Optimization of bifurcation structures

November 9-10, 2023

 $\mathsf{Adrien}\ \mathsf{M}\acute{e}\mathsf{lot}^1,\ \mathsf{Enora}\ \mathsf{Denimal}^1,\ \mathsf{Ludovic}\ \mathsf{Renson}^2$

¹Univ. Gustave Eiffel, Inria, COSYS-SII, I4S, Campus Beaulieu, 35042 Rennes, France ²Dynamics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom

Journées annuelles du GDR EX-MODELI

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ─ 臣 ─ のへで

Introduction Context & motivation

- Modern mechanical systems
 - Ever-increasing demand for more efficient systems
 - Lighter, more slender structures
 - Smaller functional clearances
- Nonlinear vibrations
 - Multiple solutions
 - Bifurcations
 - Amplitude-jumps, quasi-periodic & chaotic solutions, etc.
- Bifurcations are not accounted for during the design stage
 - Discovered during testing/operation
 - At best, detected using a posteriori stability/bifurcation analysis

イロト イボト イヨト イヨト

Introduction Context & motivation

- Modern mechanical systems
 - Ever-increasing demand for more efficient systems
 - Lighter, more slender structures
 - Smaller functional clearances
- Nonlinear vibrations
 - Multiple solutions
 - Bifurcations
 - Amplitude-jumps, quasi-periodic & chaotic solutions, etc.
- Bifurcations are not accounted for during the design stage
 - Discovered during testing/operation
 - At best, detected using a posteriori stability/bifurcation analysis

Objectives

- In recent years, development of bifurcation tracking techniques for parametric analyses
- Optimization of bifurcations
 - ▶ Alternative to bifurcation tracking analyses capable of handling a large number of design parameters
 - Enforce bifurcations to occur at targeted locations

Formulation of the optimization problem

Computational nonlinear analysis

Results

イロト イボト イヨト イヨト

Objective function Bifurcation measure Error measure

Formulation of the optimization problem

Computational nonlinear analysis

Results

Objective function Bifurcation measure Error measure

.

イロト イボト イヨト

Optimization problem

We consider dynamical systems under the following form:

 $\mathbf{R}(\mathbf{q},\mu)=\mathbf{0}$

Solution curve:

- Continuum of solutions under variation of μ
- \blacksquare Bifurcation points \rightarrow qualitative and quantitative changes in the dynamics at values μ_{\star}
- Usually detected by monitoring scalar test functions g whose zeros indicate a bifurcation

Let ${\mathcal T}$ and ${\mathcal P}$ denote the sets of target and predicted bifurcations, respectively

$$\begin{array}{lll} \underset{\mathbf{x}}{\mathsf{minimize}} & |\mathcal{T} - \mathcal{P}|\Psi(\mathbf{x}) + \underbrace{\frac{1}{|\mathcal{T}|} \sum_{\tau \in \mathcal{T}} \prod_{\pi(\mathbf{x}) \in \mathcal{P}} \left| \frac{\pi(\mathbf{x}) - \tau}{\tau} \right|^{1/|\mathcal{P}|}}_{\mathsf{Bifurcation measure}} \\ \underset{\mathsf{bijurcation measure}}{\mathsf{subject to}} & b_i^l \leq x_i \leq b_i^u & \forall i \in \llbracket 1, p \rrbracket \end{array}$$

• Discontinuous objective function \rightarrow Gradient-free optimizer (from NLOPT.JL)

Bifurcation measure: Encourage the presence of bifurcations on the solution curve

$$|\mathcal{T} - \mathcal{P}|\Psi(\mathbf{x})|$$

• $|\mathcal{T}-\mathcal{P}|
ightarrow$ vanishes when the number of bifurcations on the curve equals the number of targets

- $\blacksquare \ \Psi(x) \rightarrow$ pushes the optimizer towards states were many bifurcations occur
- $\Psi(\mathbf{x}) \rightarrow 0$ when many bifurcations are detected.

$$\Psi(\mathbf{x}) = \frac{\int_{R=0} \frac{|g|}{\max|g|} \mathrm{d}s}{\int_{R=0} \mathrm{d}s}$$

イロト イボト イヨト

Objective function Bifurcation measure Error measure

Error measure

Error measure: Match bifurcations to targeted locations

$$\frac{1}{|\mathcal{T}|} \sum_{\tau \in \mathcal{T}} \prod_{\pi(\mathbf{x}) \in \mathcal{P}} \left| \frac{\pi(\mathbf{x}) - \tau}{\tau} \right|^{1/|\mathcal{P}|}$$

Formulation with arithmetic and geometric means:

- Errors for all combinations of targets and predictions
- Mitigates the risk of several bifurcations matched to the same target
- Equals zero when all targets are matched

Predictions π and targets τ can be:

- Frequencies
- A measure of states (infinity norm, L² norm, etc.)
- Both

イロト イポト イヨト イヨト

Formulation of the optimization problem

Computational nonlinear analysis

Results

Computation of periodic solutions Bifurcation analysis

Harmonic Balance Method

HBM-AFT

$$q(t) = \mathfrak{Re}\left(\sum_{k=0}^{\infty} \tilde{\boldsymbol{q}}_{k} \mathrm{e}^{ik\Omega t}\right) \approx \mathfrak{Re}\left(\sum_{k=0}^{N_{h}} \tilde{\boldsymbol{q}}_{k} \mathrm{e}^{ik\Omega t}\right)$$

$$\boldsymbol{R}(\tilde{\boldsymbol{q}},\Omega) = \boldsymbol{Z}(\Omega)\tilde{\boldsymbol{q}} + \tilde{\boldsymbol{f}}_{nl}(\tilde{\boldsymbol{q}}) - \tilde{\boldsymbol{f}}_{ex} = \boldsymbol{0}$$

Arclength continuation

Prediction

$$\begin{bmatrix} \partial_{\tilde{\boldsymbol{q}}} \boldsymbol{R} & \partial_{\mu} \boldsymbol{R} \\ \Delta \tilde{\boldsymbol{q}}_{k}^{\top} & \Delta \mu_{k} \end{bmatrix}_{(k)} \begin{pmatrix} \Delta \tilde{\boldsymbol{q}}_{k+1} \\ \Delta \mu_{k+1} \end{pmatrix} = \begin{pmatrix} \boldsymbol{0} \\ 1 \end{pmatrix}$$

Correction

$$P(\tilde{\boldsymbol{q}}, \mu, s) = (\Delta \tilde{\boldsymbol{q}})^{T} (\Delta \tilde{\boldsymbol{q}}) + \Delta \mu^{2} - \Delta s^{2} = 0$$
$$\begin{pmatrix} \tilde{\boldsymbol{q}} \\ \mu \end{pmatrix}_{(k+1)} = \begin{pmatrix} \tilde{\boldsymbol{q}} \\ \mu \end{pmatrix}_{(k)} - \begin{bmatrix} \partial_{\tilde{\boldsymbol{q}}} \boldsymbol{R} & \partial_{\mu} \boldsymbol{R} \\ \partial_{\tilde{\boldsymbol{q}}} \boldsymbol{P} & \partial_{\mu} \boldsymbol{P} \end{bmatrix}_{(k)}^{-1} \boldsymbol{R}_{ex}^{(k)}$$

Computation of periodic solutions Bifurcation analysis

Bifurcation analysis

Local stability - Hill's method

Quadratic eigenvalue problem (QEP)

$$\left[\lambda^{2}\tilde{\boldsymbol{M}} + \lambda\tilde{\boldsymbol{C}} + \boldsymbol{Z}(\omega) + \partial_{\tilde{\boldsymbol{q}}}\tilde{\boldsymbol{F}}_{nl}\left(\tilde{\boldsymbol{q}}_{0}\right)\right)\tilde{\boldsymbol{r}} = \boldsymbol{0}$$
$$\tilde{\boldsymbol{M}} = -I_{nv} \leftrightarrow \boldsymbol{\boldsymbol{\Theta}}\boldsymbol{M}$$

$$\tilde{\boldsymbol{C}} = \boldsymbol{\nabla} \otimes 2\boldsymbol{M} + \boldsymbol{I}_{2N_{h}+1} \otimes \boldsymbol{K}$$

'Linearization' of the QEP

$$\begin{bmatrix} \tilde{\boldsymbol{C}} & \partial_{\bar{\boldsymbol{q}}}\boldsymbol{R} \\ - \begin{bmatrix} \boldsymbol{I}_{N(2N_h+1)} \end{bmatrix} & \boldsymbol{0} \end{bmatrix} + \lambda \begin{bmatrix} \tilde{\boldsymbol{M}} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{I}_{N(2N_h+1)} \end{bmatrix} = \boldsymbol{0}$$

イロト イボト イヨト イヨト

Bifurcation detection

Scalar test function g evaluated by solving a bordered linear system

$$egin{bmatrix} oldsymbol{A} & oldsymbol{b} \ oldsymbol{d}^\dagger & 0 \end{bmatrix} egin{pmatrix} oldsymbol{w} \ g \end{pmatrix} = egin{pmatrix} oldsymbol{0} \ 1 \end{pmatrix}$$

Where **A** depends on the bifurcation of interest. $\mathbf{A} = \partial_{\tilde{\mathbf{q}}} \mathbf{R}$ for fold bifurcations

Formulation of the optimization problem

Computational nonlinear analysis

Results

Duffing oscillator Finite element model with ROM

Duffing oscillator - target frequencies

$$m\ddot{x} + c\dot{x} + kx + k_{nl}x^3 = F\cos(\Omega t)$$

Optimization variables: m, c, k , k_{nl}

Duffing oscillator Finite element model with ROM

Duffing oscillator - target amplitudes and frequencies

$$m\ddot{x} + c\dot{x} + kx + k_{nl}x^3 = F\cos(\Omega t)$$

Optimization variables: m, c, k , k_{nl}

Duffing oscillator Finite element model with ROM

Duffing oscillator - objective function

Objective function minimum when:

- all targets are matched with at least one bifurcation
- AND the number of bifurcations equals the number of targets

イロト イボト イヨト イヨト

Duffing oscillator Finite element model with ROM

Finite element model with ROM

- 2D Euler bernoulli beam elements Craig-Bampton ROM
- 120 optim. variables (element-wise height/width, length and nonlinear coeff)

Duffing oscillator Finite element model with ROM

Finite element model with ROM

- 2D Euler bernoulli beam elements Craig-Bampton ROM
- 120 optim. variables (element-wise height/width, length and nonlinear coeff)

85

Duffing oscillator Finite element model with ROM

Finite element model with ROM

Э

Conclusion

- Optimization framework to enforce the appearance of bifurcation points at targeted locations
 - Capable of handling multiple bifurcations of different types simultaneously
 - Handles target frequencies, amplitudes, both, ...

Relatively high number of optimization parameters (\approx 1e2)

Perspectives

- Extension to high-dimensional FE models
 - Development of parametric ROMs
 - Development of meta-models
- Investigation of global optimization algorithms

イロト イポト イヨト イヨト

Optimization of bifurcation structures

November 9-10, 2023

Adrien Mélot¹, Enora Denimal¹, Ludovic Renson²

¹Univ. Gustave Eiffel, Inria, COSYS-SII, I4S, Campus Beaulieu, 35042 Rennes, France ²Dynamics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom

Journées annuelles du GDR EX-MODELI

Thank you for your attention!

adrien.melot@inria.fr

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ─ 臣 ─ のへで