Martial Defoort

with Libor Rufer, Yosra Azzouz, Nathan Le Gousse,

Laurent Fesquet, Skandar Basrour

Martial Defoort

with Libor Rufer, Yosra Azzouz, Nathan Le Gousse,

Laurent Fesquet, Skandar Basrour

Chaos: Where ? Why ?

Pluto's moon Nix

The Swinging Sticks

nasa.gov

GeelongShop.com

Dripping faucet

P. Martien et al, Physics Letters (1985)

Chaotic regime:

- Complex interactions within at least 3D in phase space
- Non-periodic yet *deterministic*
- Exponentially sensitive to initial conditions

Chaos: What for ?

Random numbers

Weather

Tailoring chaos

Martial Defoort

with Libor Rufer, Yosra Azzouz, Nathan Le Gousse,

Laurent Fesquet, Skandar Basrour

Micro-ElectroMechanical Systems

Non-resonant

Resonant

TiM

RF switches

Analog Devices, (2001)

Gyroscopes

Clocks

SiTime, (2017)

Energy Harvesters

E. Trioux, IEEE Sensors (2014)

Accelerometers

S. A. Zotov, IEEE Sensors (2015)

Gas sensors

J. Arcamone, IEDM (2011)

Modulation in a nonlinear membrane

TIM

Modulation in a nonlinear membrane

Fast modulation \longrightarrow system never at equilibrium \longrightarrow new physics

The phase state plane

Poincaré sections: order within chaos

Sensitivity to initial conditions

12

Lyapunov Exponents

Experimental

13

Martial Defoort

with Libor Rufer, Yosra Azzouz, Nathan Le Gousse,

Laurent Fesquet, Skandar Basrour

MEMS-based TRNG

NIST 800-22 test on 75 Mb with a rate of 15 kb/s

111111101

00011001

11010111

00100011

3.0

3.0

10011111

2.5

2.5

00000010

2.0

2.0

Test	p-Value	Proportion	Result
Frequency	0.044425	75/75	Pass
Block Frequency	0.754127	73/75	Pass
Cumulative Sums	0.622341	150/150	Pass
Runs	0.099089	75/75	Pass
Longest Run	0.491599	75/75	Pass
Rank	0.666838	75/75	Pass
FFT	0.069925	74/75	Pass
NOT Matching	0.419859	11008/11100	Pass
OT Matching	0.009343	74/75	Pass
Universal	0.548605	74/75	Pass
Approx. Entropy	0.015444	74/75	Pass
Random Excursion	0.433207	371/376	Pass
Random Exc. Var.	0.393372	839/846	Pass
Serial	0.650162	150/150	Pass
Linear Excursion	0.256632	75/75	Pass

Defoort et al, Microsyst. Nanoeng. (2021) Defoort et al, patent (2022)

Defoort et al, JMM (2021)

Using a chaotic PMUT to jam a standard PMUT

PMUT-based ultrasonic jammer

Synchronization of chaotic MEMS

youtube.com

youtube.com

healthcare.utah.edu

MEMS-based cryptography

Conclusion

Chaos in a non-linear non-buckled microresonator

• Based on Duffing regime

Reachable with any MEMS

Model system

Figures of merit in quantitative agreement with simulations

• Applications

- Sensors and actuators
- Cryptography

