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Context

Work started in 2020 at Imperial College London with Professor Vahdati

Since 2020, I have been trying to work on this topic…
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Other applications

Future aircraft engine

Floating wind turbine

Industrial air-cooling system

…
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What is Whirl Flutter

Whirl Flutter is an aeroelastic instability in rotating systems, where the coupling
between the aerodynamic forces and gyroscopic effects causes self-excited
oscillations.

This instability arises from the interaction between the rotor's lateral and
torsional motions, with gyroscopic effects playing a critical role.
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Outline

Introduction: context, objectives, methods

Formulation of rotating structures using the floating frame concept

Implementation and verification

Time integration using Newmark schemes

Preliminary results

Conclusions and Future work
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Structure in Rotation coupled to a stationary frame
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Structure in Rotation – Different approaches

Which formulation to use?

Rigid Multibody Dynamics

Finite element model for rotating structure
Floating Frame Reference

Absolute Nodal Coordinate Formulation

Quaternion

Lie Group

…

In this work: Beam element

28/10/2024 7

𝜌



Stability analysis – Strategy 1

Ordinary Differential Equation with periodic coefficients

𝐌 𝑡 ሷ𝐪 + 𝐃 𝑡 ሶ𝐪 + 𝐊 𝑡 𝐪 = 𝟎

List of approaches
Numerical time integration

Linearised system at each time step (Qblade)

Method based on Floquet’s theory using numerical time scheme 

Coleman Transformationor multiblade coordinate transformation
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Stability analysis – Strategy 2

Build a finite element model of the time coupling ODE between the stationary 
and rotating structures.

We will use the Floquet theory and study the stability thanks to the eigenvalues 
of the monodromy matrix computed using a Newmark scheme
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Theory of time dependent mechanical coupling

Each of the rotating components is expressed in a floating frame of reference.

The position vector of a rotating structural component with respect to a stationary component is 
written as

ҧ𝐫 = 𝐬 + 𝐈 + 𝐁(𝛽) 𝐇(𝛀𝐭) 𝐫 + 𝛒

The potential energy is
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No time coupling on elastic and geometric stiffness matrices
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Theory of time dependent mechanical coupling

ҧ𝐫 = 𝐬 + 𝐈 + 𝐁(𝜷) 𝐇 Ωt 𝐫 + 𝛒

We introduce
𝐵0 Ω𝑡 𝛽 = 𝐵 𝛽 𝐻 Ω𝑡 𝑟

ҧ𝐫 = 𝐬 + 𝐁𝟎𝜷 + 𝐇 Ωt 𝝆 + 𝐇 Ωt 𝒓 + 𝑩 𝜷 𝑯 𝛀𝐭 𝝆

The time derivative of the position derivative is given by:

ሶ ҧ𝑟 = ሶ𝑠 + 𝐵0 ሶ𝛽 + ሶ𝐵0𝛽 + ሶ𝐻𝜌 + 𝐻 ሶ𝜌 + 𝐵𝐻 ሶ𝜌 + ሶ𝐻𝑟

We define the operator
𝐏 = 𝐈 𝐁𝟎 𝐇𝐇

Time coupling on structural mass matrix, structural gyroscopic matrix and centrifugal stiffness matrix.

𝑇 =
1

2
𝑚 ሶ𝐰𝐏𝐓𝐏 ሶ𝐰 + 𝐰 ሶ𝐏𝐓 ሶ𝐏𝐰 + 2𝐰𝐓 ሶ𝐏𝐓𝐏 ሶ𝐰
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Theory of time dependent mechanical coupling

The fully coupled Lagrange equations gives the following equation of motion 
without damping
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Verification on the partial coupling

Simple Rotating beam* and ground resonance model
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Verification of the different terms
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Time integration

𝐌 𝑡 ሷ𝐪 + 𝐃 𝑡 ሶ𝐪 + 𝐊 𝑡 𝐪 = 𝟎

Newmark scheme between 𝑡𝑛 and 𝑡𝑛+1

𝐐𝑛+1 = 𝐃𝑛𝐐𝑛

Transition matrix 𝐃𝑛 = 𝐇1
−1𝐇0

𝐇1 =
𝐌+ 𝛽ℎ2𝐊𝑛+1 𝛽ℎ2𝐃𝑛+1

𝛾ℎ𝐊𝑛+1 𝐌+ 𝛾ℎ𝐃𝑛+1

𝐇0 =
𝐌−

1

2
− 𝛽 ℎ2𝐊𝑛 ℎ𝐌 −

1

2
− 𝛽 ℎ2𝐃𝑛

− 1 − 𝛾 ℎ𝐊𝑛 𝐌− 1 − 𝛾 ℎ𝐃𝑛
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Compute ሷ𝐪0

Time incrementation
𝑡𝑛+1 = 𝑡𝑛 + ℎ

Prediction
ሶ𝐪𝑛+1
∗ = ሶ𝐪𝑛 + 1 − 𝛾 ℎ ሷ𝐪𝑛

𝐪𝑛+1
∗ = 𝐪𝑛 + ℎ ሶ𝐪𝑛 + 0.5 − 𝛽 ℎ2 ሷ𝐪𝑛

Computation of accelerations
𝐒 = 𝐌+ ℎ 𝛾 𝐂 + ℎ2 𝛽 𝐊
𝐒 ሷ𝐪𝑛+1 = 𝐩𝑛+1 − 𝐂 ሶ𝐪𝑛+1

∗ − 𝐊 𝐪𝑛+1
∗

Correction
ሶ𝐪𝑛+1 = ሶ𝐪𝑛+1

∗ + ℎ 𝛾 ሷ𝐪𝑛+1
𝐪𝑛+1 = 𝐪𝑛+1

∗ + ℎ2 𝛽 ሷ𝐪𝑛+1

𝐌, 𝐂, 𝐊
𝐪0, ሶ𝐪0



Verification: Ground Resonance model
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FE model parameters

Rigid model



Ground Resonance with a rigid model
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Newmark Runge-Kutta
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GR model – Results (1)
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Rigid model – Runge-Kutta FE model – Runge-Kutta

• Stability of the GR model 

• Equal stability prediction 



GR model – Results (2)

Equivalent behaviour 

More crossing with 0 axis with the FE model due to higher number of dof

Validation of the partial coupling using the established FE model using Runge-
Kutta integration scheme
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Rigid model – Runge-Kutta FE model – Runge-Kutta



GR model – Results (3)
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FE model – Newmark

• Problem with each of the related Newmark algorithm to find consistent results

• Conditionning of the coupled matrices ? 

• High modal frequencies ? To be further investigated in a future work.

Ω

Ω0
= 0.8
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Conclusions

Formulation of system with coupling between rotating frame and static frame

Implementation in a finite element framework

Numerical scheme for time integration

Preliminary results on stability analysis of coupling system
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Future work

Find out more about why the Newmark scheme and relative do not work. 

Use reduction method such as Craig-Bampton to reduce computation time.

Use aerodynamic force to get a better prediction of the whirl-flutter instability.

Validate the code using an experimental setup.
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