

Inter-modal interactions in a chain of mass-in-mass non-linear oscillators

J. Flosi^{*}, A. Ture Savadkoohi^{*}, C.-H. Lamarque^{*}

* Univ Lyon, ENTPE, Ecole Centrale de Lyon, CNRS, LTDS, UMR5513, 69518 Vaulx-en-Velin, France

GDR 2023 Besançon

Introduction OO	Model of the chain O OO OO	Asymptotic approach using multiple-scale	Results 0 00000 0000	Conclusion OO
Plan				

Model of the chain Presentation of the system Primary treatments

Asymptotic approach using multiple-scale Analytical methodology

Results

Chain around mode 1 and 3 Experiment

Introduction ●O	Model of the chain O OO OO	Asymptotic approach using multiple-scale O OO	Results 0 00000 0000	Conclusion OO
Plan				

Model of the chain Presentation of the system

Asymptotic approach using multiple-scale Analytical methodology

Results

Chain around mode 1 and 3 Experiment

ntroduction ⊃●	Model of the chain O OO OO	Asymptotic approach using multiple-scale	Results 0 00000 0000	Conclusion OO

Systems for vibro-acoustical control

Linear systems (example: TMD¹) :

- Efficient on a narrow band of frequencies
- Modify system characteristics

Design and introduction of non-linearity 2 (example: nonlinear energy sink 3) :

Efficient on wider bands of frequency

Design and exploit nonlinearities in metamaterials

¹ Frahm, 1911

²Roberson, 1952

³Vakakis et Gendelman, 2001

Introduction OO	Model of the chain	Asymptotic approach using multiple-scale O OO	Results 0 00000 0000	Conclusion OO
Plan				

Model of the chain Presentation of the system Primary treatments

Asymptotic approach using multiple-scale Analytical methodology

Results

Chain around mode 1 and 3 Experiment

Introduction OO	Model of the chain ○ ● ○ ○ ○	Asymptotic approach using multiple-scale	Results 0 00000 0000	Conclusion OO
Presentation of the system				

General methodology

Introduction OO	Model of the chain	Asymptotic approach using multiple-scale	Results 0 00000 0000	Conclusion OO
Presentation of the system				

Continuous approximation of the chain

Figure: L-periodic chain composed by cubic nonlinear mass-in-mass cells

$$\begin{cases} \frac{\partial^2 \boldsymbol{U}}{\partial \tau^2}(x,\tau) - \frac{\partial^2 \boldsymbol{U}}{\partial x^2}(x,\tau) + \varepsilon \Lambda V^3(x,\tau) - \varepsilon \chi_1 \frac{\partial}{\partial \tau} \frac{\partial^2 \boldsymbol{U}}{\partial x^2}(x,\tau) + \varepsilon \chi_2 \frac{\partial \boldsymbol{V}}{\partial \tau}(x,\tau) = \varepsilon I(x,\tau) \\ \varepsilon \left(\frac{\partial^2 (\boldsymbol{U} - \boldsymbol{V})}{\partial \tau^2}(x,\tau) - \Lambda V^3(x,\tau) - \chi_2 \frac{\partial \boldsymbol{V}}{\partial \tau}(x,\tau) \right) = 0 \quad \text{with } x \in [0:L] \end{cases}$$

$$\blacktriangleright \quad \varepsilon = \frac{m_2}{m_1} \ll 1 : \text{ mass ratio}$$

$$\epsilon \tau = \sqrt{k_1/m_1 t}$$
: non-dimensional time variable

$$\epsilon \Lambda = \frac{k_3}{k_1}, \ \epsilon \chi_1 = \frac{c_1}{\sqrt{k_1 m_1}}, \ \epsilon \chi_2 = \frac{c_2}{\sqrt{k_1 m_1}} \text{ and } \epsilon f_j = \frac{F_j}{k_1}$$

and the second se

/-

Introduction OO	Model of the chain ○ ● ○ ● ○	Asymptotic approach using multiple-scale	Results 0 00000 0000	Conclusion OO
Primary treatments				

Dispersion equation

Linear conservative associated system:

$$\frac{\partial^2 U_l}{\partial \tau^2}(x,\tau) - \frac{\partial^2 U_l}{\partial x^2}(x,\tau) = 0$$
$$\frac{\partial^2 (U_l - V_l)}{\partial \tau^2}(x,\tau) = 0$$

Harmonic decomposition of periodic solutions:

$$U_l(x,\tau) = h_j(x)g_j(\tau)$$

Expression of linear modes of the chain:

$$h_j(x) = \sqrt{\frac{2}{L}\cos(\omega_j x + \theta_j)}$$
$$\omega_j = \frac{2j\pi}{L}, \quad j = 1, \dots$$

Observation of modal exchanges due to non-linearity

Discrete system under first mode forcing associated to $f_1 = 0.004 \sin(\omega_1 \tau)$:

Introduction OO	Model of the chain	Asymptotic approach using multiple-scale	Results 0 00000 0000	Conclusion OO
Plan				

Model of the chain Presentation of the system Primary treatments

Asymptotic approach using multiple-scale Analytical methodology

Results

Chain around mode 1 and 3 Experiment

iction Model of the chain Asymptotic approach using multiple-scale Results Conclusion

Analytical methodology

Complexification and harmonics selection

Projection of equations on internally resonant modes *n* and m = knTime decomposition in ε scale:

- fast time $\tau_0 = \tau$
- lacksquare slow time $\tau_1 = \varepsilon \tau_0$

Introduction of Manevitch complex variables⁴ ($i^2 = -1$) around v_n and v_m :

 $f = f_n h_n \sin(v_n \tau) + f_m h_m \sin(v_m \tau)$

Frequencies of external solicitations:

$$\triangleright$$
 $v_n = \omega_n + \varepsilon \sigma_n$

$$v_m = \omega_m + \varepsilon \sigma_m = k v_n + \varsigma_k \varepsilon$$

Implementation of Galerkin methodology (first harmonic v_n and k^{th} harmonic kv_n):

$$\blacktriangleright \frac{v_n}{2\pi} \int_0^{\frac{2\pi}{v_n}} s(\tau) e^{-iv_n \tau} d\tau \qquad \flat \frac{v_n}{2\pi} \int_0^{\frac{2\pi}{v_n}} s(\tau) e^{-ikv_n \tau} d\tau$$

⁴L. Manevitch, "The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables," Nonlinear Dynamics, vol. 25, pp. 95–109, 07 2001.

Complex equations

The system becomes:

$$\begin{aligned} \frac{\partial \phi_n}{\partial \tau_0} + \varepsilon \left(\frac{\partial \phi_n}{\partial \tau_1} + \mathscr{E}_n(f_n, \sigma_n, \phi_n, \psi_n, \psi_n^*, \psi_m, \psi_m^*) \right) &= 0 \\ \frac{\partial \phi_m}{\partial \tau_0} + \varepsilon \left(\frac{\partial \phi_m}{\partial \tau_1} + \mathscr{E}_m(f_m, \sigma_n, \varsigma_k, \phi_m, \psi_n, \psi_n^*, \psi_m, \psi_m^*) \right) &= 0 \\ \frac{\partial \phi_n}{\partial \tau_0} - \frac{\partial \psi_n}{\partial \tau_0} + \mathscr{H}_n(\phi_n, \psi_n, \psi_n^*, \psi_m, \psi_m^*) &= 0 \\ \frac{\partial \phi_m}{\partial \tau_0} - \frac{\partial \psi_m}{\partial \tau_0} + \mathscr{H}_m(\phi_m, \psi_n, \psi_n^*, \psi_m, \psi_m^*) &= 0 \end{aligned}$$

Fast time scale (ε^0):

- Detection of Slow Invariant Manifolds (SIMs)
- Stability of the SIM

Slow time scale (ε):

- Detection of singularities
- Detection of equilibrium points

Prediction of periodic and non-periodic behaviors

Introduction OO	Model of the chain O OO OO	Asymptotic approach using multiple-scale O OO	Results	Conclusion OO
Plan				

Model of the chain Presentation of the system Primary treatments

Asymptotic approach using multiple-scale Analytical methodology

Results Chain around mode 1 and 3 Experiment

Introduction OO	Model of the chain	Asymptotic approach using multiple-scale	Results ● ● ○ ○ ○ ○	Conclusion OO
Chain around mode 1 and 3				
	<u></u>			

Elements of the SIMs

System parameters: $\Lambda = 0.2, \chi_1 = 0.1, \chi_2 = 0.02, L = 100$

Figure: SIM envelopes around first mode ($\Gamma \in [0; 2\pi]$)

Figure: Unstable zone for $\Gamma = 3\gamma_1 - \gamma_3 = 0$

Free response of the system

Initial deformation on mode 1 $U(\tau = 0) = U_1 h_1(x)$ System parameters: $\varepsilon = 10^{-2}$, $\Lambda = 0.2$, $\chi_1 = 0.1$, $\chi_2 = 0.02$, L = 100

Figure: Free response on the 1 mode SIM

Figure: Free response on the 2 modes SIM

Frequency response curves

System parameters: $\varepsilon = 10^{-2}$, $\Lambda = 0.2$, $\chi_1 = 0.1$, $\chi_2 = 0.02$, L = 100, $f_1 = 0.004$, $f_3 = 0$, $\eta_3 = 0$

Figure: Frequency response curve according to mode 1

Figure: Frequency response curve according to mode 3

Frequency response curves

System specs: $\varepsilon = 10^{-2}$, $\Lambda = 0.2$, $\chi_1 = 0.1$, $\chi_2 = 0.02$, L = 100, $f_1 = 0.004$, $f_3 = 0$, $\sigma_3 = 0$, $\sigma_1 = 0$

Figure: Frequency response curve according to mode 1

Figure: Frequency response curve according to mode 3

Example of application

System specs: $\varepsilon = 10^{-2}$, $\Lambda = 0.2$, $\chi_1 = 0.1$, $\chi_2 = 0.02$, L = 100, $f_1 = 0.004$, $f_3 = 0.024$, $\sigma_3 = -0.1$, $\Gamma \in [0; 2\pi]$

 σ_3

0

0.2

-0.2

-0.6

-0.4

Figure: Frequency response curves according to mode 1

Figure: Frequency response curves according to mode 3

Model of the chain

Asymptotic approach using multiple-scale $\mathop{\rm O}_{OO}$

Conclusion

Experiment

The experimental meta-cell

Figure: Theoretical meta-cell

Figure: Experimental meta-cell

specs: $k_1 = 2890 \text{ N.m}^{-1}$, $k_3 = 1,83.10^5 \text{ N.m}^{-1}$, $m_1 = 0.814 \text{ kg}$, $m_2 = 0.026 \text{ kg}$, $c_1 = 1.47$, $c_2 = 0.17$.

Introduction OO	Model of the chain O OO OO	Asymptotic approach using multiple-scale	Results	Conclusion OO
Experiment				

Experiment on one cell

Figure: Experimental datas on the SIM for B = 0.79 mm and f = 9.6 Hz

Model of the chain

Asymptotic approach using multiple-scale OO

Conclusion OO

Experiment

Ongoing experiment on the non-periodic chain of 6 cells

Figure: Experimental mass-in-mass chain

Figure: Modes of non-periodic chain

Figure: Modes of periodic chain

Model of the chain

Asymptotic approach using multiple-scale OO

Conclusion OO

Experiment

Ongoing experiment on the non-periodic chain of 6 cells

Figure: Experimental datas collected for B = 1.5 mm

Introduction OO	Model of the chain	Asymptotic approach using multiple-scale O OO	Results 0 00000 0000	Conclusion ●O
Plan				

Model of the chain Presentation of the system Primary treatments

Asymptotic approach using multiple-scale Analytical methodology

Results

Chain around mode 1 and 3 Experiment

ntroduction	Model of the chain O OO OO	Asymptotic approach using multiple-scale	Results 0 00000 0000	Conclusion O●

Conclusion

 Slow dynamics: Equilibrium and singular points (periodic and non-periodic responses)

 \downarrow Design tools for control or amplification of energy

Perspectives :

- Inclusion of more modal interactions (e.g. 3 modes)
- Experimental verification taking into consideration internal resonances