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Motivation

� study nonlinear waves and patterns



Nonlinear Waves on Water

Water wave

[David Sanger Photography] Solitary wave

Lagoon of Molokai, Hawaii

[photo: R.I. Odom]

Roll wave

Channel in Lions Bay, Canada

[website of N. Balmforth]

Mascaret de St Pardon

Dordogne river

Tsunami in Asia

Rogue wave

Chemical tanker ship Stolt Surf

[photo: K. Petersen]



Other Nonlinear Waves

Kelvin-Helmholtz clouds

Mount Duval, Australia

[English Wikipedia: GRAHAMUK]

Morning Glory cloud

near Burketown, Australia

[author: Mick Petrov]

Hurricane

Fire rainbow

Northern Idaho
Sound wave

Bell Telephone Laboratories

[book by David C. Knight]



Patterns in Nature

Sand patterns

[photo: R. Niebrugge]



The Mathematics of

. . . Nonlinear Waves and

Patterns

� observed in nature, experiments, numerical simulations

� particular solutions of PDEs or ODEs

� well-defined temporal and spatial structure

� e.g., traveling waves

� play a key role in the dynamics of the underlying system



The Mathematics of

. . . Nonlinear Waves and

Patterns

Questions

� existence – spatial and temporal properties

� stability – spatial and temporal behavior

� interactions

� . . .

� role in the dynamics of the system



The Mathematics of

. . . Nonlinear Waves and

Patterns

Answers

� . . . many different methods . . .

� . . . not enough . . .

� numerical

� analytical



Two reduction methods

� center manifolds

� normal forms



Some applications 1

� bifurcations of nonlinear waves and patterns

1Focus on results not on equations!



Water waves



Water waves



Water waves



Water-wave problem

gravity-capillary water waves

� three-dimensional inviscid fluid layer

� constant density ρ

� gravity and surface tension

� (ir)rotational flow



2D Traveling Waves

periodic wave solitary waves

generalized solitary waves solitary waves

[Nekrasov, Levi-Civita, Struik, Lavrentiev, Friedrichs & Hyers, . . .

Amick, Kirchgässner, Iooss, Buffoni, Groves, Toland, Lombardi, Sun, . . . ]



3D Traveling Waves

[Groves, Mielke, Craig, Nicholls, H., Kirchgässner, Deng, Sun, Sandstede,

Iooss, Plotnikov, Wahlén, . . . ]



Defects in striped patterns

[D. Boyer, J. Viñals]

� grain boundaries

� dislocations

� disclinations



Defects in Striped Patterns

Occur in a wide range of systems

� Rayleigh-Bénard convection experiment

� crystal patterns in material science

� chemical reactions

� biology

� . . . . . .



Existence of defects

grain boundaries and dislocations

(Rayleigh-Bénard convection, Swift-Hohenberg equation)

[H., Scheel, Wu, Iooss, Buffoni, Lloyd, . . . ]



More defects

Some may be treatable by related methods . . .



More defects

Some may be treatable by related methods . . .

Some cannot be treated by any of these methods . . .



A Problem from Optics

Home-made whispering gallery modes resonators

[Yanne Chembo, Rémi Henriet,

Aurelien Coillet]

Fiber

ψResonator

Laser



Frequency combs

� optical signals: superposition of modes with equally spaced

frequencies + stationary in suitable reference frame

� analytical results are in very good agreement with numerical and

experimental results

[Chembo, Godey, H., Delcey, Reichel, Mandel, . . . ]



Center manifolds

� reduce dimensions



Center Manifolds

Dynamical system (infinite-dimensional)

d

dt
U = F (U), U(t) ∈ X

� start with particular solution: equilibrium

U(t) = U∗

(often U∗ = 0, but not always)

� Question: local dynamics?



Example

Swift-Hohenberg equation:

∂u

∂t
= −

(

1 +
∂2

∂x2

)2

u + µu − u3

� u(x , t) 2π-periodic in x , parameter µ ∈ R



Example

Swift-Hohenberg equation:

∂u

∂t
= −

(

1 +
∂2

∂x2

)2

u + µu − u3

� u(x , t) 2π-periodic in x , parameter µ ∈ R

Dynamical system:

d

dt
U = F (U, µ), U(t) ∈ X

� U = u, F (U, µ) = −
(

1 + ∂
2

∂x2

)2

u + µu − u3

� X = L2per (0, 2π)

� particular solution: U∗ = 0



Linear dynamics

Linearized equation

d

dt
U = A∗U, A∗U = DUF(U∗)

� spectrum of A∗:

interesting dynamics



Linear dynamics

Linearized equation

d

dt
U = A∗U, A∗U = DUF(U∗)

� spectrum of A∗:

interesting dynamics

� center space Xc: sum of the generalized eigenspaces

associated with purely imaginary eigenvalues

� Xc contains all bounded solutions



Nonlinear dynamics

System

d

dt
U = A∗U + R(U)

Center manifold

� analogue of the center space Xc for the nonlinear equation

� contains all small bounded solutions of the dynamical system

� exist in finite dimensions

� infinite dimensions: three main hypotheses



Center Manifolds

Hypothesis

1 A∗ is a closed operator in a Hilbert (Banach) space X with dense

domain Y ⊂ X ; R : Y → Z is well defined.
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eigenvalues



Center Manifolds

Hypothesis

1 A∗ is a closed operator in a Hilbert (Banach) space X with dense

domain Y ⊂ X ; R : Y → Z is well defined.

2 spectrum of A∗: finite number of purely imaginary

eigenvalues

3 resolvent estimates: (see also [H. & Iooss, 2011])

‖(A∗ − iω)−1‖X→X ≤
C

|ω|
, ‖(A∗ − iω)−1‖Z→Y ≤

C

|ω|1−α

for |ω| ≥ ω∗, and some α ∈ [0, 1).



Center Manifolds

Theorem

The dynamical system
dU

dt
= A∗ + R(U) possesses a locally

invariant manifold

Mc = {U = U0 + Φ(U0) ; U0 ∈ Xc}



Center Manifolds

Theorem

The dynamical system
dU

dt
= A∗ + R(U) possesses a locally

invariant manifold

Mc = {U = U0 + Φ(U0) ; U0 ∈ Xc}

� Xc is the (finite-dimensional) center space of the linearized

equation
Xc =

⊕

iκ∈σ(A∗)

Eiκ;

� Φ is a map of class C k ;

� Mc contains all bounded solutions of the system.



Center Manifolds

Reduced dynamics:

� solutions of the infinite-dimensional dynamical system which

belong to the center manifold

U(t) = U0(t) +Φ(U0(t)), U0(t) ∈ Xc

� U0(t) solves the reduced system

dU0

dt
= A0U0 +R0(U0)

(the dimension of this system is often small)

� A0 = A∗

∣

∣

Xc
and the Taylor expansion of R0(U0) can be

computed . . .



Center manifolds

� locally invariant manifolds tangent to Xc at 0;

� their dimension is equal to the dimension of Xc

� not unique, but the Taylor expansion of Φ is unique . . .

� manifolds of class C k for C k vector fields, but not analytic . . .



Further properties

� parameter-dependent version

� symmetries of the original system are inherited by the reduced

system, e.g.,

� equivariance

� reversibility

� Hamiltonian structure



Center manifolds

� open questions . . .

� infinite-dimensional center manifolds?

� quasilinear dynamical systems in Banach spaces?

� used in the study of local bifurcations (existence of nonlinear

waves) / stability problems

� together with stable/unstable manifolds provide a description

of the nonlinear dynamics

� together with normal forms provide a rigorous justification of

amplitude equations



Normal forms

� simplify nonlinear vector fields



Normal forms

Dynamical system (finite-dimensional)

du

dt
= Lu + R(u) (1)

Hypotheses

1 L ∈ L(Rn);

2 for k ≥ 2, there exists a neighborhood V ⊂ Rn of 0 such that

R ∈ Ck(V ,Rn) and

R(0) = 0, DR(0) = 0.



Theorem

There exists a change of variables u = v +Φ(v) , with

Φ : Rn → R
n a polynomial of degree p, which transforms the

system (1) in its “normal form”

dv

dt
= Lv +N(v) + ρ(v)

with the following properties:



Theorem

There exists a change of variables u = v +Φ(v) , with

Φ : Rn → R
n a polynomial of degree p, which transforms the

system (1) in its “normal form”

dv

dt
= Lv +N(v) + ρ(v)

with the following properties:

� ρ is of class Ck in a neighborhood of 0, and ρ(v) = o(‖v‖p);

� N : Rn → R
n is a polynomial of degre p;



Properties of N

1 N : Rn → R
n polynomial of degre p, N(0) = 0, DN(0) = 0

2 N(etL
∗

v) = etL
∗

N(v) for all (t, v) ∈ R× R
n

3 DN(v)L∗v = L∗N(v) for all v ∈ R
n

� we use the identity

d

dt

(

e−tL∗

N(etL
∗

v)
)

= e−tL∗

(

−L∗N(etL
∗

v) + DN(etL
∗

v)L∗etL
∗

v
)

[C. Elphick et al.]



Proof

�
du
dt

= Lu + R(u), u = v +Φ(v) , dv
dt

= Lv +N(v) + ρ(v)

(I+ DΦ(v)) (Lv +N(v) + ρ(v)) = L(v +Φ(v)) + R(v +Φ(v))



Proof

�
du
dt

= Lu + R(u), u = v +Φ(v) , dv
dt

= Lv +N(v) + ρ(v)

(I+ DΦ(v)) (Lv +N(v) + ρ(v)) = L(v +Φ(v)) + R(v +Φ(v))

� R(u) =
∑

2≤q≤p Rq(u
(q)) + o(‖u‖p),

Φ(v) =
∑

2≤q≤p Φq(v
(q)), N(v) =

∑

2≤q≤p Nq(v
(q))

DΦ2(v
(2))Lv − LΦ2(v

(2)) = R2(v
(2))−N2(v

(2))

DΦq(v
(q))Lv − LΦq(v

(q)) = Qq(v
(q))−Nq(v

(q))



Proof

�
du
dt

= Lu + R(u), u = v +Φ(v) , dv
dt

= Lv +N(v) + ρ(v)

(I+ DΦ(v)) (Lv +N(v) + ρ(v)) = L(v +Φ(v)) + R(v +Φ(v))

� R(u) =
∑

2≤q≤p Rq(u
(q)) + o(‖u‖p),

Φ(v) =
∑

2≤q≤p Φq(v
(q)), N(v) =

∑

2≤q≤p Nq(v
(q))

DΦ2(v
(2))Lv − LΦ2(v

(2)) = R2(v
(2))−N2(v

(2))

DΦq(v
(q))Lv − LΦq(v

(q)) = Qq(v
(q))−Nq(v

(q))

� Linear equation: ALΦq = Qq −Nq



Proof

� Solve the linear equation:

ALΦq = Qq −Nq

� AL∗ adjoint of AL

� Qq −Nq ∈ ker(AL∗)⊥ = im(AL)

� Pker(AL∗ )(Qq −Nq) = 0

� Nq = Pker(AL∗ )Qq ∈ ker(AL∗)

Remark: the normal form is not unique



Examples

� 02 normal form (Takens–Bogdanov bifurcation)

L =

(

0 1

0 0

)

, v =

(

A

B

)

∈ R
2, N(u) =

(

AP(A)

BP(A) + Q(A)

)

P(0) = Q(0) = Q ′(0) = 0



Examples

� 02 normal form (Takens–Bogdanov bifurcation)

L =

(

0 1

0 0

)

, v =

(

A

B

)

∈ R
2, N(u) =

(

AP(A)

BP(A) + Q(A)

)

P(0) = Q(0) = Q ′(0) = 0

� iω normal form (Hopf bifurcation)

L =

(

iω 0

0 −iω

)

, v =

(

A

A

)

, N(v) =

(

AQ(|A|2)

AQ(|A|2)

)

Q : C → C, Q(0) = 0



Further properties

� parameter-dependent version

� symmetries of the original system are inherited by the reduced

system, e.g.,

� equivariance

� reversibility



Nonlinear waves and patterns



Approach

� spatial dynamics



Idea of spatial dynamics

Klaus Kirchgässner

(1931 – 2011)



Spatial dynamics

nonperiodic bounded solutions of PDEs in infinite strips

x
[Kirchgässner, 1982]

� x timelike coordinate



Spatial dynamics

nonperiodic bounded solutions of PDEs in infinite strips

x
[Kirchgässner, 1982]

� x timelike coordinate

Dynamical system

d

dx
U = F (U, µ), U(x) ∈ X

� U(x) belongs to a Hilbert (Banach) space X of functions

depending upon the “space” variables;

� µ ∈ R
m parameters.



Example

uxx + uyy = f(u), (x, y) ∈ R× (0,1)

� Set v = ux

� Dynamical system:

d

dx
U = F (U), U =

(

u
v

)

, F (U) =

(

v
−uyy + f (u)

)

� Phase space: U(x) ∈ X , X = L2(0, 1) × L2(0, 1), . . .



Spatial Dynamics Approach

1 Dynamical system

d

dx
U = F (U, µ), U(x) ∈ X

� look for bounded solutions



Spatial Dynamics Approach

1 Dynamical system

d

dx
U = F (U, µ), U(x) ∈ X

� look for bounded solutions

� difficult:
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2 Center manifold reduction: obtain a reduced system of
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v = g (v, µ), v(x) ∈ R
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(pass from infinite to finite dimensions)



Reduction

1 Dynamical system

d

dx
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2 Center manifold reduction: obtain a reduced system of

ODEs . . . d

dx
v = g (v, µ), v(x) ∈ R
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� tricky:



Reduced System

1 Dynamical system

2 Center manifold reduction: reduced system of ODEs

d

dx
v = g (v, µ), v(x) ∈ R

d

3 Bounded orbits of the reduced system of ODEs

� e.g., use normal forms

� study a truncated system, then show persistence of the

truncated dynamics



Reduced System

1 Dynamical system

2 Center manifold reduction: reduced system of ODEs

d

dx
v = g (v, µ), v(x) ∈ R

d

3 Bounded orbits of the reduced system of ODEs

� e.g., use normal forms

� study a truncated system, then show persistence of the

truncated dynamics

� difficult:



Nonlinear waves and patterns



51



Computation of the reduced

system

Taylor expansion of

R0(U0) = PcR(U0 +Φ(U0))

1 R known

2 U0(x) belongs to the center space Xc =
⊕

iκ∈σ(A∗)
Eiκ

� U0(x) is a finite linear combination of basis vectors

� basis of Xc : consists of generalized eigenvectors which form a

basis for the generalized eigenspaces Eiκ

3 Pc is the spectral projector onto tel que

� P2
c = Pc (projector)

� PcA∗ = A∗Pc (commutes with A∗)

4 Φ : it is possible to compute its Taylor expansion (often, not

necessary)


