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“Highly flexible” indicates → an extreme capacity for bending

implying → geometrical nonlinearities

meaning that → no analytical solutions are 

available at very high bending 

amplitudes

Introduction

The dynamical study of highly flexible beam structures

represents a current and important subject of research.

 Highly flexible beam structures are found in many industrial

applications:
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Introduction

 Robotics and soft robotics

 Cable car and elevator systems

 Cabling and cable harnesses

 Flexible structures in aerospace

 Automotive industry

Conclusion: efficient numerical 

solutions are needed to simulate 

the dynamics of these structures at 

extreme amplitudes.
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Motivation

 General study of geometrically nonlinear systems (esp. nonlinear

dynamics)
(M.Debeurre – Thursday 09.11 – 15:30)

 Efficient numerical simulations and nonlinear reduced order models
(A.Grolet – Thursday 09.11 – 14:45)

 Experimental validation

 Micro/Nano-electromechanical systems (MEMS/NEMS)

 Biomedical applications



1. Geometrically exact beam model

 2D in-plane motion: 3 degrees of freedom:

2D Geometrically exact beam model and resolution in the frequency domain
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Model – plane motions

u(x) (axial), w(x) (transverse), θ(x) (rotation of x-section)

4. Solved in the frequency domain

 FE model + harmonic balance + continuation (MANLAB) [1]: 

𝐌: mass, 𝐃: damping, 𝐟int 𝐪 : nonlinear internal force, 𝐟ext: external force, 𝐮: degrees of freedom

𝐌 ሷ𝐮 + 𝐃 ሶ𝐮 + 𝐟int 𝐮 = 𝐟ext

2. Geometrical nonlinearities: how to parametrize rotations?

 2D: rotation matrices (sin(θ) and cos(θ))

3. Finite element (FE) discretization

 Structure discretized into (linear†) shear-deformable beam elements

 e.g. Flexible ring (first six mode shapes)

[1] MANLAB: an interactive path-following and bifurcation analysis software, available at http://manlab.lma.cnrs-mrs.fr/. 

reduce to 1D kinematics –

displacement of the 

centerline

no truncation of the rotation 

terms – “exact” at any 

amplitude

𝐌 ሷ𝐮 + 𝐟int 𝐮 = 𝟎

Frequency responses Nonlinear modes / backbone curves

Debeurre, M., Grolet, A., Cochelin, B., Thomas, O.: Finite element computation of nonlinear modes and frequency

response of geometrically exact beam structures. Journal of Sound and Vibration 548 (117534) (2023).
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http://manlab.lma.cnrs-mrs.fr/


Other structures

Tree model (modes 1 – 3)

Flexible ring (modes 1 & 2)Clamped-clamped

beam (mode 1)

Nonlinear phenomena: 

 frequency Ω dependence on amplitude

 internal resonance: transfers of energy between nonlinear modes

 Bifurcations, stability analysis, etc…

Mode 3Mode 2Mode 1

2D Geometrically exact beam model and resolution in the frequency domain
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A C

Numerical simulations – plane motions
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Debeurre, M., Grolet, A., Cochelin, B., Thomas, O.: Finite element computation of nonlinear modes and frequency

response of geometrically exact beam structures. Journal of Sound and Vibration 548 (117534) (2023).
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1. Geometrically exact beam model

 3D motion: 6 degrees of freedom:

3D Geometrically exact beam model and resolution in the frequency domain
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u(x) (axial), w(x) and v(x) (2x transverse), 

θx(x) (twist), θy(x) and θz(x) (2x rotation of x-section)

2. Geometrical nonlinearities: how to parameterize rotations?

 3D: quaternions – 4 dimensional complex numbers

 To define rotations in 3D: unit quaternions

 Rewrite equations of motion with quaternion algebra

† Polynomial shape functions …

ොa = a0 + 𝑖a1 + 𝑗a2 + 𝑘a3

3. Finite element (FE) discretization

 Structure discretized into (quadratic†) shear-deformable beam elements

Model – 3D motions

ොq = cos
θ

2
+ 𝐧 sin

θ

2

T
, 𝐧: unit vector

scalar vector

4. Solved in the frequency domain

 FE model + harmonic balance + continuation (MANLAB) [1]: 

𝐌: mass, 𝐃: damping, 𝐟int 𝐪 : nonlinear internal force, 𝐟ext: external force, 𝐮: degrees of freedom

𝐌 ሷ𝐮 + 𝐃 ሶ𝐮 + 𝐟int 𝐮 = 𝐟ext 𝐌 ሷ𝐮 + 𝐟int 𝐮 = 𝟎

Frequency responses Nonlinear modes / backbone curves
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3D  Rotating Cantilever

 Coupling between bending modes, b = 0.03015 [m], h = 0.03 [m]

 1:1 internal resonance: transfer of 

energy between modes
 Recreation of [2]

3D  Rotating Cantilever

3D Geometrically exact beam model and resolution in the frequency domain
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y-direction 

bending mode 1

z-direction 

bending mode 1

1:1 internal

resonance

1:1 internal

resonance branch

z-direction bending

mode 1 branch

transfer of energy to 

other transverse 

polarization (w takes off)

y-direction bending

mode 1 branch

2D rotation 

matrix 

formulation 

(slide 4)

[2] Vincent et al.: Nonlinear polarization coupling in freestanding 

nanowire/nanotube resonators. Journal of Applied Physics 125 (044302) (2019).

Numerical simulations – 3D motions
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3D  Rotating

Clamped-Clamped

 Coupling between bending modes, b = 0.0315 [m], h = 0.03 [m]

 1:5 internal resonance

 1:1 internal resonance:

transfer of energy

between modes
 Recreation of [3]

3D  Rotating clamped-clamped

3D Geometrically exact beam model and resolution in the frequency domain
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y-direction 

bending mode 1

z-direction 

bending mode 1

1:1 internal

resonance

1:1 internal

resonance branch

z-direction bending

mode 1 branch

transfer of energy to 

other transverse 

polarization (v takes off)

y-direction bending

mode 1 branch

1:5 internal

resonance branch

[3] Shen et al.: Comparison of Reduction Methods for Finite Element

Geometrically Nonlinear Beam Structures. Vibration 4, p. 175-204 (2021).

Numerical simulations – 3D motions
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Cantilever – large rotations

 Comparison between formulations: 2D rotation matrix-based (20 elements) vs. 2D quaternion-based (20 or 30 elements)

 More computationally efficient formulation?

Validation of the quaternion-based formulation
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Comparison – plane motions

A C

Observations:

 Quaternion formulation: more (linear) 

elements for convergence 

 Main backbone curve

 Deformed shapes

 Internal resonance branches
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Clamped-clamped beam – axial-bending coupling

 Comparison between formulations: 2D rotation matrix-based (50 elements) vs. 2D quaternion-based (50 elements) vs nonlinear Von Kármán [4]

 More computationally efficient formulation?

Validation of the quaternion-based formulation
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Comparison – plane motions

Observations:

 Converged with 50 (linear) elements

→ amplitude

 Main backbone curve

 Deformed shapes

 Internal resonance branches

G

F

[4] Givois, A., Grolet, A., Thomas, O., Deü, J.-F.: On the frequency response computation of geometrically nonlinear flat structures using reduced-order finite element models. Nonlinear Dynamics 97(2), p. 1747-1781 (2019).
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Remarks and future work

Conclusion
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Future work
 Extension of 3D model to initially curved structures

 Nonlinear damping considerations

 Full analysis of computational efficiency

 Stability adapted to large FE systems with many degrees of 

freedom [5]

[5] Bayer, F., Leine, R.: Sorting-free Hill-based stability analysis 
of periodic solutions through Koopman analysis. Nonlinear 
Dynamics 111, p. 8439-8466 (2023).
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Questions?

Thank you for your attention!

Aurélien Grolet

Assistant professor

aurelien.grolet@ensam.eu
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Nonlinear dynamics of highly flexible beam

structures: frequency domain-based finite

element computation of the nonlinear modes
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