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New era of engineering

Unprecedented 
Computational Power

Better Sensing and 
monitoring

Artificial intelligence 
and decision making



My research:

Reduced order modelling
Digital Twins

Maths provides:

❑ Numerical simulation
❑ Statistical methods

Industry has:

❑ High fidelity models
❑ Great amount of data



Simulation-free ROMs

❑ Design stage
❑ Virtual testing
❑ Design Sensors
❑ Monitoring

Physics based models won’t 
disappear, but we need better!

Equation based ROMs:
✓  Manageable
✓  Interpretable
✓  Coupled with data



When should we use ROMs?

The dynamics live in a much 
lower dimensional space

With ROM:
Seconds-minutes

Accurate & fast surrogate

High fidelity Models:
Large number of DOFs

Run full dynamic simulations:
Hours-days 

Hard to accelerate computationally



Large scale 3D finite elements model

Nonlinear Dynamical system 
with up to Millions of degrees of freedom

Capture the characteristic dynamics
with low dimensional models

Geometric Nonlinear StructuresMain Idea

ሶ𝑦 = 𝐹 𝑦 , 𝑦 ∈ ℝ𝑁

ሶ𝑧  = 𝑓 𝑧  z ∈ ℂ𝑛, n ≪ 𝑁

Characteristics of ROMs:
o Small number of parameters
o Physically interpretable
o Manageable 
o Fast yet accurate



Example of Application: geometric nonlinearities

High precision devices in large rotationSlender structures in large vibrations



Outline

Nonlinear ROM
• Introduction 
• Parametrisation Method
• Applications







Outline

Nonlinear ROM
• Introduction 
• Parametrisation Method
• Applications



Linear case

Nonlinear Dynamical system 
with up to Millions of degrees of freedom

ሶ𝑦 = 𝐹 𝑦 , 𝑦 ∈ ℝ𝑁 𝐹 0 = 0 ∇𝐹 0 = 𝐴

Equilibrium Linearisation at equilibrium

Re[𝜆𝑁] ≤ Re[𝜆𝑁−1] ≤  … ≤ Re[𝜆1] < 0Dissipative system:

ሶ𝑦 = 𝐴 𝑦

𝐴 𝑉1 = 𝜆1𝑉1 V𝐿1
𝑇 V1 ሶ𝑥 = 𝑉𝐿1

𝑇 𝐴 𝑉1 𝑥

ሶ𝑥 = 𝜆1𝑥

𝑦 = 𝑉1 𝑥
Linear case

Slow eigenvector

Coordinates on subspace

Projection on subspace

Reduced dynamics



Geometric Nonlinear StructuresParametrisation method for Slow Invariant manifold

Invariant manifold tangent to linear slow subspace
❑ Sound ROM

∇𝛹(𝑧) 𝑓(𝑧) = 𝐹(𝛹(𝑧))

           
    

    

    

    

 

   

   

   

   

 

ሶ𝑦 = 𝐹 𝑦

ሶ𝑧 = 𝑓(𝑧)

𝑦 = 𝛹(𝑧)



Geometric Nonlinear StructuresParametrisation Method

ሶ𝑦 = 𝐹 𝑦

ሶ𝑥 = ෘ𝐹(𝑥)

∇𝐹 0 = 𝐴

∇ ෘ𝐹 0 = diag[𝜆1, 𝜆2, … , 𝜆𝑁]

𝑥 = 𝑤(𝑧)

ሶ𝑧 = 𝑓 𝑧

Limitations of Parametrisation Method for Large Scale FE models
1. Full eigenvector matrix computation
2. Sparsity of nonlinear tensor in physical coordinates

𝒚 = 𝑽 𝒙

𝑦 = 𝑉𝑤(𝑧)

ሶ𝑧 = 𝑓 𝑧



Geometric Nonlinear Structures1. Limitation of Parametrisation Method

Non-intrusive reduced order modelling for the dynamics of geometrically nonlinear flat structures using three-
dimensional finite elements. AV et al. Comput Mech, 2020



Geometric Nonlinear Structures2. Limitation of Parametrisation Method

How to compute invariant manifolds and their reduced dynamics in high-dimensional finite element models. Jain 
and Haller. Nonlin Dyn, 2022



Geometric Nonlinear StructuresDirect Parametrisation Method

ሶ𝑦 = 𝐹 𝑦

ሶ𝑥 = ෘ𝐹(𝑥)

∇𝐹 0 = 𝐴

∇ ෘ𝐹 0 = diag[𝜆1, 𝜆2, … , 𝜆𝑁]

𝑥 = 𝑤(𝑧)

ሶ𝑧 = 𝑓 𝑧

𝑦 = 𝛹(𝑧)

ሶ𝑧 = 𝑓 𝑧

❑ Full eigenvector matrix computation
❑ Sparsity of nonlinear tensor in physical coordinates

𝒚 = 𝑽 𝒙
Direct



➢ Parametrisation of manifold as an embedding

➢ Reduced dynamics on it (at the same time)

➢ Both as polynomials 

Geometric Nonlinear StructuresDirect Parametrisation of Invariant Manifolds (DPIM)

ሶ𝒚 = 𝑭(𝒚)

𝒚 = 𝚿 𝐳

ሶ𝒛 =  𝐟 𝐳

𝚿 𝐳 = 𝚿𝑖1

(1)
𝑧𝑖1

+ 𝚿𝑖1𝑖2

(2)
𝑧𝑖1

𝑧𝑖2
+ . . + 𝚿𝑖1𝑖2𝑖3..𝑖𝑝

(𝑝)
𝑧𝑖1

𝑧𝑖2
𝑧𝑖3

. . 𝑧𝑖𝑝

𝐟 𝐳 =  𝐟𝑖1

(1)
𝑧𝑖1

+ 𝐟𝑖1𝑖2

(2)
𝑧𝑖1

𝑧𝑖2
 + . . + 𝐟𝑖1𝑖2𝑖3..𝑖𝑝

(𝑝)
𝑧𝑖1

𝑧𝑖2
𝑧𝑖3

. . 𝑧𝑖𝑝

𝑧1

𝑧2



Geometric Nonlinear StructuresLinear monomials

𝐴 − 𝜆𝑖1
Id 𝚽𝑖1

 = 𝟎

𝐼 = {𝑖1}

𝚿 𝐳 = 𝚿𝑖1

(1)
𝑧𝑖1

ሶ𝒛  =  𝐟𝑖1

(1)
𝑧𝑖1

➢ Linear homological = eigenproblem
➢ Tangency to master subspace



Geometric Nonlinear StructuresHigher order monomials

𝚿 𝐳 = 𝚽𝑖1

 𝑧𝑖1
+ 𝚿𝑖1𝑖2

(2)
𝑧𝑖1

𝑧𝑖2
+ . . + 𝚿𝑖1𝑖2𝑖3..𝑖𝑝

(𝑝)
𝑧𝑖1

𝑧𝑖2
𝑧𝑖3

. . 𝑧𝑖𝑝

ሶ𝒛  =  𝜆𝑖1

 𝑧𝑖1
+ 𝐟𝑖1𝑖2

(2)
𝑧𝑖1

𝑧𝑖2
 + . . + 𝐟𝑖1𝑖2𝑖3..𝑖𝑝

(𝑝)
𝑧𝑖1

𝑧𝑖2
𝑧𝑖3

. . 𝑧𝑖𝑝

𝐼 = {𝑖1𝑖2𝑖3. . 𝑖𝑝}

𝜎𝐼 = 𝜆𝑖1
+ 𝜆𝑖2

+ 𝜆𝑖2
+ . . + 𝜆𝑖𝑝

𝚿𝐼
𝑝

 𝜎𝐼 = 𝐴 𝚿𝐼
𝑝

+ 𝚵𝐼
𝑝𝛁𝜳(𝒛) 𝒇(𝒛) = 𝑭(𝜳(𝒛))

Invariance Equation: Homological Equation:

Singular if:    𝜎𝐼 = 𝜆𝑟



Parametrisation method

A priori method for ROM of large-scale FE models

Invariant Manifold 
embedding through 

parametrisation
ሶ𝑦 = 𝐹 𝑦

ሶ𝑧 = 𝑓(𝑧)𝑦 = 𝛹(𝑧)

AV et al., CMAME (2021)
Opreni et al., Nonlin Dyn (2021)
AV et al., Nonlin Dyn (2022)
Opreni et al., Nonlin Dyn (2022)
AV et al., Nonlin Dyn (2023)
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Automated Higher Order Expansion

Cantilever 
Beam in Large 

amplitude 
Vibration

Convergence 
with the Order

            ROM for large scale FE models









            ROM for large scale FE models

First Linear Mode at frequency ≈ 2 kHzHigh precision device for LeddarTech

Industrial Application: MEMS micromirror



2-dimensional manifold

ሷ𝑅 + 𝜁𝜔1
ሶ𝑅 + 𝜔1

2𝑅 + 𝐴 𝑅3 + 𝐵 𝑅 ሶ𝑅2 = 𝐹

Dynamics of a single oscillator:

Time ROM: 
1.5 minutes

Time Full: 
2 days

46023 DOFs

Industrial Application: MEMS micromirror

            ROM for large scale FE models



            ROM for large scale FE models

Industrial Application: MEMS micromirror



Still a lot to do

Coupled with data:
• Physics informed
• Bayesian inference
• Better Data (DoE)

ROM used for:
• Parametric ROMs
• Sensitivity & UQ
• Design optimisation

Whole Framework:
• Complex Systems
• Composability
• Digital Twins



Thank you for your attention
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