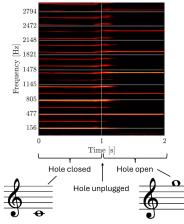
Register jumps on the clarinet: numerical and in-vitro investigation into basins of attraction and phase-tipping

Nathan Szwarcberg^{1, 2}
Tom Colinot¹ Christophe Vergez² Michaël Jousserand¹
Anthia Patsinakidou² Giordano Gatti²
Hrant Arzumanyan² Pedro Faria Oliveira Morais²
Léonie Maignan²

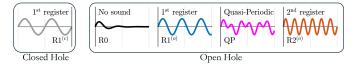
¹Buffet Crampon, 5 Rue Maurice Berteaux, 78711 Mantes-la-Ville, France ²Aix Marseille Univ, CNRS, Centrale Med, LMA, Marseille, France

Journées annuelles du GDR EX-MODELI, Octobre 2025, Lille, France


- Introduction
 - The register hole of the clarinet
 - The clarinet as a nonlinear dynamical system
 - Problem statement
- 2 Experiment
 - Experimental setup
 - Blowing pressure ramps
 - Hole openings
- Simulations
 - Model
 - Reproduction of the experiment
 - Focus on the transition regions
 - Evidence of phase-induced tipping
 - Exploring extremely long transients
- 4 Conclusion

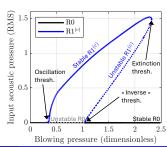
- Introduction
 - The register hole of the clarinet
 - The clarinet as a nonlinear dynamical system
 - Problem statement
- 2 Experiment
 - Experimental setup
 - Blowing pressure ramps
 - Hole openings
- Simulations
 - Model
 - Reproduction of the experiment
 - Focus on the transition regions
 - Evidence of phase-induced tipping
 - Exploring extremely long transients
- 4 Conclusion

The register hole of the clarinet


- Most upstream hole of the instrument
- Smallest diameter (\approx 3 mm)
- Longest chimney length (> 10 mm)
- Enables to play at a frequency close to the 2nd mode of the resonator: second register (R2^(o))

The clarinet as a nonlinear dynamical system

Observed regimes

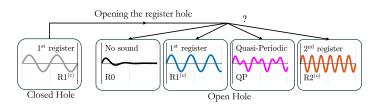


Main control parameters

Blowing pressure P_{blow} ; Embouchure (remains fixed throughout the experiment)

Multistability

Different stable regimes can be played for the same control parameters.

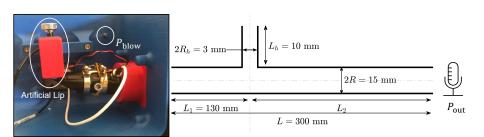


Problem statement

- The hole is closed.
- The blowing pressure is constant.
- The first register is played $(R1^{(c)})$.

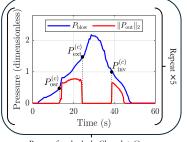
We open the register hole.

Can we guess which regime is going to be produced?


It depends on which regimes are stable for the open hole configuration.

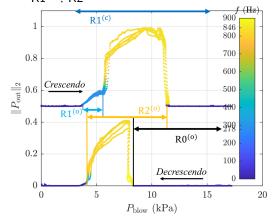
- Only 1 stable regime (e.g., R0): 1 possible solution.
- 2 or more stable regimes: depends on the initial conditions at which the hole is opened → basins of attraction

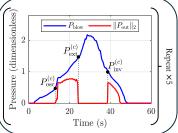
- Introduction
 - The register hole of the clarinet
 - The clarinet as a nonlinear dynamical system
 - Problem statement
- 2 Experiment
 - Experimental setup
 - Blowing pressure ramps
 - Hole openings
- Simulations
 - Model
 - Reproduction of the experiment
 - Focus on the transition regions
 - Evidence of phase-induced tipping
 - Exploring extremely long transients
- 4 Conclusion


Experimental setup

- ullet Resonator: cylindrical tube + 1 register hole
- Artificial mouth:
 - · Position of the lip is fixed
 - Modify P_{blow} only
 - Measure P_{blow} and P_{out}

Blowing pressure ramps


- Crescendo of P_{blow} followed by diminuendo
- Repeat 5 times, for the closed^(c) and open^(o) hole cases.
- Find the stability regions of $R1^{(c)}$, $R0^{(o)}$, $R1^{(o)}$, $R2^{(o)}$

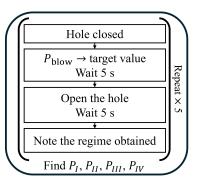


Repeat for the hole Closed + Open

Blowing pressure ramps

- Crescendo of P_{blow} followed by diminuendo
- Repeat 5 times, for the closed^(c) and open^(o) hole cases.
- Find the stability regions of R1^(c), R0^(o), R1^(o) R2^(o)

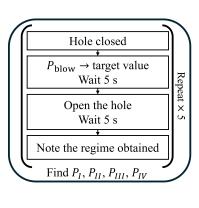
Repeat for the hole Closed + Open

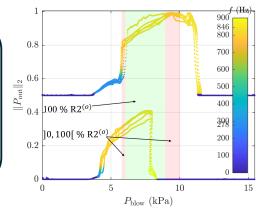

Open hole regimes Multistability

 $R2^{(o)}$ and $R0^{(o)}$ $R2^{(o)}$ and $R1^{(o)}$

Hole openings

- Find the stability region of R2^(o) when opening the hole from R1^(c)
- Identify four thresholds:
 - P_{II}: minimum blowing pressure that always leads to R2^(o)
 - P_{III}: maximum blowing pressure that always leads to R2^(o)
 - $P_{\rm I}$: maximum blowing pressure lower than $P_{\rm II}$ that never leads to ${\rm R2}^{(o)}$
 - P_{IV} : minimum blowing pressure greater than P_{III} that never leads to R2^(o)

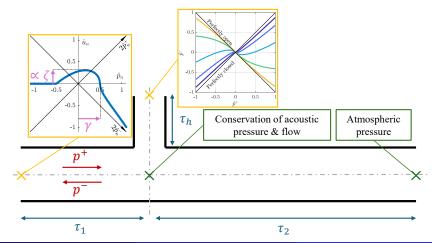

$$P_{\rm I} < P_{\rm II} < P_{\rm III} < P_{\rm IV}$$



Hole openings

- Find the stability region of R2^(o) when opening the hole from R1^(c)
- Identify four thresholds:
 - P_{II} : minimum blowing pressure that always leads to R2^(o)
 - P_{III}: maximum blowing pressure that always leads to R2^(o)
 - $P_{\rm I}$: maximum blowing pressure lower than $P_{\rm II}$ that never leads to R2^(o)
 - P_{IV} : minimum blowing pressure greater than P_{III} that never leads to R2^(o)

$$P_{\rm I} < P_{\rm II} < P_{\rm III} < P_{\rm IV}$$

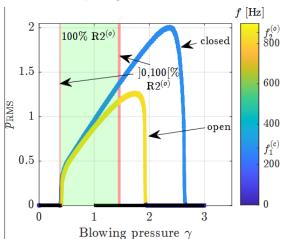

- Introduction
 - The register hole of the clarinet
 - The clarinet as a nonlinear dynamical system
 - Problem statement
- 2 Experiment
 - Experimental setup
 - Blowing pressure ramps
 - Hole openings
- Simulations
 - Model
 - Reproduction of the experiment
 - Focus on the transition regions
 - Evidence of phase-induced tipping
 - Exploring extremely long transients
- 4 Conclusion

Numerical model

Formalism Nonlinearities

Control parameters

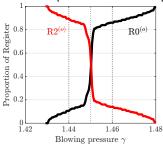
Delay lines: $p=p^++p^-$ Flow crossing the reed channel at the input Nonlinear losses in the register hole Blowing pressure γ , Embouchure ζ



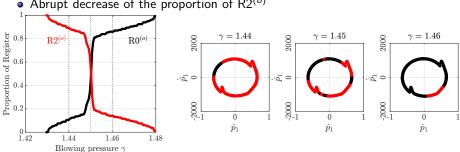
Reproduction of the experiment

- Blowing pressure ramps: Steady embouchure ($\zeta={\rm Cst}$), linear increase of the blowing pressure γ
- Hole openings at constant control parameters: $N_o = 200$ openings at different times spread over a period of R1^(c). Register is determined after each opening.

Reproduction of the experiment

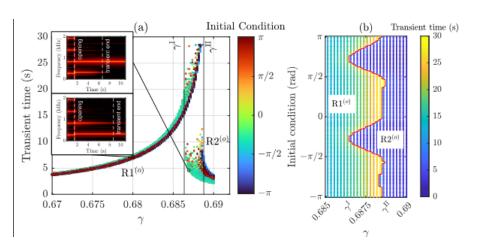

- Blowing pressure ramps: Steady embouchure ($\zeta={\rm Cst}$), linear increase of the blowing pressure γ
- Hole openings at constant control parameters: $N_o = 200$ openings at different times spread over a period of R1^(c). Register is determined after each opening.

Focus on the transition region (high blowing pressure)


• Abrupt decrease of the proportion of R2^(o)

Focus on the transition region (high blowing pressure)

Abrupt decrease of the proportion of $R2^{(o)}$



From the phase space (p_1, \dot{p}_1) :

- Limit cycle of the **closed hole**, just before the opening
- Convergence to a given regime depends on the phase at which the hole is opened $(R0^{(o)}/R2^{(o)})$

Long-lasting transient quasiperiodics at low blowing pressure

- Introduction
 - The register hole of the clarinet
 - The clarinet as a nonlinear dynamical system
 - Problem statement
- 2 Experiment
 - Experimental setup
 - Blowing pressure ramps
 - Hole openings
- Simulations
 - Model
 - Reproduction of the experiment
 - Focus on the transition regions
 - Evidence of phase-induced tipping
 - Exploring extremely long transients
- 4 Conclusion

Conclusion

- Uncertain oscillating regimes can result from the clarinet register hole opening
- Uncertainty is explained by phase-tipping at the hole opening

Conclusion

- Uncertain oscillating regimes can result from the clarinet register hole opening
- Uncertainty is explained by phase-tipping at the hole opening

Is phase-tipping responsible for the probabilistic regions observed in the experiment?

- Opening a hole is not instantaneous: lasts for more than 5 periods of R1^(c) (+rate-induced tipping)
- Amplitude of noise on P_{blow} is as large as 10% of the transition region
- → Nearly impossible to isolate phase-tipping experimentally...
- ightarrow ... but the transition region highlights the competition between basins of attraction

Conclusion

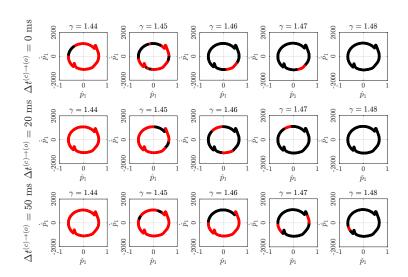
- Uncertain oscillating regimes can result from the clarinet register hole opening
- Uncertainty is explained by phase-tipping at the hole opening

Is phase-tipping responsible for the probabilistic regions observed in the experiment?

- Opening a hole is not instantaneous: lasts for more than 5 periods of R1^(c) (+rate-induced tipping)
- ullet Amplitude of noise on $P_{
 m blow}$ is as large as 10% of the transition region
- → Nearly impossible to isolate phase-tipping experimentally...
- ightarrow ... but the transition region highlights the competition between basins of attraction

Recommendations for musical instruments modelers:

- Stability is not enough to quantify the playability of an instrument
- Do not modify the system always at the same time: other solutions might be missed


Thank you!

Looking for a postdoc!

I'm currently looking for a postdoc, starting in 2026. Feel free to contact me if you think my work aligns with your research!

nathan.szwarcberg@buffetcrampon.com

Rate-induced tipping during a smooth hole opening

