
Equilibrium of a non-compressible cable subjected to unilateral
constraints

Applications to dynamics

Charlélie Bertrand

ENSAM Campus de Lille

17th October 2024



Overview

1 Context

2 Mechanics

3 FEM

4 Obstacle consideration

5 Applications

6 Conclusion



Context Mechanics FEM Obstacle consideration Applications Conclusion

PhD Thesis - ED MEGA - C.H. Lamarque (LTDS) & V. Acary (INRIA)

Dynamics of a translating cable subjected to unilateral constraints, friction and
punctual loads

Technical context

Cable-cars were aimed to provide an
alternative for public transportation

Maintenance of existing infrastructures

Scientifical knot

Lack of numerical tools dedicated to this
particular systems

Few objective comparisons between models

Expectations

Depict some automatic designs considering the
full dynamics of an installation

Explain high amplitude of displacement
existing in reality Photo credit : POMA, Eiffage
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Cable Mechanics

Derived from curvilinear domains : Slender structure −→ Parametrized curve

q(S = 0) = q0

q(S)

q(S = L) = xL
L

Figure: A cable and its parametrization

Two key mechanisms :

Strain : ε(S) =
∥∥q′(S)

∥∥− 1 (1)

Bending : κ(S) = ω′(S) = α′(S) − α′
0(S) (2)
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Figure: A cable and its parametrization

Two key mechanisms :

Strain : ε(S) =
∥∥q′(S)

∥∥− 1 −→ Positive since cables only support traction (1)

Bending : κ(S) = ω′(S) = α′(S) − α′
0(S) −→ Useless for the cable case (2)
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Equations of motion

Derived from Lagrangian mechanics

Kinetic energy

Elastic energy

Work of external forces

Non-compression condition

L∗ (q̇, q′, q, λ) =
ρ

2
q̇ · q̇ (3)


0 =

∂L∗

∂q
−

d

dS

∂L∗

∂q′
−

d

dt

∂L∗

∂q̇
−

∂a

∂q

⊤
λ +

d

dS

[
∂a

∂q′

⊤
λ

]
+

d

dt

[
∂a

∂q̇

⊤
λ

]
0 ⩽ a(q, q′, q̇) ⊥ λ ⩾ 0

(4)


d

dt
(ρq̇) =

d

dS

([
EA
(∥∥q′∥∥− 1

)
+ λ

] q′

∥q′∥

)
+ fe

0 ⩽
∥∥q′∥∥− 1 ⊥ λ ⩾ 0

(5)

What if a were to embed more constraints ?..
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Weak form of the equilibrium

Here we present a finite element for a cable system that can solve 5. Dropping the
constraints for a while, let us have a look to

ρ
d

dt
v =

d

dS

[
EA
(∥∥q′∥∥− 1

)]
+ fe (6)

Considering a suitable weight function φ, the equilibrium of an arbitrary cable segment
of length Le reads∫ Le

0
ρv̇ · φ dS −

∫ Le

0

([
EA
(∥∥q′∥∥− 1

)]
+ fe

)
· φ dS = 0 (7)

Taking an interpolation as

φ = NΦe ; v = Nve ; q = Nqe (8)

(qe
x,qe

y,q
e
z) (qe+1

x ,qe+1
y ,qe+1

z )

1

We obtain after simplification{
Me v̇e + K(qe)qe − fe = 0

q̇e = ve
(9)

which can be assembled with regards to boundary conditions and mesh considered.
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Compression issue with adding constraints

Even in statics, compressed equilibrium can occur without further considerations...
Why ?

x

y

x

y

x

y

x

y

Figure: A numerical equilibrium obtained via naive implementation of FEM. Compressed parts are
zoomed over.
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Compression issue with adding constraints

The global energy of the latter is given by0 =
4a

L2
√

1 + 4a2

(√
1 + 4a2 − L

)
− G

(10)

g

m

1

a
−
a

-3 -2 -1 1 2 3

-1

-0.5

0.5

1

ε < 0

a

Potential energy of the weighing cable

7 / 16



Context Mechanics FEM Obstacle consideration Applications Conclusion

Compression issue with adding constraints

The global energy of the latter is given by
0 =

4a

L2
√

1 + 4a2

(√
1 + 4a2 − L

)
− G−λ

4a

L
√

1 + 4a2

0 ⩽ λ ⊥
(√

1 + 4a2

L
− 1

)
⩾ 0

(10)

g

m

1

a
−
a

-3 -2 -1 1 2 3

-1

-0.5

0.5

1

ε < 0

a

Potential energy of the weighing cable

7 / 16



Context Mechanics FEM Obstacle consideration Applications Conclusion

One strategy

One way to cope with this issue numerically is the combined use of iterative solver
with a conditional expression of stiffness matrices

εe(S) =
∥∥N′(S)qe

∥∥− 1 (11)

Ke =

EA

∫  Le

0

N′(S)⊤N′(S)

1 + |εe(S)|−1
dS ; εe > 0

0 ; εe ⩽ 0

(12)

∆Ke =


Ke + EA

∫  Le

0

N′(S)⊤N′(S)qeqe⊤N′(S)⊤N′(S)

(1 + |εe(S)|)3
dS ; εe > 0

EA

∫  Le

0

N′(S)⊤N′(S)

1 + |εe(S)|−1
dS ; εe ⩽ 0

(13)

The latter allows tension only computation and has various applications.

8 / 16



Context Mechanics FEM Obstacle consideration Applications Conclusion

Examples
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Local kinematics

The relative velocity between a node M and an obstacle point M′ at the contact may
be written as

u(M,M′) = v(M) − vobs(M′) (14)

which is decomposed along a local basis as

u(M,M′) →
{
n : uN(M,M′) = HN(M,M′)u(M,M′)

t : uT (M,M′) = HT (M,M′)u(M,M′)
(15)

where t = [t1, t2]⊤ and n ⊥ t1 ⊥ t2 ⊥ n.
The dynamics can be considered both in the local or in the global frame via

M
dv

dt
= f + p ↔

du

dt
= f̃ + Ŵr (16)

where Ŵ =

[
ŴNN ŴNT

ŴTN ŴTT

]
is the Delassus operator given by

ŴNN = HNM̂HN ; ŴNT = HNM̂HT ; ŴTN = HT M̂HN ; ŴTT = HT M̂HT (17)
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Coulomb friction

Let us introduce the following sets

K =
{
r ∈ R3 , ∥rT ∥ ⩽ µrN

}
(18)

K∗ =
{
u ∈ R3 , ∀r ∈ K , u · r ⩾ 0

}
(19)

(20)

The contact is embedded into the following possibil-
ities

No contact: r = 0 and uN ⩾ 0

Sticking: r ∈ K and u = 0

Sliding: r ∈ ∂K− 0 and rT = −αuT

Credits: NSCD - Acary, V. & Brogliato B (must read)

A couple (u, r) is said to belong to C if it satisfies all above conditions i.e.

K∗ ∋ u + µ ∥uT ∥ n ⊥ r ∈ K (21)
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Stepping scheme

The dynamics obtained via FEM, coupled to a vector inequality are discretized in time
via the θ-method0 =M

dv

dt
+ C(q, v)v + K(q)q− f

such that g(q, t) ⩾ 0

⇝
θ-method

{
M̂k (vk+1 − vk ) − f̂ = pk+1

qk+1 = qk + hθvk + h(1 − θ)vk+1

(22)
where we have set

M̂k =M + hθC + h2θ2∆Kk , pk+1 =

∫ tk+1

tk

dp

f̂ =hθfk+1 + h(1 − θ)fk − hCvk − hKkqk − h2θ∆Kkvk

(23)

The key idea is to split the evolution into a smooth and a non-smooth part (according
to Lebesgue decomposition theorem)

M̂ (vf − vk ) =f̂k

M̂ (vk+1 − vf ) =pk+1 ⇝ uk+1 = uf + Ŵrk+1

(24)

The cone complementarity formulation can be used as

K∗ ∋ u + µ ∥uT ∥ n ⊥ r ∈ K (25)
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Solving the 2D-contact problem

In every iteration, contact and friction are solved via OSNSP1:

vf = vk + M̂−1
k f̂k

uαNf = HN(tk )αvf

uαNk = HN(tk )αvk

uαTf = HT (tk )αvf

∀α ∈ A , Solve LCP
0 ⩽ ŴNN λ̄

α
N,k+1 + ŴNT

(
µλ̄

α
N,k+1 − λ̄

α
1

)
+ uαNf + euαNk ⊥ rαN,k+1 ⩾ 0

0 ⩽ −ŴTN r
α
N,k+1 − ŴTT

(
µrαN,k+1 − λ̄

α
1

)
+ u+,α

T ,k+1 − uαTf ⊥ λ̄
α
1 ⩾ 0

0 ⩽ 2µrαN,k+1 − λ̄
α
1 ⊥ u+,α

T ,k+1 ⩾ 0

pk+1 =

rαN,k+1HN
⊤ +

(
µrαN,k+1 − λ̄

α
1

)
HT

⊤ , ∀α ∈ A

0 , ∀α /∈ A

M̂k (vk+1 − vf ) = pk+1

. (26)

1One Step Non-Smooth Problem
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Applications

ex

ey

ez

R

(xR, yR)

q0

qL
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x (m)

y
(m

)

Hanging cable subjected to a
cylinder obstacle

Restitution coefficient < 1

Obstacle modeled as a cylinder (moving or
not)
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Applications
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Applications

v(t)v(t)

Belt-pulley system

Low friction coefficient for the driven pulley

High friction coefficient for the driving pulley

Assembly that preserves conveyor
connections

Local velocity of the driving pulley used as
input

Pulleys are modeled as circles
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Applications

Trajectory of one material point

Low friction coefficient for the driven pulley

High friction coefficient for the driving pulley

Assembly that preserves conveyor
connections

Local velocity of the driving pulley used as
input

Pulleys are modeled as circles
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Conclusion

Presented today

Mechanics of a constrained cable via calculus of variations

Derivation of a cable element and its usage for friction and contact

Naive applications to various system and possible use

Perspective

Applications to more complex structures and geometry

Investigate other constitutive law and other governing equations

Develop periodic solutions tracking
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Open discussion
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