

école doctorale Sciences mécaniques et énergétiques, matériaux et géosciences (SMEMAG)

Direct parametrisation of invariant manifold with shell finite element: nonlinear dynamics of thin structures using reduced order modeling

Abundant application scenarios of thin structures

Where do we stand?

Normal form method

- Touzé C. A normal form approach for nonlinear normal modes
- Vizzaccaro A, et al. **Direct computation** of nonlinear mapping via **normal form** for reduced-order models of finite element nonlinear structures

DPIM (Direct parametrisation of invariant manifold)

- Opreni A, et al. High-order **direct parametrisation of invariant manifolds** for model order reduction of finite element structures: application to generic forcing terms and parametrically excited systems
- Vizzaccaro A, et al. Direct parametrisation of invariant manifolds for generic non-autonomous systems including superharmonic resonances

Shell finite element modeling

- Fewer degrees of freedom compared to solid elements
- More convenient definition of the kinematic description of thin structures in the transverse direction
- Introduce assumed natural strain to prevent Poisson locking

Nonlinear dynamics solution methods

- Increment harmonic balance method (For full order models)
- Collocation method (For **reduced order models**)

These theories lay the foundation for our development of a framework for solving thin structures !

Curved shell structure modeling: governing equations

Positional relationship

$$\mathbf{X}(\theta^{\alpha}, \theta^{3}) = \mathbf{R}(\theta^{\alpha}) + \theta^{3} \mathbf{a}_{3}(\theta^{\alpha}), \alpha = 1, 2$$
$$\mathbf{x}(\theta^{\alpha}, \theta^{3}) = \mathbf{r}(\theta^{\alpha}) + \theta^{3} \tilde{\mathbf{a}}_{3}(\theta^{\alpha}), \alpha = 1, 2$$

Covariant base tensor

$$\mathbf{G}_{\alpha} = \mathbf{X}_{\alpha} = \mathbf{a}_{\alpha} + \theta^{3} \mathbf{a}_{3,\alpha} \quad \mathbf{g}_{\alpha} = \mathbf{x}_{\alpha} = \tilde{\mathbf{a}}_{\alpha} + \theta^{3} \tilde{\mathbf{a}}_{3,\alpha}$$
$$\mathbf{G}_{3} = \mathbf{X}_{3} = \mathbf{a}_{3} \qquad \mathbf{g}_{3} = \mathbf{x}_{\alpha}, 3 = \tilde{\mathbf{a}}_{3}$$

Green-Lagrange strain

$$E_{ij} = \frac{1}{2} \left(\mathbf{g}_i \cdot \mathbf{g}_j - \mathbf{G}_i \cdot \mathbf{G}_j \right)$$
$$E_{ij} = \frac{1}{2} \left(\mathbf{G}_i \cdot \frac{\partial \mathbf{u}}{\partial \theta^j} + \mathbf{G}_j \cdot \frac{\partial \mathbf{u}}{\partial \theta^i} + \frac{\partial \mathbf{u}}{\partial \theta^i} \frac{\partial \mathbf{u}}{\partial \theta^j} \right)$$

Constitutive relation

 $\mathbf{S} = \mathbb{D} : \mathbf{E} \quad \text{Traditional shell elements lead to locking issues}$ $E_{33}^{(0)} + \theta^3 E_{33}^{(1)} \simeq -\frac{D^{33ij}}{D^{3333}} (E_{ij}^{(0)} + \theta^3 E_{ij}^{(1)})$

Curved shell structure modeling: finite element discretisation

Shape function interpolation

Green-Lagrange strain

$$\{\mathbf{E}\} = \left([\mathbf{B}_{l}] + \frac{1}{2} [\mathbf{B}_{nl}(\mathbf{u})] \right) \{\mathbf{u}^{(e)}\} = \left([\mathbf{R}] + \frac{1}{2} [\mathbf{A}(\mathbf{u})] \right) [\mathbf{\Xi}] \{\mathbf{u}^{(e)}\}$$

 $\{\delta \mathbf{E}\} = ([\mathbf{B}_{l}] + [\mathbf{B}_{nl}(\mathbf{u})]) \{\mathbf{u}^{(e)}\} = ([\mathbf{R}] + [\mathbf{A}(\mathbf{u})])[\mathbf{\Xi}] \{\delta \mathbf{u}^{(e)}\}$

Interpolation of enhanced assumed strain

$$\tilde{E} = [\mathbf{B}_{\alpha}] \{ \alpha^{(e)} \} \text{ with } \tilde{E}_{33} = \alpha_1 + \alpha_2 \theta^1 + \alpha_3 \theta^2 + \alpha_4 \theta^1 \theta^2$$

$$N^i = \frac{1}{4} (1 + \theta^1 \theta^1_i) (1 + \theta^2 \theta^2_i) (\theta^1 \theta^1_i + \theta^2 \theta^2_i - 1) \text{ with } i = 1, 2, 3, 4$$

$$N^i = \frac{1}{2} (1 - (\theta^1)^2) (1 + \theta^2 \theta^2_i) \text{ with } i = 5, 7$$

$$N^i = \frac{1}{2} (1 + \theta^1 \theta^1_i) (1 - (\theta^2)^2) \text{ with } i = 6, 8$$

$$\theta^2 = -1$$

$$\theta^2 = -1$$

$$\theta^3 = +1$$

$$\theta^3 = +1$$

$$\theta^3 = +1$$

$$\theta^1 = +1$$

$$\theta^1 = +1$$

$$\theta^2 = -1$$

Development of the dynamic equation

 $\{\mathbf{u}\} = [\mathbf{N}]\{\mathbf{u}^{(e)}\}, \quad \{\delta \mathbf{u}\} = [\mathbf{N}]\{\delta \mathbf{u}^{(e)}\}, \quad \{\nabla \mathbf{u}\} = [\mathbf{\Xi}]\{\mathbf{u}^{(e)}\} \quad [\mathbf{M}]\{\ddot{\mathbf{U}}\} + [\mathbf{C}]\{\dot{\mathbf{U}}\} + [\mathbf{K}_{l}\{\mathbf{U}\} + \{\mathbf{G}(\mathbf{U},\mathbf{U})\} + \{\mathbf{H}(\mathbf{U},\mathbf{U},\mathbf{U})\} = \{\mathbf{F}(t)\}$

where

$$\begin{split} [\mathbf{M}] &= \bigwedge_{k=1}^{N} \int_{\Omega} \rho[\mathbf{N}]^{T} [\mathbf{N}] d\Omega \\ [\mathbf{K}_{l}] &= \bigwedge_{k=1}^{N} \left(\int_{\Omega} [\mathbf{B}_{l}]^{T} [\mathbf{D}] [\mathbf{B}_{l}] d\Omega - \int_{\Omega} [\mathbf{B}_{l}]^{T} [\mathbf{D}] [\mathbf{B}_{\alpha}] d\Omega \times [\mathbf{k}_{\alpha\alpha}]^{-1} \times \int_{\Omega} [\mathbf{B}_{\alpha}]^{T} [\mathbf{D}] [\mathbf{B}_{l}] d\Omega \right) \\ \{\mathbf{G}(\mathbf{U}, \mathbf{U})\} &= \bigwedge_{k=1}^{N} \left(\int_{\Omega} [\mathbf{B}_{nl}(\mathbf{u})]^{T} [\mathbf{D}] [\mathbf{B}_{l}] d\Omega - \frac{1}{2} \int_{\Omega} [\mathbf{B}_{l}]^{T} [\mathbf{D}] [\mathbf{B}_{nl}(\mathbf{u})] d\Omega \\ &- \frac{1}{2} \int_{\Omega} [\mathbf{B}_{l}]^{T} [\mathbf{D}] [\mathbf{B}_{\alpha}] d\Omega \times [\mathbf{k}_{\alpha\alpha}]^{-1} \times \int_{\Omega} [\mathbf{B}_{\alpha}]^{T} [\mathbf{D}] [\mathbf{B}_{ll}(\mathbf{u})] d\Omega \\ &- \int_{\Omega} [\mathbf{B}_{nl}(\mathbf{u})]^{T} [\mathbf{D}] [\mathbf{B}_{\alpha}] d\Omega \times [\mathbf{k}_{\alpha\alpha}]^{-1} \times \int_{\Omega} [\mathbf{B}_{\alpha}]^{T} [\mathbf{D}] [\mathbf{B}_{l}] d\Omega \Big) \{\mathbf{u}^{(e)}\} \\ \{\mathbf{H}(\mathbf{U}, \mathbf{U}, \mathbf{U})\} &= \bigwedge_{k=1}^{N} \left(\frac{1}{2} \int_{\Omega} [\mathbf{B}_{nl}(\mathbf{u})]^{T} [\mathbf{D}] [\mathbf{B}_{nl}(\mathbf{u})] d\Omega \\ &- \frac{1}{2} \int_{\Omega} [\mathbf{B}_{nl}(\mathbf{u})]^{T} [\mathbf{D}] [\mathbf{B}_{\alpha}] d\Omega \times [\mathbf{k}_{\alpha\alpha}]^{-1} \times \int_{\Omega} [\mathbf{B}_{\alpha}]^{T} [\mathbf{D}] [\mathbf{B}_{nl}(\mathbf{u})] \Big) \{\mathbf{u}^{(e)}\} \\ [\mathbf{C}] &= p_{1} [\mathbf{M}] + p_{2} [\mathbf{K}_{l}] \end{split}$$

Establish standard nonlinear dynamic equations to address DPIM solutions

Direct parametrisation of invariant manifold

Order-1 homological equation

$$\begin{bmatrix} \tilde{\lambda} \mathbf{B} - \mathbf{A} & \mathbf{B} \mathbf{\Phi}_{\mathcal{R}} & \mathbf{0} \\ \mathbf{\Phi}_{\mathcal{R}}^{\dagger} \mathbf{B} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{W}^{(1,d+1)} \\ \mathbf{f}_{\mathcal{R}}^{(1,d+1)} \\ \mathbf{f}_{\mathcal{R}}^{(1,d+1)} \end{bmatrix} = \begin{bmatrix} \mathbf{\Upsilon} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$

Order-p homological equation

$$\begin{bmatrix} \sigma^{(p,k)} \mathbf{B} - \mathbf{A} & \mathbf{B} \mathbf{\Phi}_{\mathcal{R}} & \mathbf{0} \\ \mathbf{\Phi}_{\mathcal{R}}^{\dagger} \mathbf{B} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{W}^{(p,k)} \\ \mathbf{f}_{\mathcal{R}}^{(p,k)} \\ \mathbf{f}_{\mathcal{R}}^{(p,k)} \end{bmatrix} = \begin{bmatrix} \mathbf{R}^{(p,k)} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$

Numerical example: modal analysis

Numerical example: primary mode

Numerical example: 1:3 superharmonic resonance

Numerical example: 1:2 superharmonic resonance

Numerical example: 1:2 superharmonic resonance

Highlights

1. Established a **shell element model** based on DPIM for application in reduced-order methods for nonlinear dynamics of thin structures

2. By comparing with solid elements and full-order model computation methods, we verified the **effectiveness of the shell element** developed in this work in reduced-order methods

3. Compared to solid elements, the **computational cost is lower**

4. The kinematic assumptions of thin structures can be conveniently applied in the thickness direction

Future works

1. Based on the validation results of this work, we will proceed to study more **practical engineering problems** concerning complex nonlinear geometrically thin structures, which are not convenient to analyze using solid elements

2. On this basis, we will also consider more complex working conditions, including **fluid-structure interaction** problems and **material nonlinearity** issues

ÉCOLE DOCTORALE Sciences mécaniques et énergétiques, matériaux et géosciences (SMEMAG)

Thanks for your listening

17-18 octobre 2024 Journées annuelles du GdR EX-MODELI | Lyon

ReporterZixu XIASupervisorA/Prof. Yu CONG