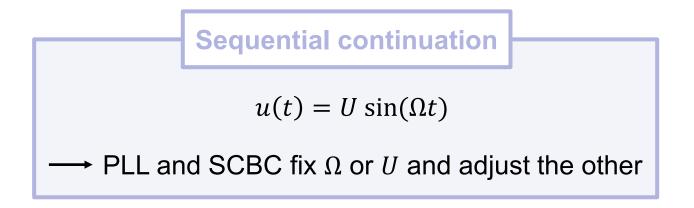
Can we experimentally identify this bifurcation diagram in a model-less manner?

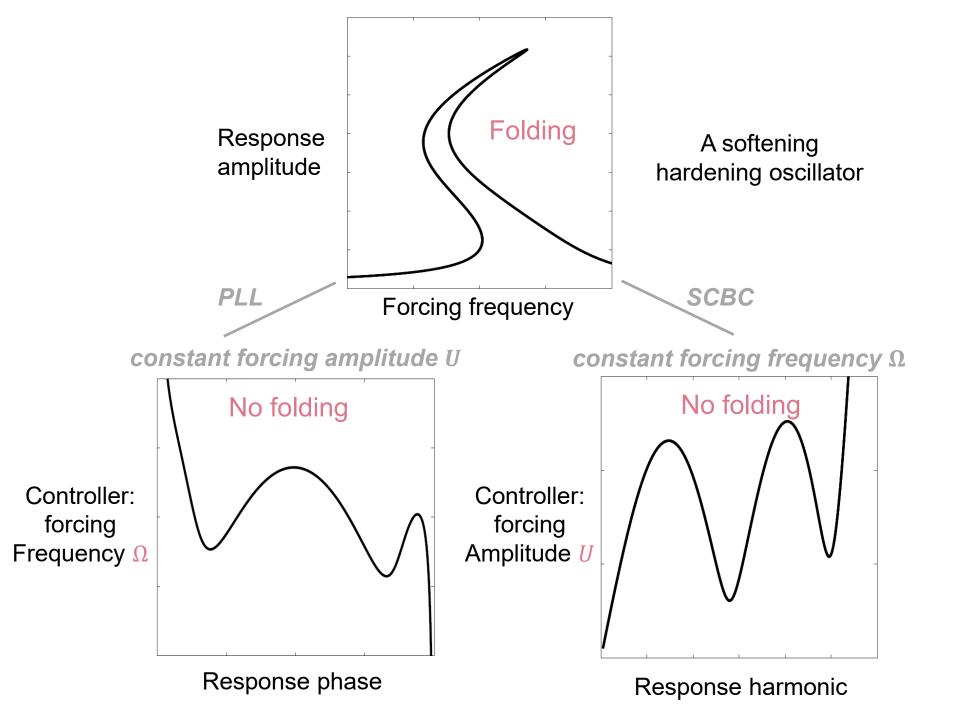
Historical perspective



PLL and SCBC identify responses under harmonic forcing







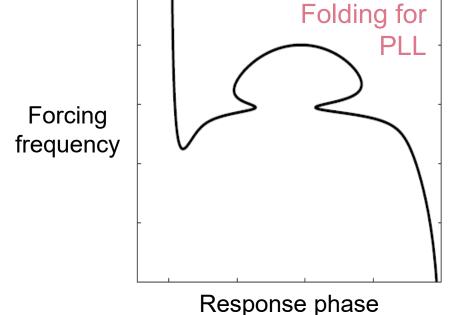
Limitation of existing derivative-free approaches

Forcing

amplitude

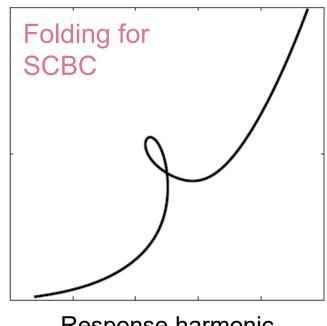
Merging of an isola with a resonance peak

constant forcing amplitude

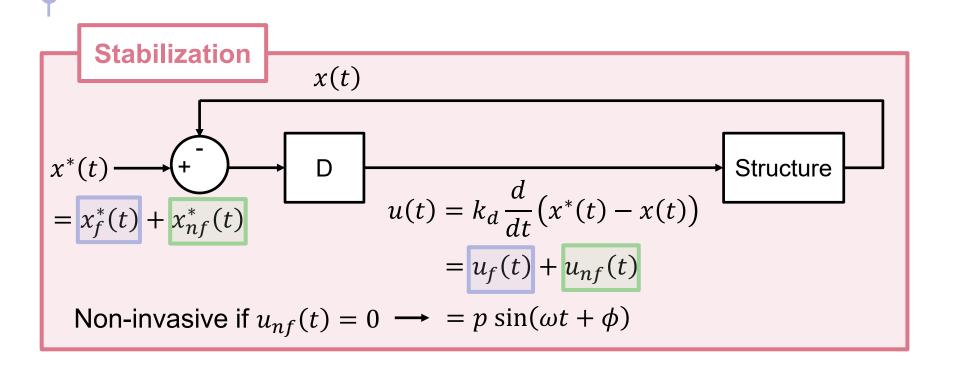


3:1 superharmonic resonance

constant forcing frequency



ACBC identifies responses under harmonic forcing



Arclength continuation

$$u_f(t) = p\sin(\omega t + \phi)$$

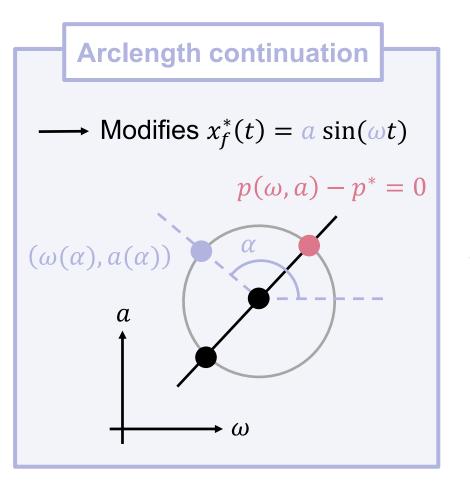
 \longrightarrow Modifies $x_f^*(t)$ until $p = p^*$

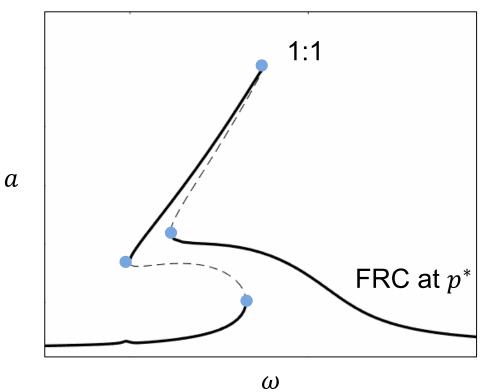
Adaptive filters

$$u_{nf}(t) = 0$$

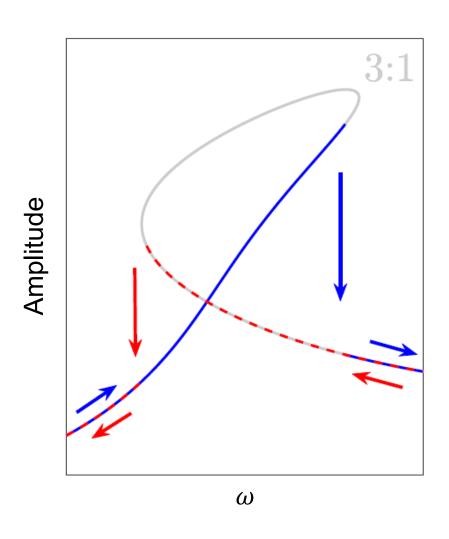
 \longrightarrow Enforce $x_{nf}^*(t) = x_{nf}(t)$

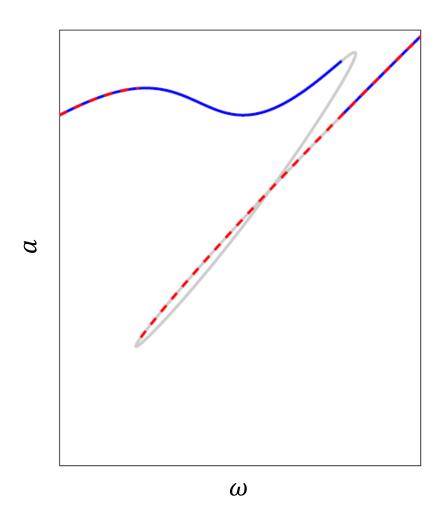
ACBC goes through bifurcations in a derivative-free manner





ACBC fails for secondary resonances





Unlike ACBC, x-ACBC uncovers secondary resonances

$$u(t) = u_f(t) + u_{nf,r}(t) + u_{nf,nr}(t) = p \sin(\omega t + \phi)$$

Control of the resonant harmonic component

$$u_{nf,r}(t) = 0$$

Enforces $x_{nf,r}^*(t) = x_{nf,r}(t)$ and reaches the desired branch

Arclength continuation

$$u_f(t) = p \sin(\omega t + \phi)$$

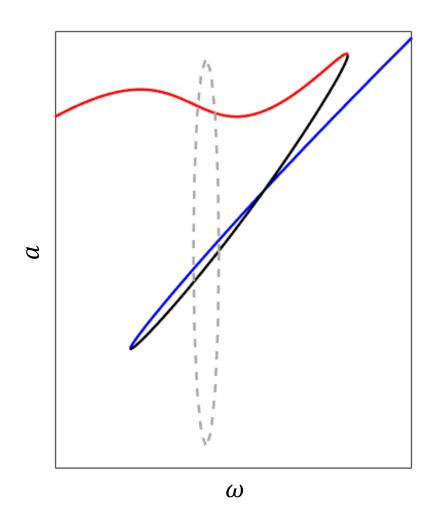
 \longrightarrow Modifies $x_f^*(t)$ until $p = p^*$

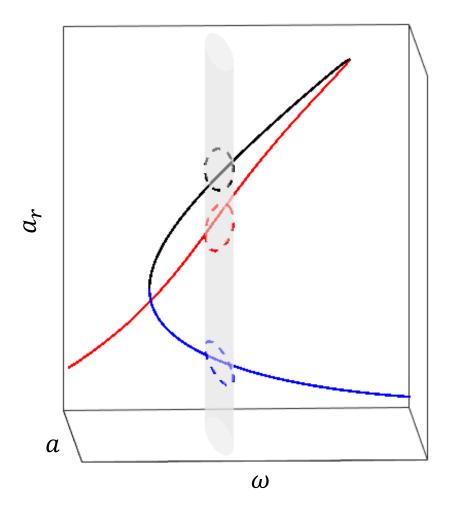
Adaptive filters

$$u_{nf,nr}(t) = 0$$

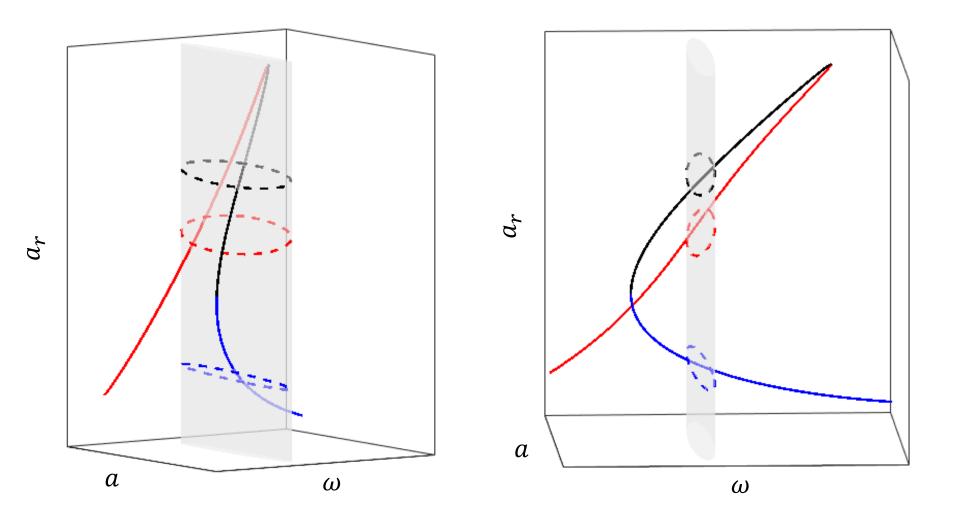
 \longrightarrow Enforce $x_{nf,nr}^*(t) = x_{nf,nr}(t)$

Influence of the resonant non-fundamental harmonic

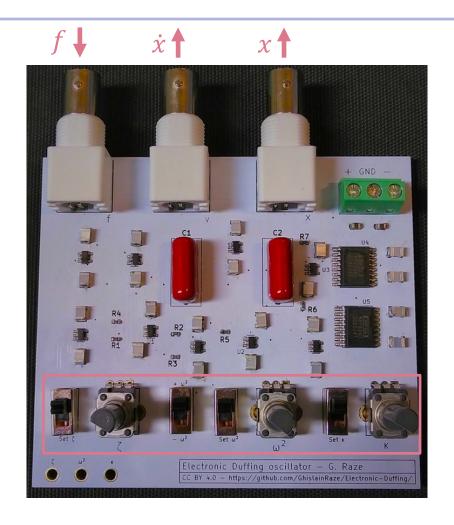




Influence of the resonant non-fundamental harmonic

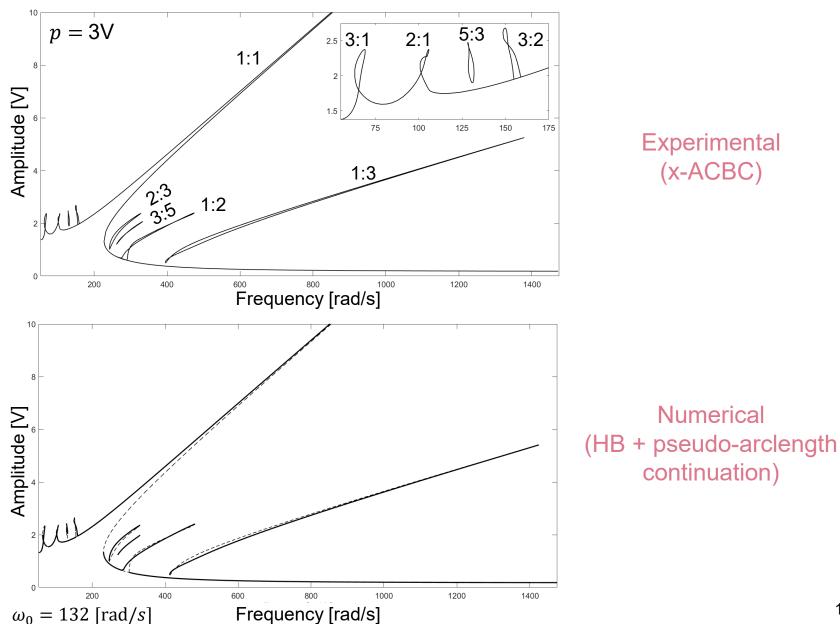


Experimental validation on an electronic Duffing oscillator



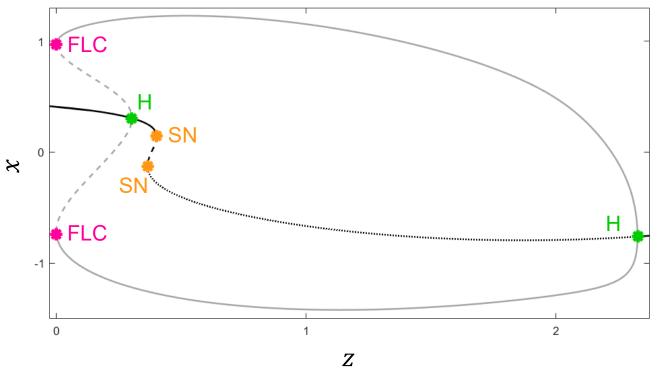
 $10^{-4} \ddot{x} + 1.49 \times 10^{-4} \dot{x} + 1.75 x + 0.99 x^3 = p \sin \omega t = f(t)$

ACBC fully identifies the complex resonant behavior



Conclusions

- A first: x-ACBC can identify all resonances of a Duffing oscillator including its subharmonic and ultrasubharmonic resonances.
- ACBC can also be applied to autonomous systems to uncover fixed points and limit cycles.



Thank you for your attention!

Stay tuned, an article is on the way! alexandre.spits@uliege.be