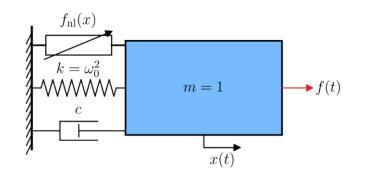


Symbolic implementation of the Method of Multiple Scales

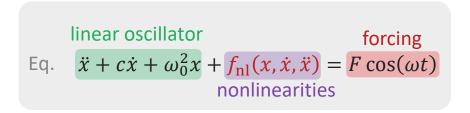
An analytical analysis tool

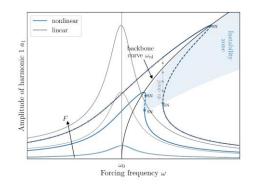


Vincent Mahé

III. Code 000000 IV. Conclusion

Motivation





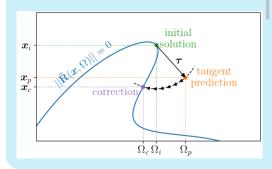
Numerical methods

Advantages

Accurate solutions

Complex **geometries**

Many **dof**



Drawbacks

Computational time

Long **parametric** studies

Less **insight**

Numerical stability

- Time integration
- Continuation methods
- •

Analytical methods

Advantages

Parametric investigation

- → Deep understanding
- → Design rules

Closed-form solution

→ Computational efficiency

$$x(t) = x_0 + \epsilon x_1 + \cdots$$

Drawbacks

Difficult to carry-out

Approximate solutions

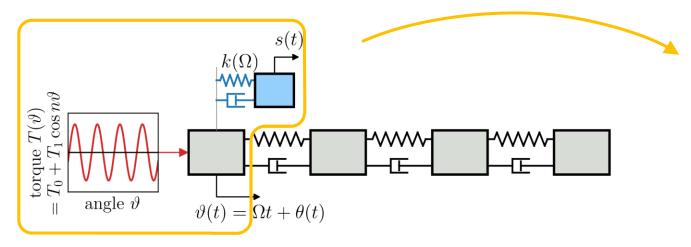
Limited to

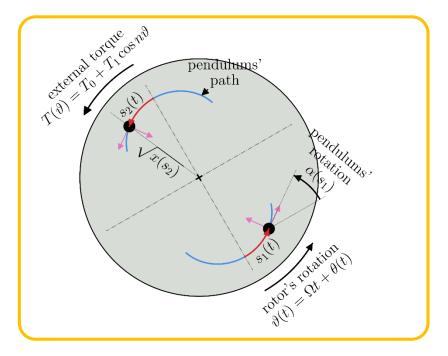
- → Simple geometries
- → Few dof
- Lindstedt-Poincaré
- Method of Multiple Scales (MMS)

•

III. Code oooooo IV. Conclusion

Motivation





Objectives

- 1. Improve the absorption capacity
 - → Find the **optimum choices** for
 - The pendulums' path $x(s_i)$
 - The pendulums' rotation $\alpha(s_i)$
- 2. Understand physical phenomena at stake
 - → Determine the **dynamical effects** of
 - The pendulums' path $x(s_i)$
 - The pendulums' rotation $\alpha(s_i)$

Analytical approach

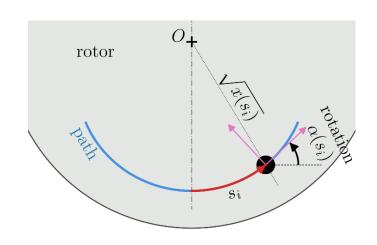
1. Provide design guidelines

$$\begin{cases} x_{\text{opt}}(s_i) = f_{x}(s_i; \mathbf{p}) & \text{sys.} \\ \alpha_{\text{opt}}(s_i) = f_{\alpha}(s_i; \mathbf{p}) & \text{param.} \end{cases}$$

2. Asymptotic solutions

$$s_i = f_i(p), i = 1, 2$$

Reasonable hand application of the Method of Multiple Scales



Nonlinear Linear effects effects

 $x(s_i) = 1 - n_t^2 s_i^2 + \frac{x_4 s_i^4}{2}$ Path

 $+\alpha_3 s_i^3$ Rotation $\alpha(s_i) = \alpha_1 s_i$

Problem to solve

$$\tilde{s}_{i}'' + n_{p}^{2}\tilde{s}_{i} = -\frac{\epsilon}{\Lambda_{m}} \left[\underbrace{\frac{n_{p}^{2}\tilde{\mu}\Lambda_{c}^{2}}{N} \sum_{j=1}^{N} \tilde{s}_{j}}_{\text{coupling between the pendulums}} + \underbrace{\tilde{b}\tilde{s}_{i}'}_{\text{damping}} - \underbrace{2\tilde{x}_{[4]}\tilde{s}_{i}^{3}}_{\text{path}} + \underbrace{6\eta\alpha_{[1]}\tilde{\alpha}_{[3]}(\tilde{s}_{i}^{2}\tilde{s}_{i}'' + \tilde{s}_{i}\tilde{s}_{i}'^{2})}_{\text{rotation nonlinearity}} + \underbrace{\Lambda_{c}\tilde{T}_{1}\cos(n\tau)}_{\text{external forcing}} \right]$$

N linearly coupled nonlinear equations

Apply the Method of Multiple Scales

Design guidelines

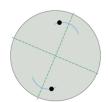
Linear tuning
$$n_p(n_t, \alpha_1) = n$$
 $\begin{cases} Nonlinear \\ tuning \end{cases}$ $c_p(x_4, \alpha_3) = 0$

Choose to

- Avoid instabilities
- Lock the antiresonance

Prohibited hand application of the Method of Multiple Scales

Simplest nonlinear pendulum model



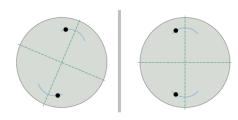
→ Direct unison response

$$\begin{split} \tilde{s}_i'' + n_p^2 \tilde{s}_i &= -\frac{\epsilon}{\Lambda_m} \Bigg[\underbrace{\frac{n_p^2 \tilde{\mu} \Lambda_c^2}{N} \sum_{j=1}^N \tilde{s}_j}_{\text{coupling between the pendulums}} + \underbrace{\tilde{b} \tilde{s}_i'}_{\text{damping}} - \underbrace{2 \tilde{x}_{[4]} \tilde{s}_i^3}_{\text{path nonlinearity}} \\ + \underbrace{6 \eta \alpha_{[1]} \tilde{\alpha}_{[3]} (\tilde{s}_i^2 \tilde{s}_i'' + \tilde{s}_i \tilde{s}_i'^2)}_{\text{rotation nonlinearity}} + \underbrace{\Lambda_c \tilde{T}_1 \cos(n\tau)}_{\text{external forcing}} \Bigg]. \end{split}$$

Can be done by hand

Design $\begin{cases} n_p(n_t, \alpha_1) = n \\ c_p(x_4, \alpha_3) = 0 \end{cases}$

Advanced nonlinear pendulum model



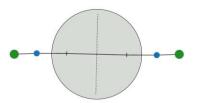
Direct unison responseSubharmonic responses

$$s_i'' + n_p^2 s_i = -\frac{\epsilon}{\Lambda_m} \left\{ \underbrace{\frac{\Lambda_c^2 \tilde{\mu}}{N} \sum_{j=1}^N n_p^2 s_j}_{\text{linear coupling between the pendulums}}_{\text{linear roupling between the pendulums}} + \underbrace{\frac{\tilde{\mu} n_t^2 \Lambda_c}{N} \left[\sum_{j=1}^N s_j (2s_j' + s_i') \right]}_{\text{nonlinear (quadratic) coupling between the pendulums}} + \underbrace{\frac{\tilde{\mu} n_t^2}{N} \left[\sum_{j=1}^N (1 + n_t^2) \Lambda_c \left(s_j s_j'^2 - \frac{n_p^2}{2} (s_j^3 + s_j s_i^2) \right) + 2\Lambda_m s_j s_j' s_i' \right]}_{\text{nonlinear (cubic) coupling between the pendulums}} - \underbrace{2\tilde{x}_{[4]} s_i^3}_{\text{path nonlinearity}} + \underbrace{6\eta \alpha_{[1]} \tilde{\alpha}_{[3]} (s_i s_i'^2 + s_i^2 s_i'')}_{\text{rotation nonlinearity}} + \underbrace{\left(\Lambda_c + \Lambda_m s_i' - \frac{n_t^2 (1 + n_t^2)}{2} s_i^2 \right) \tilde{T}_1 \cos(n\vartheta)}_{\text{external forcing (direct and parametric)}} \right\}.$$

Automation tremendously helped

Design
$$\begin{cases} n_p(n_t,\alpha_1) = n \\ c_p(x_4,\alpha_3) = c_c \end{cases} \begin{cases} n_p(n_t,\alpha_1) = n/2 \\ c_p(x_4,\alpha_3) = 0^+ \end{cases}$$

Double pendulums



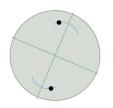
$$\begin{split} & \Lambda_{m1} \varphi_{1i}'' + \Lambda_{c12} \varphi_{2i}'' + k_1 \varphi_{1i} + k_{12} \varphi_{2i} = -\epsilon f_{p1i}(\pmb{\varphi}, \vartheta), \\ & \Lambda_{c12} \varphi_{1i}'' + \Lambda_{m2} \varphi_{2i}'' + k_{12} \varphi_{1i} + k_2 \varphi_{2i} = -\epsilon f_{p2i}(\pmb{\varphi}, \vartheta). \\ & \text{1 page-long equations...} \end{split}$$

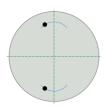
- Cannot be done by hand
- Automation required

Design
$$\begin{cases} n_{p_i} = n \\ c_{p_i} = c_{c_i} - c_{d_i} \end{cases}$$

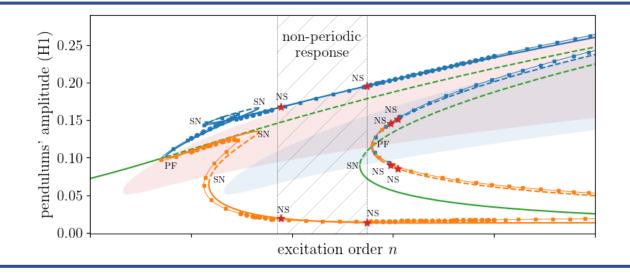
Analytical results are accurate enough

Numerical validation





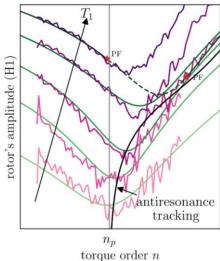
- → Unison response
- → Coupled-mode response
- → Stability



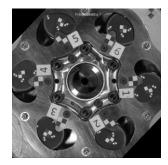
Experimental validation

6 pendulums

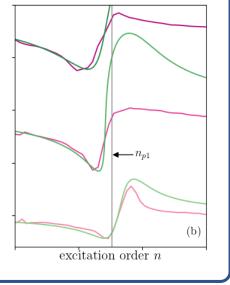
- (H1)
- Unison response
- Antiresonance tracking



6 double pendulums



- Unison response
- Antiresonance tracking



 $\rightarrow f(t) = F \cos(\omega t)$

m = 1

 $\overrightarrow{x(t)}$

The Method of Multiple Scales

1. Scaling small param. ϵ

2. Independent time scales $t_0 = t$, $t_1 = \epsilon t$

3. Asymptotic solution
$$x(t) = x_0(t_0, t_1) + \epsilon x_1(t_0, t_1)$$

- **4.** Frequency range $\omega = r\omega_0 + \epsilon\sigma$
- 5. Solve x_n and substitute in f_{n+1} successively
 - **6. Secular** analysis

$$\ddot{x} + c\dot{x} + \omega_0^2 x + f_{\rm nl}(x) = f(t)$$

$$x_0 = a_0(t_1)\cos(\omega_0 t_0 - \beta_0(t_1))$$

$$\begin{cases} \frac{\partial a_0}{\partial t_1} = f_a^{(1)}(a_0, \beta_0) \\ a_0 \frac{\partial \beta_0}{\partial t_1} = f_\beta^{(1)}(a_0, \beta_0) \end{cases}$$
Amplitude and phase evolution with the slow time

III. Code 000000

The Method of Multiple Scales

Evolution

$$\begin{cases} \frac{\mathrm{d}a_0}{\mathrm{d}t} = f_a(a_0, \beta_0) & \text{Time evolution} \\ a_0 \frac{\mathrm{d}\beta_0}{\mathrm{d}t} = f_\beta(a_0, \beta_0) & \text{of the amplitude} \\ \text{and phase} \end{cases}$$

7. Steady-state

$$\mathrm{d}a_0/\mathrm{d}t = \mathrm{d}\beta_0/\mathrm{d}t = 0$$

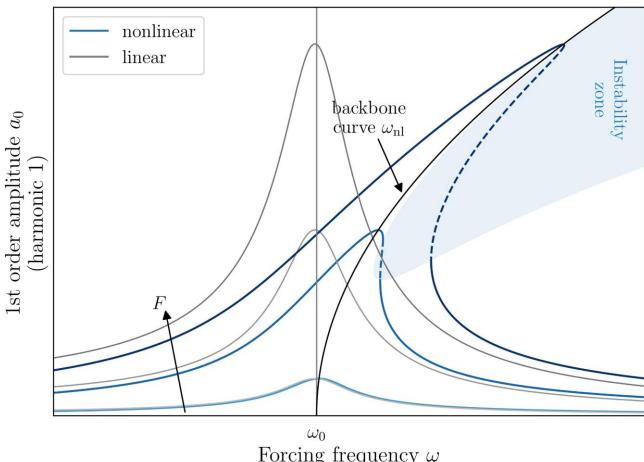
NL forced response

Solve
$$\begin{cases} f_a(a_0^*, \beta_0^*) = 0 \\ f_{\beta}(a_0^*, \beta_0^*) = 0 \end{cases}$$
 Amplitude and phase **response**

8. Stability analysis

information Stability

Jacobian
$$J|_{(a_0^*,\beta_0^*)}$$
 Stability eigenvalue of (a_0^*,β_0^*)



Forcing frequency ω

Implementation of the MMS

Spring Summer
2019 2020 - 2021 2022 2023 2025 2025

Hand application

Symbolicaided hand application

Full symbolic implementation

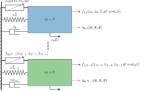
Broadened application cases

Class structure
Code robustness

Open source

Documentation

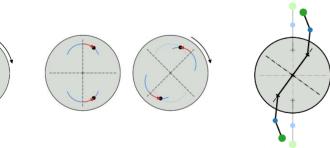
Python package





OSCILATE

oscilate



Nonlinear systems considered



Oscillators

- \rightarrow **N** oscillators $x_0(t), ..., x_{N-1}(t)$
- → Linear, conservative at **leading order**

Nonlinearities

- → Weak
- → **Polynomial** (otherwise a Taylor expansion is performed)
- → Either in displacement, velocity or acceleration

Coupling

- → Weak
- → Linear or nonlinear
- → Any **internal resonance** relation

Forcing

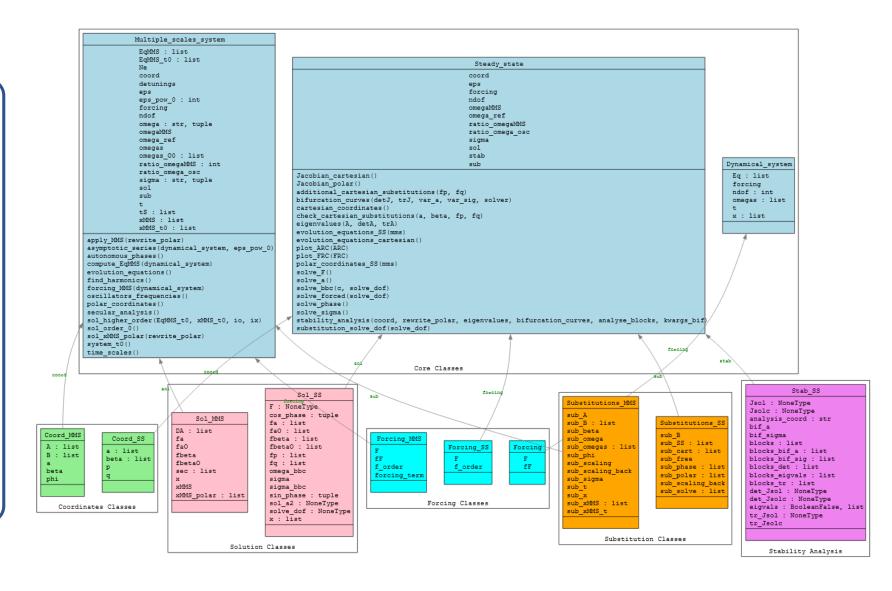
- → Weak or hard
- → Harmonic
- → Parametric

III. Code ⊙⊙⊙⊙⊙

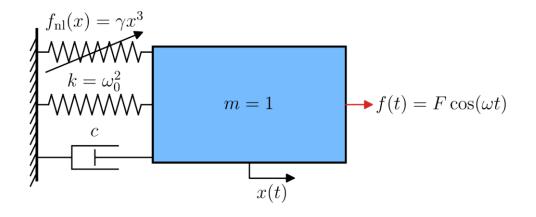
Code architecture

Main classes

- Dynamical system
 - → Description of the dynamical system
- Multiple scales system
 - → Application of the MMS
- Steady state
 - → Evaluation at steady state
 - → Computation of forced responses
 - → Computation of backbone curves
 - → Stability analysis
 - → Plotting tools



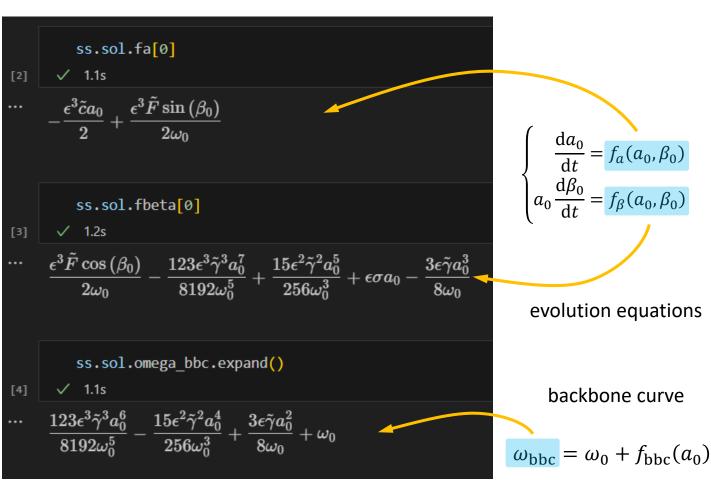
Code outputs



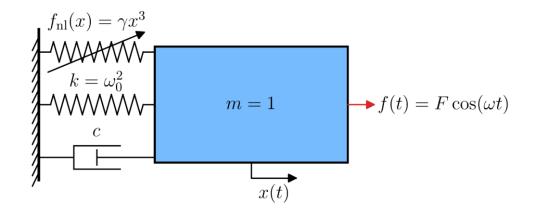
MMS at order 3

$$\begin{cases} t_0 = t, & t_1 = \epsilon t, & t_2 = \epsilon^2 t \\ x(t) = x_0(t) + \epsilon x_1(t) + \epsilon^2 x_2(t) \end{cases}$$

$$t = [t_0, t_1, t_2]$$



Code outputs



MMS at order 3

$$\begin{cases} t_0 = t, & t_1 = \epsilon t, & t_2 = \epsilon^2 t \\ x(t) = x_0(t) + \epsilon x_1(t) + \epsilon^2 x_2(t) \end{cases}$$

$$t = [t_0, t_1, t_2]$$



Open source project and python package

Open source codes on GitHub: https://github.com/VinceECN/OSCILATE
Project called **OSCILATE**

Archived on SoftwareHeritage

Python package: https://pypi.org/project/oscilate/

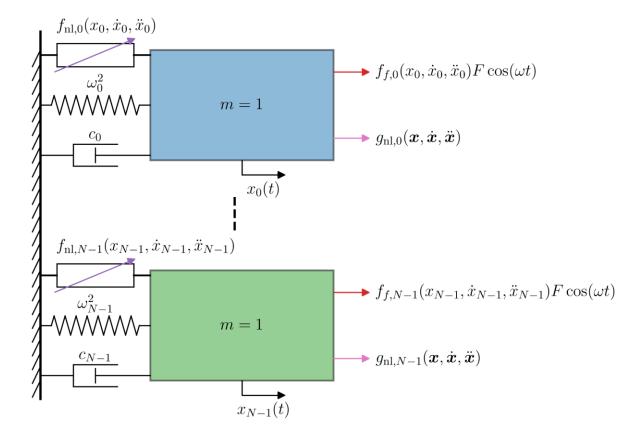
Package called oscilate

Easy install with pip install oscilate

_____ Detai

Detailed **documentation**: https://vinceecn.github.io/OSCILATE/

Conclusion and perspectives



Pre-processing

- → Equations of motion
- → Weak coupling

More test cases

- → Specific nonlinearities
- → Complex internal resonances

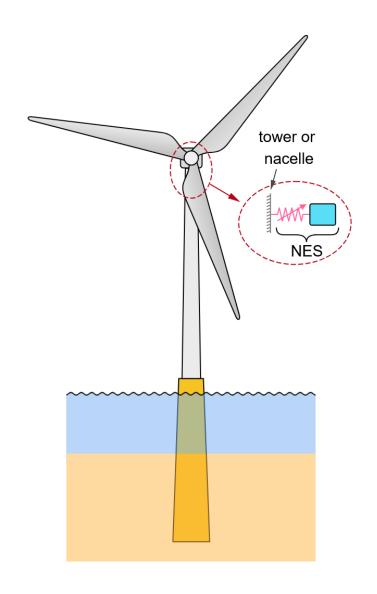
Minor additions

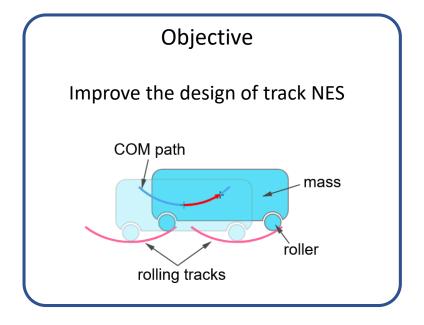
- → Steady state solver
- → Polar ↔ Cartesian
- → Periodic forcing

Major additions

- → MMS procedure: homogeneous solutions
- → Nonlinear wave dispersion analysis

Postdoc offer





Supervision	V. Mahé
Collaboration	B. Chouvion CREA, Salon-de-Pce
Duration	1 year
Start	Between 01/26 and 09/26
Location	GeM, Nantes