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Dynamics of a translating cable subjected to unilateral constraints, friction and
punctual loads

Technical context

o Cable-cars were aimed to provide an
alternative for public transportation

@ Maintenance of existing infrastructures

Scientifical knot

@ Lack of numerical tools dedicated to this
particular systems

o Few objective comparisons between models

Expectations

@ Depict some automatic designs considering the
full dynamics of an installation

; A
POMA, Eiffage

o Explain high amplitude of displacement 3
existing in reality Photo credit :
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Mechanics
[ 1]

Cable Mechanics

Derived from curvilinear domains : Slender structure — Parametrized curve

a(s)

q(SD)qumq(S[,)xL

Figure: A cable and its parametrization
M

Strain : £(S) = ||q'(S)|| -1 (1)
Bending :  x(S) = w/(S) = d/(S) — a;(S) (2)

Two key mechanisms :
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Cable Mechanics

Derived from curvilinear domains : Slender structure — Parametrized curve
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Two key mechanisms :

Strain :  £(S) = [|q'(S)|| — 1 — Positive since cables only support traction (1)
Bending :  x(S) = w/(S) = &/(S) — a{(S) — Useless for the cable case (2)
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Mechanics

Equations of motion

Derived from Lagrangian mechanics

o Kinetic energy
o Elastic energy
o Work of external forces

@ Non-compression condition

£ (a.qa0) ="a-q 3)

dt

* * * T T T
oL d oL d oL Oa A d | Oa A d as-i A
24 )

=~ 9q dSoq dt oq oq ' dS |oq

0<a(q,9,9) LA>0

d .. d ! <
= (o) = g([EA(Hq I=1)+2] m)”e

o< |ld'll-1Lx>0

(5)

What if a were to embed more constraints ?..
5/16



Mechanics

Equations of motion

Derived from Lagrangian mechanics

o Kinetic energy
o Elastic energy
@ Work of external forces

@ Non-compression condition
A

. =
£*(a,d',q,)) = gq-q +— (la']| = 1)° (3)

aL* d aL*  d oL dal d [BaTl d [9al
- d A+ A A

aq dS oq’ dt 0q aq ds (4)
0<a(g,q’,4) LA>0

d .o d / 7
= o (1A (] - 1)+ ||qfu) e

o< |ld'l|-1Lx>0

(5)

What if a were to embed more constraints ?..
5/16



Mechanics

Equations of motion

Derived from Lagrangian mechanics

o Kinetic energy

o Elastic energy

@ Work of external forces

@ Non-compression condition

EA 2
7(”‘1,”—1) +fe-q (3)

T T
oaT ], d foaT
oq’ dt | 99 (4)

£ (aqa)) = Sa-a+

aq dS oq’ dt 0q aq + ds
0<a(q,9,9) LA>0

* * * T
0:85 d oL d oL Oa A\ d

d .o d / 7
= o (1A (] - 1)+ ||qfu) e

o< |ld'l|-1Lx>0

(5)

What if a were to embed more constraints ?..
5/16



Mechanics

Equations of motion

Derived from Lagrangian mechanics

o Kinetic energy
o Elastic energy
o Work of external forces

@ Non-compression condition

0— oL* d oL* d oL*

. . . EA
£ @diaN) = Sa-a+ = (| - 1)*+f-a A (o] -1) @)
dal d [BaTl d [9al
— A+ —= | = A+ == A
aq dS | oq’ dt | 99 (4)

aq dS oq’ dt 0q
0<a(q,9,9) LA>0

i = oo (IEAI -1 +3] 2 )

ds

lla’ |l (5)

o< |ld'l|-1Lx>0

What if a were to embed more constraints ?..

5/16



Weak form of the equilibrium

Here we present a finite element for a cable system that can solve 5. Dropping the
constraints for a while, let us have a look to

piv= SEA(] - V)] +F. ®)

Considering a suitable weight function ¢, the equilibrium of an arbitrary cable segment
of length L. reads

/OLE’”'“"dS*/OLE([EA(IIq’Hfl)]He)-god5=o (@)

Taking an interpolation as

¢ =N®d.; v=Nv.; q=Nqc (8)

We obtain after simplification

Meve + K(qe)Qe —fe=0
Ge = Ve

9

which can be assembled with regards to boundary conditions and mesh considered.
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FEM
(o] le]

Compression issue with adding constraints

Even in statics, compressed equilibrium can occur without further considerations...
Why ?
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(o] le]
Compression issue with adding constraints

The global energy of the latter is given by

(Vitaz-1)-¢ w0

4a
T 121+ 422

a

ab

Potential energy of the weighing cable
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FEM
(o] le]

Compression issue with adding constraints

The global energy of the latter is given by

0= L(\/1+4a2—L>—G—>\ 4a

L24/1 + 422 L1+ 4232 (10)
10
2
0<AL<”1?431> >0

<0

a

Potential energy of the weighing cable
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FEM
ocoe

One strategy

One way to cope with this issue numerically is the combined use of iterative solver
with a conditional expression of stiffness matrices

ee(S) = IN'(S)ae| — 1 (11)
K. EA/OLe%dS L ee>0 12)
0 ; e<0
. Ke+EA/ MON N(lszf‘e;:(?)\:)gs) Nys | coso0 .

e N'(S\TN/
EA/OL %(Ns)gds . e <0

The latter allows tension only computation and has various applications.

8/16



Obstacle consideration

Examples
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Obstacle consideration
[ Jelele]

Local kinematics

The relative velocity between a node M and an obstacle point M’ at the contact may
be written as
u(M, M") = v(M) — vops(M’) (14)

which is decomposed along a local basis as

n :uy(M, M) =Hy(M, Mu(M, M’
) (M, M) = Hi (M, M (M, M) 5)
t cur(M,M")=Hs(M, M )u(M, M")
where t = [tl,tQ]T andn L t; Lty Ln.
The dynamics can be considered both in the local or in the global frame via
dv du "~
M— =f < — =f+Wr 16
FrARE A TE (16)
where W = VAVNN VAVNT is the Delassus operator given by
Wy Wrr

Wy = HyMHy ; Wyr = HyMH7 ; Wry = HrMHy ; Wrr = H-MH7  (17)
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Obstacle consideration
[e] Je]e]

Coulomb friction

Let us introduce the following sets

K={reR®, |Irr|| < pry} (18)
K*={ueR®, vreK, u-r>0} (19)
(20)

The contact is embedded into the following possibil-
ities

@ No contact: r=0and uy >0

o Sticking: re Kandu =20

o Sliding: r€e 9K — 0 and r;r = —aur

Credits: NSCD - Acary, V. & Brogliato B (must read)
A couple (u,r) is said to belong to C if it satisfies all above conditions i.e.
K*Su+pu|ur|lnLlrekK (21)
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Obstacle consideration
[e]e] le]

Stepping scheme

The dynamics obtained via FEM, coupled to a vector inequality are discretized in time
via the f-method

dv N o
0=M-- +C(q,v)v+K(q)g - f . {Mk(vk+1 —vi) —f=piy1
6-method

dt
such that g(q,t) >0 Q1 = Ak + hOvi + h(1 — O)vi g
(22)

where we have set

N 50 tht1
Mk:M+h9C+h9AKk,pk+1:/ dp
ty (23)
f =hof, 1 + h(1 — 0)fi — hCvy — hK,q — hPOAK v,
The key idea is to split the evolution into a smooth and a non-smooth part (according
to Lebesgue decomposition theorem)

M (vr — v) =Fi

R " (24)
M (Vi1 — Vf) =Py1 ~ Ugpr = ur +Wryyg
The cone complementarity formulation can be used as
K*>u+pu|ur|lnLlrekK (25)
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Obstacle consideration
[e]e]e] )

Solving the 2D-contact problem

In every iteration, contact and friction are solved via OSNSP1:

Ve = Vi + |\7|_1/f?k
uNf Hp (tx)“vr
uie = Hy () * vk
uFr = Hr(tk)%vr
Yaoe A , Solve LCP
0 < Wy AR 1 + Wt (BAN ki1 — A7) +ufy + eufy L Mis1 20 (26)
0 < —Wryrfy el T Worr (M"N k+1 5‘?) + “;’,fﬂ —uf LAY >0

0 < 2prfy )y =AY Lup,,; >0

i Hn T+ (l“ﬁ,kﬂ - 5\?) Hr' |, VaedA
0 , Va¢ A

Pk+1 =

My (Viy1 — vr) = Piq1

10One Step Non-Smooth Problem
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Applications
[ ]

Applications

@ Restitution coefficient < 1

@ Obstacle modeled as a cylinder (moving or
not)

E
<

Hanging cable subjected to a
cylinder obstacle
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Applications
[ ]

Applications
@ Restitution coefficient < 1
o Obstacle modeled as a cylinder (moving or
z = not)
= [SE=ES
e e
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L . &
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obstacle positions 0 100 200 300
x (m)

Examples of modes obtained
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Applications
[ ]

Applications

o Low friction coefficient for the driven pulley

@ High friction coefficient for the driving pulley

)U(t) o Assembly that preserves conveyor
connections

Belt-pulley system o Local velocity of the driving pulley used as
input

Pulleys are modeled as circles
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Applications
[ ]

Applications

Low friction coefficient for the driven pulley

@ High friction coefficient for the driving pulley

@ Assembly that preserves conveyor
connections

@ Local velocity of the driving pulley used as
input

o Pulleys are modeled as circles

Trajectory of one material point
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Conclusion
@0

Conclusion

Presented today

o Mechanics of a constrained cable via calculus of variations
o Derivation of a cable element and its usage for friction and contact

o Naive applications to various system and possible use

Perspective

@ Applications to more complex structures and geometry
o Investigate other constitutive law and other governing equations

@ Develop periodic solutions tracking
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Conclusion
oe

Open discussion
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