Amortissement de résonances non-linéaires par couplage piézoélectrique

Boris Lossouarn¹, Gaetan Kerschen², Jean-François Deü¹

¹LMSSC, Conservatoire national des arts et métiers ²Département d'aérospatiale et mécanique, Université de Liège

Passive vibration mitigation

Constrained viscoelastic patches

• Piezoelectric patches connected to an electrical network

🖾 B. Lossouarn, L. Rouleau, R. Darleux, J.-F. Deü, Journal of Structural Dynamics, 2021.

Tuning of the resonant piezoelectric shunt

$$R=\sqrt{\frac{3}{2}}\frac{k_c}{C\omega_O}$$

Resonant shunts can be implemented with passive inductors

Realization with a magnetic core in ferrite

$$\rightarrow C = 250 \text{ nF} \Rightarrow L = 100 \text{ H} \& R = 3 \text{k}\Omega$$

Nonlinearity may strongly affect the performance

Thin lamina
$$\Rightarrow f pprox k^{
m end} u + k_{
m NL} u^3$$

- \rightarrow Hardening nonlinearity
- \rightarrow **Detuning** of the resonant shunt + Isola

Experiments

 \rightarrow Nonlinear piezoelectric tuned vibration absorber required !

Outline

Passive nonlinear piezoelectric tuned vibration absorber

- 2 Multimodal damping with an analogue twin
- Oliver Mitigation of multiple nonlinear resonances

Outline

Passive nonlinear piezoelectric tuned vibration absorber

- 2 Multimodal damping with an analogue twin
- 3 Mitigation of multiple nonlinear resonances
- ④ Conclusions and perspectives

Similar nonlinearity in the absorber for global compensation

"Nonlinear + Nonlinear = Linear" (

First step = characterize the mechanical nonlinearity

Sine-sweep around the resonance **Restoring force surface method** \rightarrow Strongly nonlinear above 0.1 mm

Nonlinear stiffness coefficient from the restoring force when $\dot{u} = 0$ \rightarrow Lead to the **objective function** for the nonlinear electrical component

How to implement the nonlinearity in the electrical domain ?

 \rightarrow Same cubic voltage after one-term Harmonic Balance approximation

Several solutions to implement nonlinear impedances

Analog electronics with AOP

Silva, 2018Shami, 2022

Several solutions to implement nonlinear impedances

Analog electronics with AOP Synthetic impedance with digital controler

🖾 Silva, 2018 🖾 Shami, 2022 🖾 Raze, 2019 ⁄ Alfahmi, 2022

Several solutions to implement nonlinear impedances

Analog electronics with AOP

> 🖾 Silva, 2018 🖾 Shami, 2022

Synthetic impedance with digital controler

🖾 Raze, 2019 ⁄ Alfahmi, 2022

Inductor design from magnetic component theory

Magnetic saturation: Depends on material, geometry, number of turns...

Relation between total magnetic flux and electrical current $\Rightarrow \Phi = L\dot{Q}$

Electrical measurements validate the saturable inductor

Input = Sine voltage with variable amplitude Output = Voltage across a resistor

The nonlinear shunt maintains the equal peak condition

Various forcing amplitudes \Rightarrow Almost no detuning

Limitation = Merging of right peak with an **isolated resonance curve**

Conclusions on damping of a single nonlinear resonance

Extension of the resonant shunt damping to nonlinear structures

- \rightarrow Principle of similarity with **passive components**
- \rightarrow Experimental validation + New concept = Saturable inductor

→ 🖉 B. Lossouarn, J.-F. Deü, G. Kerschen, Philosophical Transactions of the Royal Society A, 2018

Limits: Physics of magnetic circuits

 \rightarrow No pure cubic + Variable resistance

And what about the mitigation of multiple resonances ?

Passive nonlinear piezoelectric tuned vibration absorber

Ø Multimodal damping with an analogue twin

- 3 Mitigation of multiple nonlinear resonances
- 4 Conclusions and perspectives

Passive technique for multimodal damping ?

Interconnected array

ightarrow Multi-resonant network

Electrical analogue of a mechanical structure for multimodal damping M. Porfiri, F. dell'Isola, F. M. Frattale Mascioli, International Journal of Circuit Theory and Applications, 2004.

Passive technique for multimodal damping ?

Electrical analogue of a mechanical structure for multimodal damping # M. Porfiri, F. dell'Isola, F. M. Frattale Mascioli, International Journal of Circuit Theory and Applications, 2004.

Analogue twin : Back to the 50's !

At that time, Analogue electronics refered to the Analogy

 \rightarrow / C. Foasso, Quand l'informatique était analogique, Pour la Science, 2021

Analogue computers to simulate the dynamics of complex system

Before the development of the Finite Element Method...

Vibration analysis of an airplane $\rightarrow
end R. MacNeal et al., J. Aeronaut. Sci, 1951.$

19

Experimenting multimodal damping on a rod

First experimental validation of the control strategy

🖾 B. Lossouarn, M. Aucejo, J.-F. Deü, Smart Materials & Structures, 2015

Analogue twin for a beam

Discrete model from the beam dispersion relation $YI \frac{\partial^4 q_w}{\partial x^4} + \rho S \dot{q_w} = 0$

Analogous network with capacitors, inductors and transformers

+ Analogous end capacitor : $C^{\text{end}} = \frac{k^{\theta}}{k^{\text{end}}} \frac{\hat{a}^2}{a^2} C$

Not an exact twin because damping is required

Optimal resistors for broadband damping ?

Lowest mode $\Rightarrow Z_L = j\omega L + R_L$ Highest mode $\Rightarrow Z_C = \frac{1}{i\omega C} + R_C$

Broadband $\Rightarrow R_T$ in the transformers

Implementation of the beam electrical analogue

Analogous boundary conditions: Free = Short circuit, Clamped = Open circuit

Design of inductors and transformers + Capacitors from standard series

Validation of the beam electrical analogue

 \rightarrow Experimental modal analysis of the analogue twin

Electromechanical coupling through piezoelectric patches

(...) Exp. without network, (-) Exp. with analogous network, (--) Model

 \rightarrow Multimodal damping observed on the mechanical response

Extension to vibration damping of a ring structures

In-plane and out-of-plane motions of a thick ring : 2 independent networks

🖾 A. Luo, B. Lossouarn, A. Erturk, Journal of Sound and Vibration (under review)

Passive nonlinear piezoelectric tuned vibration absorber

- 2 Multimodal damping with an analogue twin
- Oliver Mitigation of multiple nonlinear resonances

Mitigation of multiple nonlinear resonances

Nonlinear capacitor required to maintain equal-peak : $v = \frac{1}{C^{\text{end}}}q + \frac{1}{C_{\text{NL}}}q^3$ \rightarrow Theoretical tuning : $\frac{1}{C_{\text{NL}}} = 2\left(\frac{L}{m}\right)^2 k_{\text{NL}}$

→ 🏝 B. Lossouarn, G. Kerschen, J.-F. Deü, Jounal of Sound and Vibration, 2021

Nonlinear model for the electromecanical system

Mass and stiffness matrices

 \rightarrow Combination of mechanical and electrical DOFs

$$\begin{bmatrix} \boldsymbol{M_m} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{M_e} \end{bmatrix} \begin{bmatrix} \ddot{q}_m \\ \ddot{q}_e \end{bmatrix} + \begin{bmatrix} \boldsymbol{C_m} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{C_e} \end{bmatrix} \begin{bmatrix} \dot{q}_m \\ \dot{q}_e \end{bmatrix} + \begin{bmatrix} \boldsymbol{K_m} + \boldsymbol{K_c K_c}^T & \tilde{K}_c \\ \tilde{K}_c^T & \boldsymbol{K_e} \end{bmatrix} \begin{bmatrix} \boldsymbol{q}_m \\ \boldsymbol{q}_e \end{bmatrix} = \begin{bmatrix} \boldsymbol{F_m} \\ \boldsymbol{F_e} \end{bmatrix}$$

Harmonic balance method

Nonlinear capacitance from a passive electrical component

Variable electrical resonance due to variable capacitance

Nonlinear capacitor : $v = \frac{1}{C^{\text{end}}}q + \frac{1}{C_{\text{NL}}}q^3 \Rightarrow C(Q) \approx \frac{1}{\frac{1}{C^{\text{end}}} + \frac{3Q^2}{4C_{\text{NL}}}}$

→ Solution = Multilayer Ceramic Capacitor

Practical limits for a full experimental validation

25

30

Frequency (Hz) (--) Linear (...) No NL capa, (--) With NL capa

...even with a "linear" capacitance

31

35

Outline

Passive nonlinear piezoelectric tuned vibration absorber

- 2 Multimodal damping with an analogue twin
- 3 Mitigation of multiple nonlinear resonances
- 4 Conclusions and perspectives

Analogue twin < Hybrid twin < Digital twin ?

Resonant shunt damping extended to nonlinear structures \rightarrow **Principle of similarity** with passive components

Limits

 \rightarrow Passive components come with their own resistance and nonlinearities

Perspectives

 \rightarrow Hybrid twin for optimized tuning ?

ightarrow G. Raze, J. Dietrich, B. Lossouarn, G. Kerschen, Mech. Systems and Signal Processing, 2022

Hybrid shunts for control of flutter ? (with X. Amandolese)

- 1.5 m wing equipped with 26 patches (B. Prieur, Internship)
- \rightarrow Piezoelectric damping implemented with no flow
- \rightarrow First experiments in wind tunnel

Hybrid shunts for control of VIV ? (ANR Astrid HYDRAVIB)

Hydrofoils subjected to vortex-induced vibrations : Cnam+ENSAM+Ecole Navale \rightarrow Previous experimental results in **water tunnel** (Y. Watine)

 \rightarrow First objective = explicit formula for **optimal resonant shunts** (A. Haudeville)

Merci pour votre attention !

boris.lossouarn@lecnam.net