

Broadband vibration mitigation by combining Acoustic Black Hole effect & Contact Non-Linearities

Cyril Touzé

Haiqin Li, Patrick O'Donoughue François Gautier, Adrien Pelat

Florent Masson

Christian Puillet

Laboratoire d'Acoustique Le Mans Université - CNRS - UMR 6613

About the VI-ABH principle

ABH effect

- High damping at HF
- But no damping at LF

[Pelat et al., JSV 476, 2020]

Contact non-linearities

Energy transfer from LF to HF

[Issanchou et al., JSV 393, 2017]

Experimental evidence of the VI-ABH

[Li et al., Appl. Acou. 182, 2021]

How to implement VI-ABH principle to attenuate shock vibrations in satellites ?

Conceptual design of a VI-ABH attenuator

More applicable design

- Attached attenuator seen as a decoupling device
- insertion of a resonant Vibro-Impactor

Preliminar sizing of the attenuator

Honeycomb panel sizes

param.	[]
hs	1
h _c	17.5
е	3
panel size	600x800

naram

[mm]

param.	[mm]
h ₀	4
r ₀	20
Labh	60
L _{layer}	30

Model of a VI-ABH attached attenuator

1 - Motion equations

2 - Modal expansion principle

structure :
$$\mathscr{L}{u(x,t)} = F(t)\delta(x - x_F) - k(u(x_i, t) - v) - f_{VI}(t)\delta(x - x_i)$$

VI mass : $m\ddot{v}(t) = k(u(x_i, t) - v(t)) + f_{VI}(t)$
 $u(x, t) = \sum_{k=1}^{K} \phi_k(x) \cdot q_k(t)$

3 - Projection of motion equation on mode ϕ_k $\ddot{q}_k + 2\xi_k\omega_k\dot{q}_k + \omega_k^2q_k = F\phi_k(x_F) - f_{VI}\phi_k(x_i) - k(u(x_i) - v)\phi_k(x_i)$

Step 1 : FE calculation of the modal basis

3D structural dynamics package

Step 2 : Time integration of the solution

- two-order non conditional scheme
- implicit scheme (Newton-Raphson procedure)

FE model for modal basis calculation

Homogenization of the honeycomb panel (Reissner theory)

skin	thickness	$h_{eq} = \sqrt{3} \left(h_s + h_c \right)$
core	Yong modulus	$E_{eq} = \frac{2E_s n_s}{t_{eq}}$
	Poisson ratio	$\mu_{eq} = \mu_s$
skin	density	$\rho_{eq} = \frac{\rho_c h_c + 2\rho_s h_s}{t_{eq}} k$

Modal analysis of the complete structure

Typical response to a [0-500]Hz noise

Detailed design of the attenuator

What is the best f_{VI} ?

Mass dependency of the energy transfer

- Energy Transfer is enhanced as mass increases
- Only few grams lead to significant attenuation

Gap between VI mass & ABH ?

Grazing contact (no gap, no prestress)

VI tuning for multi-mode attenuation

Analysis of an experimental demonstrator

Experimental setup

Demonstrator settings

- Suspended free-free panel
- ABH attenuator at a corner

Forced vibration settings

- co-localised shaker excitation
- ▶ [0-5k]Hz or [0-500]Hz noise

Shock response settings

- Released marble impact
- Acceleration peak about 500g

Attenuator configurations under study

Panel only (reference config.)

Linear ABH

VI-ABH - 1VI@mode1

VI-ABH - 2VI@mode1 VI-ABH - 2VI@mode1&2

Attenuation due to ABH vs VI-ABH effects

Synthesis of the performances in forced regime

Post-processing : attenuation indicator (ref. : panel only) $I = 10 \log_{10} \left(\frac{\int_{f_{max}}^{f_{max}} v_c^2 df}{\int_{f_{min}}^{f_{max}} v_{ref}^2 df} \right) \xrightarrow{\text{Around a resonance peak at } \omega_k}_{\text{At Low Frequencies [0-500] Hz}}$

Robustness to tuning accuracy

Typical shock response (reference panel)

Time response w/wo VI-ABH attenuator

Spectrogram of the shock responses

19

Energy decays analysis

SRS analysis for all tested configurations

General conclusions

- A new type of vibration attenuator is proposed based on the VI-ABH principle
 - TRL_end = TRL_start + 1
- Numerical modeling provides guides lines to reach the optimal design :
 - The design involves 3 main parameters :

 h_0 drives the mechanical impedance match L_{abh} drives the ABH threshold frequency f_{VI} drives the attenuation efficiency for LF modes

- ► The attenuator mass is <5% of the host structure
- Main design challenge : ensuring a grazing contact of the VI
- Performances of an experimental proof of concept in lab conditions :
 - About -8dB broadband in acceleration spectra
 - Reduction by 1.5 of the SRS at selected panel modes
 - Reduction by 2 of the time to attenuate 99% of the shock energy
 - Quite good robustness to VI mistuning

Some perspectives

- VI-ABH attenuator is searching for an industrial application context !
- Improve the geometrical & mechanical design
 - Use of space qualified material for the damping layer
 - Enhance the mechanical strength for addressing high level shocks
 - Improve compacity & consider space requirements
- Think about other non-linear ABH designs ...

Some perspectives

- VI-ABH attenuator is searching for an industrial application context !
- Improve the geometrical & mechanical design
 - Use of space qualified material for the damping layer
 - Enhance the mechanical strength for addressing high level shocks
 - Improve compacity & consider space requirements
- Think about other non-linear ABH designs ...

