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MOTIVATION

m study nonlinear waves and patterns




NONLINEAR WAVES ON WATER

Roll wave
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OTHER NONLINEAR WAVES

Kelvin-Helmholtz clouds
Mount Duval, Australia
[English Wikipedia: GRAHAMUK]

Hurricane

Morning Glory cloud
near Burketown, Australia
[author: Mick Petrov]

Fire rainbow

Northern Idaho
Sound wave

Bell Telephone Laboratories
[book by David C. Knight]



IN NATURE

PATTERNS
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Sand patterns
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THE MATHEMATICS OF
NONLINEAR WAVES AND

PATTERNS

m observed in nature, experiments, numerical simulations

m particular solutions of PDEs or ODEs

m well-defined temporal and spatial structure

® e.g., traveling waves

m play a key role in the dynamics of the underlying system



THE MATHEMATICS OF
NONLINEAR WAVES AND

PATTERNS

Questions

m existence — spatial and temporal properties

stability — spatial and temporal behavior

® interactions

role in the dynamics of the system



THE MATHEMATICS OF
NONLINEAR WAVES AND

PATTERNS

Answers
® ... many different methods ...
® ... not enough ...

® numerical

m analytical



TWO REDUCTION METHODS

m center manifolds

® normal forms




SOME APPLICATIONS 1

m bifurcations of nonlinear waves and patterns

1Focus on results not on equations!



WATER WAVES




WATER WAVES




WATER WAVES




WATER-WAVE PROBLEM

Cn gravity-capillary water waves
m three-dimensional inviscid fluid layer
® constant density p
® gravity and surface tension

m (ir)rotational flow



2D TRAVELING WAVES

VANRAVE

periodic wave solitary waves

Y e

generalized solitary waves solitary waves

E

>

[Nekrasov, Levi-Civita, Struik, Lavrentiev, Friedrichs & Hyers, ...

Amick, Kirchgéssner, looss, Buffoni, Groves, Toland, Lombardi, Sun, ...]



3D TRAVELING WAVES
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[Groves, Mielke, Craig, Nicholls, H., Kirchgéassner, Deng, Sun, Sandstede,
looss, Plotnikov, Wahlén, ...]



DEFECTS IN STRIPED PATTERNS

® grain boundaries

m dislocations

Disclin:

m disclinations

[D. Boyer, J. Viiials]



DEFECTS IN STRIPED PATTERNS

[ Occur in a wide range of systems
Rayleigh-Bénard convection experiment
crystal patterns in material science

chemical reactions

biology



EXISTENCE OF DEFECTS

Cn grain boundaries and dislocations

(Rayleigh-Bénard convection, Swift-Hohenberg equation)

il

[H., Scheel, Wu, looss, Buffoni, Lloyd, ...]




C Some may be treatable by related methods ...



MORE DEFECTS

C Some may be treatable by related methods ...

' Some cannot be treated by any of these methods ...




A PROBLEM FROM OPTICS

[ Home-made whispering gallery modes resonators
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[Yanne Chembo, Rémi Henriet,

Aurelien Coillet]
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Resonator



FREQUENCY COMBS

m optical signals: superposition of modes with equally spaced

frequencies + stationary in suitable reference frame

B analytical results are in very good agreement with numerical and
experimental results

[Chembo, Godey, H., Delcey, Reichel, Mandel, .. .]



CENTER MANIFOLDS

®m reduce dimensions




CENTER MANIFOLDS

Cn Dynamical system (infinite-dimensional)

%U:F(U), u(t) e X

® start with particular solution: equilibrium
U(t) = U.
(often U, = 0, but not always)

m Question: Jocal dynamics?



EXAMPLE

G Swift-Hohenberg equation:

du 2 \° s
E:— 1+W U+/LU—U

m u(x,t) 2m-periodic in x, parameter p € R



EXAMPLE

G Swift-Hohenberg equation:
ou_ (O 2u+ R
ot ox2 K

m u(x,t) 2m-periodic in x, parameter p € R

Cn Dynamical system:

d
GU=FWU.p), Uex

2
U=y, F(U,u):—(l—i-aa—;) u+pu— ud
m X =12 (027)

per

® particular solution: U, =0



LINEAR DYNAMICS

[ Linearized equation

d

m spectrum of A,:

interesting dynamics



LINEAR DYNAMICS

[ Linearized equation

d

m spectrum of A,:

interesting dynamics

m center space X.: sum of the generalized eigenspaces
associated with purely imaginary eigenvalues

m X. contains all bounded solutions



NONLINEAR DYNAMICS

C System

d
—U=AU+R(U
" + R(U)

(@ Center manifold

® analogue of the center space X, for the nonlinear equation
m contains all small bounded solutions of the dynamical system
B exist in finite dimensions

m infinite dimensions: three main hypotheses



CENTER MANIFOLDS

HYPOTHESIS

@ A. is a closed operator in a Hilbert (Banach) space X with dense
domainyY C X; R :Y — Z is well defined.



CENTER MANIFOLDS

HyYPOTHESIS

@ A, is a closed operator in a Hilbert (Banach) space X with dense
domainY C X; R :Y — Z is well defined.

@® spectrum of A,: finite number of purely imaginary

eigenvalues

eigenvalues



CENTER MANIFOLDS

HYPOTHESIS
@ A, is a closed operator in a Hilbert (Banach) space X with dense
domainyY C X; R :Y — Z is well defined.
@® spectrum of A,: finite number of purely imaginary
eigenvalues

© resolvent estimates: (see also [H. & looss, 2011])

.- C s
[[(As — iw) 1||X—>X§m7 [(As — iw) 1HZ—>J)SW

for |w| > w, and some a € [0, 1).



THEOREM
The dynamical system

invariant manifold

CENTER MANIFOLDS

du
—=A,+R(U
i A, + R(U)

possesses a locally

[Mc={U=Us+®(Up); Up € X}




THEOREM
The dynamical system

invariant manifold

CENTER MANIFOLDS

du
— = A, +R(U
g = AT RO

possesses a locally

[Mc={U=Us+®(Up); Up € X}

m X, is the (finite-dimensional) center space of the linearized

equation

Xe= P Eim

ik€a(Ay)

m & js a map of class C¥;

m M contains all bounded solutions of the system.



CENTER MANIFOLDS

[ Reduced dynamics:

® solutions of the infinite-dimensional dynamical system which

belong to the center manifold

\ U(t) = Ug(t) + ®(Ug(t)), Ug(t) € Xc

m Ug(t) solves the reduced system

dUg
rra AoUp + Ro(Uo)

(the dimension of this system is often small)

m Ao = .A,|, and the Taylor expansion of Ro(Up) can be
computed ...



CENTER MANIFOLDS

m Jocally invariant manifolds tangent to X, at 0;

® their dimension is equal to the dimension of X,

m not unique, but the Taylor expansion of ® is unique . ..

m manifolds of class CX for Ck vector fields, but not analytic . ..



FURTHER PROPERTIES

m parameter-dependent version
m symmetries of the original system are inherited by the reduced
system, e.g.,
W equivariance
m reversibility

® Hamiltonian structure



CENTER MANIFOLDS

open questions . ..
m nfinite-dimensional center manifolds?
m quasilinear dynamical systems in Banach spaces?
used in the study of local bifurcations (existence of nonlinear

waves) / stability problems

together with stable/unstable manifolds provide a description

of the nonlinear dynamics

together with normal forms provide a rigorous justification of

amplitude equations



NORMAL FORMS

m simplify nonlinear vector fields




NORMAL FORMS

[ Dynamical system (finite-dimensional)

du
i Lu + R(u) (1)

Cn Hypotheses
®Lec LR,
@® for k > 2, there exists a neighborhood V C R” of 0 such that
R € C¥(V,R") and

|R(0)=0, DR(0)=0.|




THEOREM

There exists a change of variables | u = v + ®(v) |, with

® : R" — R" a polynomial of degree p, which transforms the

system (1) in its “normal form”

& Ly N+ p(v)

with the following properties:



THEOREM

There exists a change of variables | u = v + ®(v) |, with

® : R" — R" a polynomial of degree p, which transforms the

system (1) in its “normal form”

& Ly N+ p(v)

with the following properties:
m pis of class C¥ in a neighborhood of 0, and p(v) = o(||v||P);

m N:R"” — R” is a polynomial of degre p;



PROPERTIES OF N

® N :R"” — R"” polynomial of degre p, ‘ N(0) =0, DN(0) = O‘

® |N(et v) = e N(v)| for all (t,v) € R x R”

© | DN(v)L*v = L'N(v) |for all v € R"

® we use the identity

d L A o
— (e*tL N(eft v)> —ett (—L*N(e“‘ v) + DN(eft" v)L*ett v>

[C. Elphick et al.]



Proor

|1+ DO(v)) (Lv + N(v) + p(v)) = L(v + ®(v)) + R(v + &(v)) |




Proor

|1+ DO(v)) (Lv + N(v) + p(v)) = L(v + ®(v)) + R(v + &(v)) |

R(uv) = Z2§q§p Rq(“(q)) + o([[ul[P),
P(v) = Zzgqu q)q(v(q))' N(v) = Zzgqu Nq(V(q))

D&, (v )Ly — Loy (v?) = Ry(v?)) — N, (v?))

Dd)q(v(q))Lv _ LCDq(v(q)) — Qq(v(q)) _ Nq(v("))




Proor

|1+ DO(v)) (Lv + N(v) + p(v)) = L(v + ®(v)) + R(v + &(v)) |

R(uv) = Z2§q§p Rq(“(q)) + o([[ul[P),
P(v) = Zzgqu q)q(v(q))' N(v) = Zzgqu Nq(V(q))

D&, (v )Ly — Loy (v?) = Ry(v?)) — N, (v?))

Dd)q(v(q))Lv _ LCDq(v(q)) — Qq(v(q)) _ Nq(v(q))

m Linear equation: ‘ALCDC, = Q4 — Ny ‘




Proor

m Solve the linear equation:

‘ALq’q:Qq_Nq‘

Ap+ adjoint of AL
Q, — N, € ker(Ap-)* =im(AL)
Prer(4,-)(Qq —Ng) =0

‘ Ng = Prer(a,.)Qq € ker(Av-)

Remark: the normal form is not unique



m 02 normal form

X

01
00

) (.

EXAMPLES

(Takens—Bogdanov bifurcation)

N(v) = (

AP(A)
BP(A) + Q(A)

)




EXAMPLES

= 02 normal form (Takens—Bogdanov bifurcation)

LZ(O 1>7 V:<A>€R27 N(U)Z<AP(A) )
00 B BP(A) + Q(A)

P(0) = Q(0) = Q'(0) =0

® jw normal form (Hopf bifurcation)

(5 1) = (3) o ()
0 —iw A AQ(|A?)

Q:C—C, QUO0)=0




FURTHER PROPERTIES

m parameter-dependent version
m symmetries of the original system are inherited by the reduced
system, e.g.,
B equivariance

m reversibility



NONLINEAR WAVES AND PATTERNS




APPROACH

m spatial dynamics




IDEA OF SPATIAL DYNAMICS

Klaus Kirchgassner
(1931 - 2011)




SPATIAL DYNAMICS

Cn nonperiodic bounded solutions of PDEs in infinite strips

[Kirchgassner, 1982]

m x timelike coordinate



SPATIAL DYNAMICS

Cn nonperiodic bounded solutions of PDEs in infinite strips

[Kirchgassner, 1982]

m x timelike coordinate

Cn Dynamical system

d
_U=F(Uau)a U(X)GX
dx

B U(x) belongs to a Hilbert (Banach) space X of functions
depending upon the "space” variables;

B 4 € R™ parameters.



EXAMPLE

Usx + Uyy = f(”)? (x,y) eRx (07 1)

- Set [V =]

m Dynamical system:

d u v
somre v=0) ro- (L, )

m Phase space: U(x) € X, | X = [%(0,1) x L%(0,1),...




SPATIAL DYNAMICS APPROACH

® Dynamical system

d
&U=F(Ualﬁ), U(x) e X

m ook for bounded solutions



SPATIAL DYNAMICS APPROACH

® Dynamical system

d
—U=F(U,p), UKx)ex
dx

m ook for bounded solutions

m difficult:




REDUCTION

® Dynamical system

d
—U=F(U,u), UKx)eXx
dx




REDUCTION

® Dynamical system

d
—U=F(U,u), UKx)eXx
dx

® Center manifold reduction: obtain a reduced system of
ODEs . ..

d
—v=g(v,u), v(x) € R?
dx

(pass from infinite to finite dimensions)




REDUCTION

® Dynamical system

d
&U=F(U9“)9 U(x) e X

® Center manifold reduction: obtain a reduced system of
ODEs . ..

d
—v=g(v,u), v(x) € R?
dx

(pass from infinite to finite dimensions)

W tricky:




REDUCED SYSTEM

@ Dynamical system

® Center manifold reduction: reduced system of ODEs

d
—v=g(v,u), v(x) € R?
dx

©® Bounded orbits of the reduced system of ODEs
m e.g., use normal forms
B study a truncated system, then show persistence of the

truncated dynamics



REDUCED SYSTEM

@ Dynamical system

® Center manifold reduction: reduced system of ODEs

d
—v=g(v,u), v(x) € R?
dx

©® Bounded orbits of the reduced system of ODEs
m e.g., use normal forms
B study a truncated system, then show persistence of the

truncated dynamics

m difficult:




NONLINEAR WAVES AND PATTERNS




51



COMPUTATION OF THE REDUCED

SYSTEM

Cn Taylor expansion of

[Ro(Ug) = PcR(Ug + @(Uy))]

@ R known
® Uo(x) belongs to the center space Xc = @D, cpa.) Ei
B Ug(x) is a finite linear combination of basis vectors
B basis of Xc: consists of generalized eigenvectors which form a
basis for the generalized eigenspaces Ej;.
© P_ is the spectral projector onto tel que
m P2 = P_ (projector)
m P.A. = A.P. (commutes with A,)
O o :itis possible to compute its Taylor expansion (often, not

necessary)



