

Computational methods for whirl flutter analysis urban air mobility vehicles

Charles Jacquet, Camille Denoël, <u>Loïc Salles</u> Département d'aéronautique et mécanique, Université de Liège

- Work started in 2020 at Imperial College London with Professor Vahdati
- Since 2020, I have been trying to work on this topic...

https://vertical-aerospace.com/wp-content/uploads/2024/07/Vertical-Aerospace-Begins-Testing.pdf

- Future aircraft engine
- Floating wind turbine
- Industrial air-cooling system

- Whirl Flutter is an aeroelastic instability in rotating systems, where the coupling between the aerodynamic forces and gyroscopic effects causes self-excited oscillations.
- This instability arises from the interaction between the rotor's lateral and torsional motions, with gyroscopic effects playing a critical role.

Lockheed L-188 Electra

- Introduction: context, objectives, methods
- Formulation of rotating structures using the floating frame concept
- Implementation and verification
- Time integration using Newmark schemes
- Preliminary results
- Conclusions and Future work

Structure in Rotation coupled to a stationary frame

Structure in Rotation – Different approaches

Which formulation to use?

Rigid Multibody Dynamics

Finite element model for rotating structure

- Floating Frame Reference
- Absolute Nodal Coordinate Formulation
- Quaternion
- Lie Group
- ...

In this work: Beam element

Ordinary Differential Equation with periodic coefficients

 $\mathbf{M}(t)\ddot{\mathbf{q}} + \mathbf{D}(t)\dot{\mathbf{q}} + \mathbf{K}(t)\mathbf{q} = \mathbf{0}$

List of approaches

Hill's method

- Numerical time integration
- Linearised system at each time step (Qblade)
- Method based on Floquet's theory using numerical time scheme
- Coleman Transformationor multiblade coordinate transformation

$$q_0 = \frac{1}{N} \sum_{b=1}^{N} q_b, \qquad q_n^c = \frac{2}{N} \sum_{b=1}^{N} q_b \cos n\psi_b, \qquad q_n^s = \frac{2}{N} \sum_{b=1}^{N} q_b \sin n\psi_b$$

SIEMENS

28/10/2024

- Build a finite element model of the time coupling ODE between the stationary and rotating structures.
- We will use the Floquet theory and study the stability thanks to the eigenvalues of the monodromy matrix computed using a Newmark scheme

- Each of the rotating components is expressed in a floating frame of reference.
- The position vector of a rotating structural component with respect to a stationary component is written as

 $\bar{\mathbf{r}} = \mathbf{s} + (\mathbf{I} + \mathbf{B}(\beta))\mathbf{H}(\mathbf{\Omega}\mathbf{t})(\mathbf{r} + \boldsymbol{\rho})$

$$V = \frac{1}{2} \int_{V} \boldsymbol{\sigma}_{0}: \boldsymbol{\epsilon}(\boldsymbol{\rho}) dV + \frac{1}{2} \int_{V} \boldsymbol{\sigma}_{d}^{T}: \boldsymbol{\epsilon}(\boldsymbol{\rho}) dV$$

No time coupling on elastic and geometric stiffness matrices

Theory of time dependent mechanical coupling

 $\bar{\mathbf{r}} = \mathbf{s} + (\mathbf{I} + \mathbf{B}(\boldsymbol{\beta}))\mathbf{H}(\Omega t)(\mathbf{r} + \boldsymbol{\rho})$

We introduce

 $B_0(\Omega t)\beta = B(\beta)H(\Omega t)r$ $\bar{\mathbf{r}} = \mathbf{s} + \mathbf{B}_0\beta + \mathbf{H}(\Omega t)\boldsymbol{\rho} + \mathbf{H}(\Omega t)r + B(\beta)H(\Omega t)\boldsymbol{\rho}$

The time derivative of the position derivative is given by:

 $\dot{\bar{r}} = \dot{s} + B_0 \dot{\beta} + \dot{B}_0 \beta + \dot{H} \rho + H \dot{\rho} + B H \dot{\rho} + \dot{H} r$

We define the operator

 $\mathbf{P} = [\mathbf{I} \ \mathbf{B}_0 \ \mathbf{H} \ \mathbf{H}]$

Time coupling on structural mass matrix, structural gyroscopic matrix and centrifugal stiffness matrix.

$$T = \frac{1}{2}m(\dot{\mathbf{w}}\mathbf{P}^{\mathsf{T}}\mathbf{P}\dot{\mathbf{w}} + \mathbf{w}\dot{\mathbf{P}}^{\mathsf{T}}\dot{\mathbf{P}}\mathbf{w} + 2\mathbf{w}^{\mathsf{T}}\dot{\mathbf{P}}^{\mathsf{T}}\mathbf{P}\dot{\mathbf{w}})$$

The fully coupled Lagrange equations gives the following equation of motion without damping

$$m \begin{bmatrix} \mathbf{I} & \mathbf{B}_{0} & \mathbf{H} \\ \mathbf{B}_{0} & \mathbf{B}_{0}^{T} \mathbf{B}_{0} & \mathbf{B}_{0}^{T} \mathbf{H} \\ \mathbf{H}^{T} & \mathbf{H}^{T} \mathbf{B}_{0} & \mathbf{I} \end{bmatrix} \begin{pmatrix} \ddot{\mathbf{s}} \\ \ddot{\boldsymbol{\beta}} \\ \ddot{\boldsymbol{\rho}} \end{pmatrix} + 2m\Omega \begin{bmatrix} 0 & \overline{\mathbf{B}}_{0} & \overline{\mathbf{H}} \\ 0 & \mathbf{B}_{0}^{T} \overline{\mathbf{B}}_{0} & \mathbf{B}_{0}^{T} \overline{\mathbf{H}} \\ 0 & \mathbf{H}^{T} \overline{\mathbf{B}}_{0} & \mathbf{H}^{T} \end{bmatrix} \begin{pmatrix} \dot{\mathbf{s}} \\ \dot{\boldsymbol{\beta}} \\ \dot{\boldsymbol{\rho}} \end{pmatrix} + m\Omega^{2} \begin{bmatrix} 0 & \overline{\mathbf{B}}_{0} & \overline{\mathbf{H}} \\ 0 & \mathbf{B}_{0}^{T} \overline{\mathbf{B}}_{0} & \mathbf{B}_{0}^{T} \\ 0 & \mathbf{H}^{T} \overline{\mathbf{B}}_{0} & \mathbf{H}^{T} \overline{\mathbf{H}} \end{bmatrix} \begin{pmatrix} \mathbf{s} \\ \mathbf{\beta} \\ \mathbf{\rho} \end{pmatrix} + \mathbf{K}_{T} \begin{pmatrix} \mathbf{s} \\ \mathbf{\beta} \\ \mathbf{\rho} \end{pmatrix} = \begin{pmatrix} -m \overline{\mathbf{H}} \mathbf{r} \\ -m \mathbf{B}_{0}^{T} \overline{\mathbf{H}} \mathbf{r} \\ \mathbf{f}_{\rho} \end{pmatrix}$$

Simple Rotating beam* and ground resonance model

Verification of the different terms

 $\mathbf{M}(t)\ddot{\mathbf{q}} + \mathbf{D}(t)\dot{\mathbf{q}} + \mathbf{K}(t)\mathbf{q} = \mathbf{0}$

Newmark scheme between t_n and t_{n+1}

Transition matrix
$$\mathbf{D}_n = \mathbf{H}_1^{-1} \mathbf{H}_0$$

$$\mathbf{Q}_{n+1} = \mathbf{D}_{n}\mathbf{Q}_{n}$$

$$\mathbf{H}_{1} = \begin{bmatrix} \mathbf{M} + \beta h^{2}\mathbf{K}_{n+1} & \beta h^{2}\mathbf{D}_{n+1} \\ \gamma h \mathbf{K}_{n+1} & \mathbf{M} + \gamma h \mathbf{D}_{n+1} \end{bmatrix}$$

$$\mathbf{H}_{1} = \begin{bmatrix} \mathbf{M} - \left(\frac{1}{2} - \beta\right)h^{2}\mathbf{K}_{n} & h\mathbf{M} - \left(\frac{1}{2} - \beta\right)h^{2}\mathbf{D}_{n} \\ -(1 - \gamma)h\mathbf{K}_{n} & \mathbf{M} - (1 - \gamma)h\mathbf{D}_{n} \end{bmatrix}$$
Computation of accelerations
$$\mathbf{S} = \mathbf{M} + h\gamma \mathbf{C} + h^{2}\beta \mathbf{K}$$

$$\mathbf{S} = \mathbf{M} + h\gamma \mathbf{C} + h^{2}\beta \mathbf{K}$$

$$\mathbf{S} = \mathbf{M} + h\gamma \mathbf{C} + h^{2}\beta \mathbf{K}$$

$$\mathbf{S} = \mathbf{M} + h\gamma \mathbf{C} + h^{2}\beta \mathbf{K}$$

$$\mathbf{S} = \mathbf{M} + h\gamma \mathbf{C} + h^{2}\beta \mathbf{K}$$

$$\mathbf{S} = \mathbf{M} + h\gamma \mathbf{C} + h^{2}\beta \mathbf{K}$$

$$\mathbf{S} = \mathbf{M} + h\gamma \mathbf{C} + h^{2}\beta \mathbf{K}$$

$$\mathbf{S} = \mathbf{M} + h\gamma \mathbf{C} + h^{2}\beta \mathbf{K}$$

$$\mathbf{S} = \mathbf{M} + h\gamma \mathbf{C} + h^{2}\beta \mathbf{K}$$

$$\mathbf{S} = \mathbf{M} + h\gamma \mathbf{C} + h^{2}\beta \mathbf{K}$$

$$\mathbf{S} = \mathbf{M} + h\gamma \mathbf{C} + h^{2}\beta \mathbf{K}$$

$$\mathbf{S} = \mathbf{M} + h\gamma \mathbf{C} + h^{2}\beta \mathbf{K}$$

$$\mathbf{S} = \mathbf{M} + h\gamma \mathbf{C} + h^{2}\beta \mathbf{K}$$

$$\mathbf{S} = \mathbf{M} + h\gamma \mathbf{C} + h^{2}\beta \mathbf{K}$$

$$\mathbf{S} = \mathbf{M} + h\gamma \mathbf{C} + h^{2}\beta \mathbf{K}$$

$$\mathbf{S} = \mathbf{M} + h\gamma \mathbf{C} + h^{2}\beta \mathbf{K}$$

$$\mathbf{S} = \mathbf{M} + h\gamma \mathbf{C} + h^{2}\beta \mathbf{K}$$

$$\mathbf{M} + h\gamma \mathbf{M} = \mathbf{M} + h^{2}\beta \mathbf{M}$$

$$\mathbf{M} = \mathbf{M} = \mathbf{M} + h^{2}\beta \mathbf{M}$$

M, **C**, **K**

 $\mathbf{q}_0, \dot{\mathbf{q}}_0$

Compute $\ddot{\mathbf{q}}_0$

Time incrementation

 $t_{n+1} = t_n + h$

Prediction

 $\dot{\mathbf{q}}_{n+1}^* = \dot{\mathbf{q}}_n + (1 - \gamma) \ h \ \ddot{\mathbf{q}}_n$ $\mathbf{q}_{n+1}^* = \mathbf{q}_n + h \ \dot{\mathbf{q}}_n + (0.5 - \beta) \ h^2 \ \ddot{\mathbf{q}}_n$

Verification: Ground Resonance model

Rigid model

Parameter	Value	Units
Number of blade N	4	-
Rotor radius R	5.64	m
Operational rotor speed Ω_0	31.42	rads ⁻¹
Blade mass m_b	94.9	kg
Blade mass moment S_b	281.1	kg m
Blade mass moment of inertia I_b	1084.7	kg m ²
Lag hinge offset e	0.3048	m
Longitudinal hub mass M_x	8026.6	kg
Lateral hub mass M_y	3283.6	kg
Longitudinal hub spring k_x	1240481.08	N/m
Lateral hub spring k_y	1240481.08	N/m
Lag damper c_b	4067.5	mNs/rad

FE model parameters

Parameter	Value	Units
Number of blade N	4	-
Rotor radius R	5.64	m
Operational rotor speed Ω_0	31.42	$rads^{-1}$
Beam diameter D	0.026	m
Young modulus	210	GPa
Density	7800	kgm ³
Poisson coefficient	0.3	-

- Stability of the GR model
- Equal stability prediction

Relative rotor speed Ω/Ω_0 [-]

Rigid model – Runge-Kutta

FE model – Runge-Kutta

Equivalent behaviour

- More crossing with 0 axis with the FE model due to higher number of dof
- Validation of the partial coupling using the established FE model using Runge-Kutta integration scheme

- Problem with each of the related Newmark algorithm to find consistent results
- Conditionning of the coupled matrices ?
- High modal frequencies ?

To be further investigated in a future work.

- Formulation of system with coupling between rotating frame and static frame
- Implementation in a finite element framework
- Numerical scheme for time integration
- Preliminary results on stability analysis of coupling system

Find out more about why the Newmark scheme and relative do not work.

Use reduction method such as Craig-Bampton to reduce computation time.

Use aerodynamic force to get a better prediction of the whirl-flutter instability.

Validate the code using an experimental setup.

Computational methods for whirl flutter analysis urban air mobility vehicles

Charles Jacquet, Camille Denoël, <u>Loïc Salles</u> Département d'aéronautique et mécanique, Université de Liège