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Introduction
Context & motivation

Modern mechanical systems
▶ Ever-increasing demand for more efficient systems
▶ Lighter, more slender structures
▶ Smaller functional clearances

Nonlinear vibrations
▶ Multiple solutions
▶ Bifurcations
▶ Amplitude-jumps, quasi-periodic & chaotic solutions, etc.

Bifurcations are not accounted for during the design stage
▶ Discovered during testing/operation
▶ At best, detected using a posteriori stability/bifurcation analysis

Objectives

In recent years, development of bifurcation tracking techniques for parametric analyses
Optimization of bifurcations
▶ Alternative to bifurcation tracking analyses capable of handling a large number of design parameters
▶ Enforce bifurcations to occur at targeted locations
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Optimization problem
We consider dynamical systems under the following form:

R(q, µ) = 0

Solution curve:
Continuum of solutions under variation of µ
Bifurcation points → qualitative and quantitative changes in the dynamics at values µ⋆

Usually detected by monitoring scalar test functions g whose zeros indicate a bifurcation

Let T and P denote the sets of target and predicted bifurcations, respectively

minimize
x

|T − P|Ψ(x)

︸ ︷︷ ︸
Bifurcation measure

+
1
|T |

∑
τ∈T

∏
π(x)∈P

∣∣∣∣π(x)− τ

τ

∣∣∣∣1/|P|

︸ ︷︷ ︸
Error measure

.

subject to bl
i ≤ xi ≤ bu

i ∀i ∈ J1, pK
Discontinuous objective function → Gradient-free optimizer (from NLopt.jl)
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Bifurcation measure

Bifurcation measure: Encourage the presence of bifurcations on the solution curve

|T − P|Ψ(x)

|T − P| → vanishes when the number of bifurcations on the curve equals the number of targets

Ψ(x) → pushes the optimizer towards states were many bifurcations occur

Ψ(x) → 0 when many bifurcations are detected.

Ψ(x) =

∫
R=0

|g|
max|g|ds∫

R=0 ds
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Error measure

Error measure: Match bifurcations to targeted locations

1
|T |

∑
τ∈T

∏
π(x)∈P

∣∣∣∣π(x)− τ

τ

∣∣∣∣1/|P|

Formulation with arithmetic and geometric means:

Errors for all combinations of targets and predictions
Mitigates the risk of several bifurcations matched to the same target
Equals zero when all targets are matched

Predictions π and targets τ can be:

Frequencies
A measure of states (infinity norm, L2 norm, etc.)
Both
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Harmonic Balance Method

HBM-AFT

q(t) = Re

( ∞∑
k=0

q̃qqk eikΩt
)

≈ Re

 Nh∑
k=0

q̃qqk eikΩt



RRR(q̃qq,Ω) = ZZZ(Ω)q̃qq + f̃ff nl (q̃qq) − f̃ff ex = 000

𝐪 𝐪 t , ሶ𝐪(t)
IFFT

𝐟nl(𝐪, ሶ𝐪, t)ሚ𝐟nl
FFT

Frequency domain Time domain

Arclength continuation

Prediction [
∂q̃qqRRR ∂µRRR
∆q̃qqT

k ∆µk

]
(k)

(
∆q̃qqk+1
∆µk+1

)
=

(
000
1

)
Correction

P(q̃qq, µ, s) = (∆q̃qq)T (∆q̃qq) + ∆µ
2 − ∆s2 = 0(

q̃qq
µ

)
(k+1)

=

(
q̃qq
µ

)
(k)

−
[
∂q̃qqRRR ∂µRRR
∂q̃qqP ∂µP

]−1

(k)
RRR(k)

ex
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Bifurcation analysis

Local stability - Hill’s method

Quadratic eigenvalue problem (QEP)(
λ

2M̃MM + λC̃CC + ZZZ(ω) + ∂q̃qqF̃FF nl (q̃qq0)
)

r̃rr = 000

M̃MM = III2Nh+1 ⊗ MMM
C̃CC = ∇∇∇ ⊗ 2MMM + III2Nh+1 ⊗ CCC

’Linearization’ of the QEP[
C̃CC ∂q̃qqRRR

−
[
IIIN(2Nh+1)

]
000

]
+ λ

[
M̃MM 000
000 IIIN(2Nh+1)

]
= 000

Bifurcation detection
Scalar test function g evaluated by solving a bordered linear system[

AAA bbb
ddd† 0

](
www
g

)
=

(
000
1

)
Where AAA depends on the bifurcation of interest. AAA = ∂q̃qqRRR for fold bifurcations
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Duffing oscillator - target frequencies

mẍ + cẋ + kx + knl x3 = F cos(Ωt)

Optimization variables: m, c, k , knl
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(a) m = 1, c = 0.1, k = 1, knl = 0.5
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(b) m = 1.85, c = 0.17, k = 1.77, knl = 0.54
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Duffing oscillator - target amplitudes and frequencies

mẍ + cẋ + kx + knl x3 = F cos(Ωt)

Optimization variables: m, c, k , knl
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(c) m = 1, c = 0.1, k = 1, knl = 0.5
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(d) m = 1.33, c = 0.22, k = 2.06, knl = 0.63
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Duffing oscillator - objective function

Objective function minimum when:
all targets are matched with at least one bifurcation
AND the number of bifurcations equals the number of targets
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Finite element model with ROM
F
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Conclusion & perspectives

Conclusion
Optimization framework to enforce the appearance of bifurcation points at targeted locations
▶ Capable of handling multiple bifurcations of different types simultaneously
▶ Handles target frequencies, amplitudes, both, ...

Relatively high number of optimization parameters (≈ 1e2)

Perspectives

Extension to high-dimensional FE models
▶ Development of parametric ROMs
▶ Development of meta-models

Investigation of global optimization algorithms
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