# Reduction methods in nonlinear 

 DYNAMICS:CENTER MANIFOLDS AND NORMAL FORMS

Mariana Haragus<br>Institut FEMTO-ST, Besançon, France

Journées annuelles du GDR EX-MODELI
Besançon, 9-10 November 2023

TECHNOLOGIES

## Motivation

- study nonlinear waves and patterns


## Nonlinear Waves on Water



Water wave
[David Sanger Photography]


Mascaret de St Pardon Dordogne river


## Solitary wave

 Lagoon of Molokai, Hawaii [photo: R.I. Odom]

Tsunami in Asia


## Roll wave

Channel in Lions Bay, Canada [website of N. Balmforth]


Rogue wave Chemical tanker ship Stolt Surf [photo: K. Petersen]

## Other Nonlinear Waves



Kelvin-Helmholtz clouds
Mount Duval, Australia [English Wikipedia: GRAHAMUK]


Morning Glory cloud near Burketown, Australia [author: Mick Petrov]


Hurricane


Sound wave
Bell Telephone Laboratories
[book by David C. Knight]

## Patterns in Nature



## Sand patterns

[photo: R. Niebrugge]


## The Mathematics of <br> ... Nonlinear Waves and <br> Patterns

- observed in nature, experiments, numerical simulations
- particular solutions of PDEs or ODEs
- well-defined temporal and spatial structure
- e.g., traveling waves
- play a key role in the dynamics of the underlying system


# The Mathematics of <br> ... Nonlinear Waves and <br> Patterns 

## Questions

- existence - spatial and temporal properties
- stability - spatial and temporal behavior
- interactions
- role in the dynamics of the system


# The Mathematics of <br> ... Nonlinear Waves and <br> Patterns 

Answers

- ... many different methods ...
- ... not enough ...
- numerical
- analytical


## Two REDUCTION METHODS

- center manifolds
- normal forms


## Some applications ${ }^{1}$

- bifurcations of nonlinear waves and patterns
${ }^{1}$ Focus on results not on equations!


## Water waves



## Water waves



## Water waves



## WATER-WAVE PROBLEM


gravity-capillary water waves

- three-dimensional inviscid fluid layer
- constant density $\rho$
- gravity and surface tension
- (ir)rotational flow


## 2D Traveling Waves


periodic wave

solitary waves

solitary waves
[Nekrasov, Levi-Civita, Struik, Lavrentiev, Friedrichs \& Hyers, ...
Amick, Kirchgässner, looss, Buffoni, Groves, Toland, Lombardi, Sun, ...]

## 3D Traveling Waves


[Groves, Mielke, Craig, Nicholls, H., Kirchgässner, Deng, Sun, Sandstede, looss, Plotnikov, Wahlén, ...]

## Defects in striped patterns



- grain boundaries
- dislocations
- disclinations
[D. Boyer, J. Viñals]


## Defects in Striped Patterns

Occur in a wide range of systems

- Rayleigh-Bénard convection experiment
- crystal patterns in material science
- chemical reactions
- biology
- ......


## Existence of DEFECTS

grain boundaries and dislocations
(Rayleigh-Bénard convection, Swift-Hohenberg equation)

[H., Scheel, Wu, looss, Buffoni, Lloyd, ...]

## More Defects

ㄴ. Some may be treatable by related methods ...


## More Defects

맨 Some may be treatable by related methods...


ㅁ. Some cannot be treated by any of these methods ...


## A Problem from Optics

ㄴ. Home-made whispering gallery modes resonators

[Yanne Chembo, Rémi Henriet,
Aurelien Coillet]


## Frequency combs

- optical signals: superposition of modes with equally spaced frequencies + stationary in suitable reference frame

- analytical results are in very good agreement with numerical and experimental results
[Chembo, Godey, H., Delcey, Reichel, Mandel, ...]


## Center manifolds

- reduce dimensions


## Center Manifolds

Dynamical system (infinite-dimensional)

$$
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{U}=\mathrm{F}(\mathrm{U}), \quad U(t) \in \mathcal{X}
$$

- start with particular solution: equilibrium

$$
\mathbf{U}(t)=\mathbf{U}_{*}
$$

(often $\mathbf{U}_{*}=0$, but not always)

■ Question: local dynamics?

## ExAMPLE

ㄴ. Swift-Hohenberg equation:

$$
\frac{\partial u}{\partial t}=-\left(1+\frac{\partial^{2}}{\partial x^{2}}\right)^{2} u+\mu u-u^{3}
$$

- $u(x, t) 2 \pi$-periodic in $x$, parameter $\mu \in \mathbb{R}$


## ExAMPLE

ㄴ. Swift-Hohenberg equation:

$$
\frac{\partial u}{\partial t}=-\left(1+\frac{\partial^{2}}{\partial x^{2}}\right)^{2} u+\mu u-u^{3}
$$

- $u(x, t) 2 \pi$-periodic in $x$, parameter $\mu \in \mathbb{R}$

ㄴ Dynamical system:

$$
\frac{\mathrm{d}}{\mathrm{dt}} \mathbf{U}=\mathbf{F}(\mathbf{U}, \mu), \quad \boldsymbol{U}(\boldsymbol{t}) \in \mathcal{X}
$$

- $\mathbf{U}=u, \quad \mathbf{F}(\mathbf{U}, \mu)=-\left(1+\frac{\partial^{2}}{\partial x^{2}}\right)^{2} u+\mu u-u^{3}$
- $\mathcal{X}=L_{\text {per }}^{2}(0,2 \pi)$
- particular solution: $\mathbf{U}_{*}=0$


## Linear Dynamics

## 는 Linearized equation

$$
\frac{\mathrm{d}}{\mathrm{dt}} \mathbf{U}=\mathcal{A}_{*} \mathbf{U}, \quad \mathcal{A}_{*} \mathbf{U}=D_{\mathrm{U}} \mathcal{F}\left(\mathrm{U}_{*}\right)
$$

■ spectrum of $\mathcal{A}_{*}$ :

interesting dynamics

## Linear Dynamics

Linearized equation

$$
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{U}=\mathcal{A}_{*} \mathrm{U}, \quad \mathcal{A}_{*} \mathrm{U}=D_{\mathrm{U}} \mathcal{F}\left(\mathrm{U}_{*}\right)
$$

■ spectrum of $\mathcal{A}_{*}$ :

interesting dynamics

- center space $\mathbf{X}_{\mathrm{c}}$ : sum of the generalized eigenspaces
associated with purely imaginary eigenvalues
■ $X_{c}$ contains all bounded solutions


## Nonlinear DYnamics

C. System

$$
\frac{\mathrm{d}}{\mathrm{dt}} \mathbf{U}=\mathcal{A}_{*} \mathbf{U}+\mathcal{R}(\mathbf{U})
$$

ㄴ Center manifold

- analogue of the center space $\mathbf{X}_{\mathbf{c}}$ for the nonlinear equation
- contains all small bounded solutions of the dynamical system
- exist in finite dimensions

■ infinite dimensions: three main hypotheses

## Center Manifolds

## Hypothesis

(1) $\mathcal{A}_{*}$ is a closed operator in a Hilbert (Banach) space $\mathcal{X}$ with dense domain $\mathcal{Y} \subset \mathcal{X} ; \mathcal{R}: \mathcal{Y} \rightarrow \mathcal{Z}$ is well defined.

## Center Manifolds

## Hypothesis

(1) $\mathcal{A}_{*}$ is a closed operator in a Hilbert (Banach) space $\mathcal{X}$ with dense domain $\mathcal{Y} \subset \mathcal{X} ; \mathcal{R}: \mathcal{Y} \rightarrow \mathcal{Z}$ is well defined.
(2) spectrum of $\mathcal{A}_{*}$ : finite number of purely imaginary eigenvalues


## Center Manifolds

## Hypothesis

(1) $\mathcal{A}_{*}$ is a closed operator in a Hilbert (Banach) space $\mathcal{X}$ with dense domain $\mathcal{Y} \subset \mathcal{X} ; \mathcal{R}: \mathcal{Y} \rightarrow \mathcal{Z}$ is well defined.
(2) spectrum of $\mathcal{A}_{*}$ : finite number of purely imaginary eigenvalues
(3) resolvent estimates:

$$
\left\|\left(\mathcal{A}_{*}-i \omega\right)^{-1}\right\|_{\mathcal{X} \rightarrow \mathcal{X}} \leq \frac{C}{|\omega|}, \quad\left\|\left(\mathcal{A}_{*}-i \omega\right)^{-1}\right\|_{\mathcal{Z} \rightarrow \mathcal{Y}} \leq \frac{C}{|\omega|^{1-\alpha}}
$$

for $|\omega| \geq \omega_{*}$, and some $\alpha \in[0,1)$.

## Center Manifolds

Theorem
The dynamical system $\frac{\mathrm{dU}}{\mathrm{d} t}=\mathcal{A}_{*}+\mathcal{R}(\mathrm{U})$ possesses a locally invariant manifold

$$
\mathcal{M}_{c}=\left\{\mathrm{U}=\mathrm{U}_{0}+\Phi\left(\mathrm{U}_{0}\right) ; \mathrm{U}_{0} \in X_{c}\right\}
$$

## Center Manifolds

## Theorem

The dynamical system $\frac{\mathrm{dU}}{\mathrm{d} \boldsymbol{t}}=\mathcal{A}_{*}+\mathcal{R}(\mathrm{U})$ possesses a locally invariant manifold

$$
\mathcal{M}_{c}=\left\{\mathrm{U}=\mathrm{U}_{0}+\Phi\left(\mathrm{U}_{0}\right) ; \mathrm{U}_{0} \in X_{c}\right\}
$$

- $X_{c}$ is the (finite-dimensional) center space of the linearized equation

$$
X_{c}=\bigoplus_{i \kappa \in \sigma\left(\mathcal{A}_{*}\right)} E_{i \kappa} ;
$$

- Ф is a map of class $C^{k}$;
- $\mathcal{M}_{c}$ contains all bounded solutions of the system.


## Center Manifolds

Reduced dynamics:

- solutions of the infinite-dimensional dynamical system which belong to the center manifold

$$
\mathbf{U}(t)=\mathbf{U}_{0}(t)+\boldsymbol{\Phi}\left(\mathbf{U}_{0}(t)\right), \quad \mathbf{U}_{0}(t) \in \mathbf{X}_{\mathbf{c}}
$$

- $\mathbf{U}_{0}(t)$ solves the reduced system

$$
\frac{\mathbf{d} \mathbf{U}_{0}}{\mathbf{d} \boldsymbol{t}}=\mathcal{A}_{0} \mathbf{U}_{0}+\mathcal{R}_{0}\left(\mathbf{U}_{0}\right)
$$

(the dimension of this system is often small)
■ $\mathcal{A}_{0}=\left.\mathcal{A}_{*}\right|_{\mathbf{x}_{\mathrm{c}}}$ and the Taylor expansion of $\mathcal{R}_{0}\left(\mathrm{U}_{0}\right)$ can be computed ...

## Center manifolds

- locally invariant manifolds tangent to $X_{c}$ at 0 ;
- their dimension is equal to the dimension of $X_{c}$
- not unique, but the Taylor expansion of $\boldsymbol{\Phi}$ is unique ...
- manifolds of class $C^{k}$ for $C^{k}$ vector fields, but not analytic ...


## Further Properties

- parameter-dependent version
- symmetries of the original system are inherited by the reduced system, e.g.,
- equivariance
- reversibility
- Hamiltonian structure


## CENTER MANIFOLDS

- open questions ...
- infinite-dimensional center manifolds?
- quasilinear dynamical systems in Banach spaces?
- used in the study of local bifurcations (existence of nonlinear waves) / stability problems
- together with stable/unstable manifolds provide a description of the nonlinear dynamics
- together with normal forms provide a rigorous justification of amplitude equations


## Normal forms

- simplify nonlinear vector fields


## NORMAL FORMS

ㄴ.. Dynamical system (finite-dimensional)

$$
\begin{equation*}
\frac{d u}{d t}=\mathbf{L} u+\mathbf{R}(u) \tag{1}
\end{equation*}
$$

맨 Hypotheses
(1) $\mathbf{L} \in \mathcal{L}\left(\mathbb{R}^{n}\right)$;
(2) for $k \geq 2$, there exists a neighborhood $\mathcal{V} \subset \mathbb{R}^{n}$ of 0 such that $\mathbf{R} \in \mathcal{C}^{k}\left(\mathcal{V}, \mathbb{R}^{n}\right)$ and

$$
\mathbf{R}(0)=0, \quad D \mathbf{R}(0)=0 .
$$

## Theorem

There exists a change of variables $u=v+\boldsymbol{\Phi}(v)$, with $\boldsymbol{\Phi}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ a polynomial of degree $p$, which transforms the system (1) in its "normal form"

$$
\frac{d v}{d t}=\mathbf{L} v+\mathbf{N}(v)+\boldsymbol{\rho}(v)
$$

with the following properties:

## Theorem

There exists a change of variables $u=v+\boldsymbol{\Phi}(v)$, with $\boldsymbol{\Phi}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ a polynomial of degree $p$, which transforms the system (1) in its "normal form"

$$
\frac{d v}{d t}=\mathbf{L} v+\mathbf{N}(v)+\boldsymbol{\rho}(v)
$$

with the following properties:

- $\rho$ is of class $\mathcal{C}^{k}$ in a neighborhood of 0 , and $\rho(v)=o\left(\|v\|^{p}\right)$;

■ $\mathbf{N}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a polynomial of degre $p$;

## Properties of N

(1) $\mathbf{N}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ polynomial of degre $p, \mathbf{N}(0)=0, D \mathbf{N}(0)=0$
(2) $\mathbf{N}\left(e^{t \mathbf{L}^{*}} v\right)=e^{t \mathbf{L}^{*}} \mathbf{N}(v)$ for all $(t, v) \in \mathbb{R} \times \mathbb{R}^{n}$
(3) $D \mathbf{N}(v) \mathbf{L}^{*} v=\mathbf{L}^{*} \mathbf{N}(v)$ for all $v \in \mathbb{R}^{n}$

- we use the identity

$$
\frac{d}{d t}\left(e^{-t \mathrm{~L}^{*}} \mathbf{N}\left(e^{t \mathrm{~L}^{*}} v\right)\right)=e^{-t \mathrm{~L}^{*}}\left(-\mathbf{L}^{*} \mathbf{N}\left(e^{t \mathrm{~L}^{*}} v\right)+D \mathbf{N}\left(e^{t \mathrm{~L}^{*}} v\right) \mathbf{L}^{*} e^{t \mathrm{~L}^{*}} v\right)
$$

[C. Elphick et al.]

## Proof

- $\frac{d u}{d t}=\mathbf{L} u+\mathbf{R}(u), u=v+\boldsymbol{\Phi}(v), \frac{d v}{d t}=\mathbf{L} v+\mathbf{N}(v)+\boldsymbol{\rho}(v)$

$$
(\mathbb{I}+D \boldsymbol{\Phi}(v))(\mathbf{L} v+\mathbf{N}(v)+\boldsymbol{\rho}(v))=\mathbf{L}(v+\boldsymbol{\Phi}(v))+\mathbf{R}(v+\boldsymbol{\Phi}(v))
$$

## Proof

- $\frac{d u}{d t}=\mathbf{L} u+\mathbf{R}(u), u=v+\boldsymbol{\Phi}(v), \frac{d v}{d t}=\mathbf{L} v+\mathbf{N}(v)+\boldsymbol{\rho}(v)$

$$
(\mathbb{I}+D \boldsymbol{\Phi}(v))(\mathbf{L} v+\mathbf{N}(v)+\boldsymbol{\rho}(v))=\mathbf{L}(v+\boldsymbol{\Phi}(v))+\mathbf{R}(v+\boldsymbol{\Phi}(v))
$$

- $\mathbf{R}(u)=\sum_{2 \leq q \leq p} \mathbf{R}_{q}\left(u^{(q)}\right)+o\left(\|u\|^{p}\right)$,

$$
\boldsymbol{\Phi}(v)=\sum_{2 \leq q \leq p} \boldsymbol{\Phi}_{q}\left(v^{(q)}\right), \mathbf{N}(v)=\sum_{2 \leq q \leq p} \mathbf{N}_{q}\left(v^{(q)}\right)
$$

$$
D \boldsymbol{\Phi}_{2}\left(v^{(2)}\right) \mathbf{L} v-\mathbf{L} \boldsymbol{\Phi}_{2}\left(v^{(2)}\right)=\mathbf{R}_{2}\left(v^{(2)}\right)-\mathbf{N}_{2}\left(v^{(2)}\right)
$$

$$
D \boldsymbol{\Phi}_{q}\left(v^{(q)}\right) \mathbf{L} v-\mathbf{L} \boldsymbol{\Phi}_{q}\left(v^{(q)}\right)=\mathbf{Q}_{q}\left(v^{(q)}\right)-\mathbf{N}_{q}\left(v^{(q)}\right)
$$

## Proof

- $\frac{d u}{d t}=\mathbf{L} u+\mathbf{R}(u), u=v+\boldsymbol{\Phi}(v), \frac{d v}{d t}=\mathbf{L} v+\mathbf{N}(v)+\boldsymbol{\rho}(v)$

$$
(\mathbb{I}+D \boldsymbol{\Phi}(v))(\mathbf{L} v+\mathbf{N}(v)+\boldsymbol{\rho}(v))=\mathbf{L}(v+\boldsymbol{\Phi}(v))+\mathbf{R}(v+\boldsymbol{\Phi}(v))
$$

- $\mathbf{R}(u)=\sum_{2 \leq q \leq p} \mathbf{R}_{q}\left(u^{(q)}\right)+o\left(\|u\|^{p}\right)$,

$$
\boldsymbol{\Phi}(v)=\sum_{2 \leq q \leq p} \boldsymbol{\Phi}_{q}\left(v^{(q)}\right), \mathbf{N}(v)=\sum_{2 \leq q \leq p} \mathbf{N}_{q}\left(v^{(q)}\right)
$$

$$
D \boldsymbol{\Phi}_{2}\left(v^{(2)}\right) \mathbf{L} v-\mathbf{L} \boldsymbol{\Phi}_{2}\left(v^{(2)}\right)=\mathbf{R}_{2}\left(v^{(2)}\right)-\mathbf{N}_{2}\left(v^{(2)}\right)
$$

$$
D \boldsymbol{\Phi}_{q}\left(v^{(q)}\right) \mathbf{L} v-\mathbf{L} \boldsymbol{\Phi}_{q}\left(v^{(q)}\right)=\mathbf{Q}_{q}\left(v^{(q)}\right)-\mathbf{N}_{q}\left(v^{(q)}\right)
$$

- Linear equation: $\mathcal{A}_{\mathbf{L}} \Phi_{q}=\mathbf{Q}_{q}-\mathbf{N}_{q}$


## Proof

- Solve the linear equation:

$$
\mathcal{A}_{\mathbf{L}} \boldsymbol{\Phi}_{q}=\mathbf{Q}_{q}-\mathbf{N}_{q}
$$

- $\mathcal{A}_{\mathbf{L}^{*}}$ adjoint of $\mathcal{A}_{\mathbf{L}}$
- $\mathbf{Q}_{q}-\mathbf{N}_{q} \in \operatorname{ker}\left(\mathcal{A}_{\mathbf{L}^{*}}\right)^{\perp}=\operatorname{im}\left(\mathcal{A}_{\mathbf{L}}\right)$
- $\mathbf{P}_{\text {ker }\left(\mathcal{L}_{\mathbf{L}^{*}}\right)}\left(\mathbf{Q}_{q}-\mathbf{N}_{q}\right)=0$
- $\mathbf{N}_{q}=\mathbf{P}_{\text {ker }\left(\mathcal{A}_{\mathbf{L}^{*}}\right)} \mathbf{Q}_{q} \in \operatorname{ker}\left(\mathcal{A}_{\mathbf{L}^{*}}\right)$

Remark: the normal form is not unique

## EXAMPLES

- $\mathbf{0}^{\mathbf{2}}$ normal form
(Takens-Bogdanov bifurcation)
$\mathbf{L}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), \quad v=\binom{A}{B} \in \mathbb{R}^{2}, \quad \mathbf{N}(u)=\binom{A P(A)}{B P(A)+Q(A)}$

$$
P(0)=Q(0)=Q^{\prime}(0)=0
$$

## ExAMPLES

- $0^{2}$ normal form
(Takens-Bogdanov bifurcation)
$\mathbf{L}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), \quad v=\binom{A}{B} \in \mathbb{R}^{2}$,

$$
\mathbf{N}(u)=\binom{A P(A)}{B P(A)+Q(A)}
$$

$$
P(0)=Q(0)=Q^{\prime}(0)=0
$$

- i $\omega$ normal form
(Hopf bifurcation)

$$
\begin{gathered}
\mathbf{L}=\left(\begin{array}{cc}
i \omega & 0 \\
0 & -i \omega
\end{array}\right), \quad v=\binom{A}{\bar{A}}, \quad \mathbf{N}(v)=\binom{A Q\left(|A|^{2}\right)}{\overline{A Q}\left(|A|^{2}\right)} \\
Q: \mathbb{C} \rightarrow \mathbb{C}, \quad Q(0)=0
\end{gathered}
$$

## Further properties

- parameter-dependent version
- symmetries of the original system are inherited by the reduced system, e.g.,
- equivariance
- reversibility


## NonLinear waves and patterns



## Approach

- spatial dynamics


## Idea of spatial dynamics



Klaus Kirchgässner
(1931-2011)

## Spatial DYNAMICS

몬 nonperiodic bounded solutions of PDEs in infinite strips

[Kirchgässner, 1982]

- x timelike coordinate


## Spatial DYNAMICS

는 nonperiodic bounded solutions of PDEs in infinite strips

[Kirchgässner, 1982]

- x timelike coordinate

■ Dynamical system

$$
\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{U}=\mathrm{F}(\mathrm{U}, \mu), \quad U(x) \in \mathcal{X}
$$

- U(x) belongs to a Hilbert (Banach) space $\mathcal{X}$ of functions depending upon the "space" variables;
- $\mu \in \mathbb{R}^{m}$ parameters.


## ExAMPLE

$$
\mathbf{u}_{\mathrm{xx}}+\mathbf{u}_{\mathrm{yy}}=\mathbf{f}(\mathbf{u}), \quad(\mathbf{x}, \mathbf{y}) \in \mathbb{R} \times(\mathbf{0}, \mathbf{1})
$$

- Set $\mathbf{v}=\mathbf{u}_{\mathrm{x}}$
- Dynamical system:

$$
\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{U}=\mathrm{F}(\mathrm{U}), \quad \mathrm{U}=\binom{\boldsymbol{u}}{v}, \quad F(\mathrm{U})=\binom{v}{-u_{y y}+\boldsymbol{f}(\boldsymbol{u})}
$$

- Phase space: $\boldsymbol{U}(\boldsymbol{x}) \in \mathcal{X}, \boldsymbol{X}=L^{2}(0,1) \times L^{2}(0,1), \ldots$


## Spatial Dynamics Approach

(1) Dynamical system

$$
\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{U}=\mathrm{F}(\mathrm{U}, \mu), \quad U(x) \in \mathcal{X}
$$

- look for bounded solutions


## Spatial Dynamics Approach

(1) Dynamical system

$$
\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{U}=\mathrm{F}(\mathrm{U}, \mu), \quad U(x) \in \mathcal{X}
$$

- look for bounded solutions
- difficult:



## REduction

(1) Dynamical system

$$
\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{U}=\mathrm{F}(\mathrm{U}, \mu), \quad U(x) \in \mathcal{X}
$$

## Reduction

(1) Dynamical system

$$
\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{U}=\mathrm{F}(\mathrm{U}, \mu), \quad U(x) \in \mathcal{X}
$$

(2) Center manifold reduction: obtain a reduced system of

ODEs...

$$
\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{v}=\mathrm{g}(\mathrm{v}, \mu), \quad v(x) \in \mathbb{R}^{d}
$$

(pass from infinite to finite dimensions)

## Reduction

(1) Dynamical system

$$
\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{U}=\mathrm{F}(\mathrm{U}, \mu), \quad U(x) \in \mathcal{X}
$$

(2) Center manifold reduction: obtain a reduced system of

ODEs...

$$
\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{v}=\mathrm{g}(\mathrm{v}, \mu), \quad v(x) \in \mathbb{R}^{d}
$$

(pass from infinite to finite dimensions)

- tricky:



## Reduced System

(1) Dynamical system
(2) Center manifold reduction: reduced system of ODEs

$$
\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{v}=\mathrm{g}(\mathrm{v}, \mu), \quad v(x) \in \mathbb{R}^{d}
$$

(3) Bounded orbits of the reduced system of ODEs

- e.g., use normal forms
- study a truncated system, then show persistence of the truncated dynamics


## Reduced System

(1) Dynamical system
(2) Center manifold reduction: reduced system of ODEs

$$
\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{v}=\mathrm{g}(\mathrm{v}, \mu), \quad v(x) \in \mathbb{R}^{d}
$$

(3) Bounded orbits of the reduced system of ODEs

- e.g., use normal forms
- study a truncated system, then show persistence of the truncated dynamics
- difficult:



## NonLinear waves and patterns


$51$

## Computation of The Reduced

## SYSTEM

## ㄴ Taylor expansion of

$$
\mathcal{R}_{0}\left(\mathbf{U}_{0}\right)=\mathbf{P}_{c} \mathcal{R}\left(\mathbf{U}_{0}+\boldsymbol{\Phi}\left(\mathbf{U}_{0}\right)\right)
$$

(1) $\mathcal{R}$ known
(2) $\mathrm{U}_{0}(x)$ belongs to the center space $X_{c}=\bigoplus_{i \kappa \in \sigma\left(\mathcal{A}_{*}\right)} E_{i \kappa}$

- $\mathrm{U}_{0}(x)$ is a finite linear combination of basis vectors
- basis of $X_{c}$ : consists of generalized eigenvectors which form a basis for the generalized eigenspaces $E_{i \kappa}$
(3) $\mathbf{P}_{c}$ is the spectral projector onto tel que
- $P_{c}^{2}=P_{c}$ (projector)
- $P_{c} \mathcal{A}_{*}=\mathcal{A}_{*} P_{c}\left(\right.$ commutes with $\left.\mathcal{A}_{*}\right)$
(4) $\boldsymbol{\Phi}$ : it is possible to compute its Taylor expansion (often, not necessary)

