

Computational methods for whirl flutter analysis *urban air mobility vehicles*

Charles Jacquet, Camille Denoël, Loïc Salles Département d'aéronautique et mécanique, Université de Liège

- Work started in 2020 at Imperial College London with Professor Vahdati \blacktriangleright
- Since 2020, I have been trying to work on this topic...

28/10/2024 <https://vertical-aerospace.com/wp-content/uploads/2024/07/Vertical-Aerospace-Begins-Testing.pdf> 2

- **Future aircraft engine**
- **Floating wind turbine**
- Industrial air-cooling system \blacktriangleright

…

- Whirl Flutter is an aeroelastic instability in rotating systems, where the coupling between the aerodynamic forces and gyroscopic effects causes self-excited oscillations.
- This instability arises from the interaction between the rotor's lateral and torsional motions, with gyroscopic effects playing a critical role.

Lockheed L-188 Electra

- Introduction: context, objectives, methods
- **Formulation of rotating structures using the floating frame concept**
- **Implementation and verification**
- Time integration using Newmark schemes
- **Preliminary results**
- Conclusions and Future work \blacktriangleright

Structure in Rotation coupled to a stationary frame

Structure in Rotation – Different approaches

Which formulation to use?

Rigid Multibody Dynamics

Finite element model for rotating structure

- Floating Frame Reference
- Absolute Nodal Coordinate Formulation
- **Quaternion**
- Lie Group
- …

In this work: Beam element

Ordinary Differential Equation with periodic coefficients \blacktriangleright

 $\mathbf{M}(t)\ddot{\mathbf{q}} + \mathbf{D}(t)\dot{\mathbf{q}} + \mathbf{K}(t)\mathbf{q} = \mathbf{0}$

List of approaches

- Numerical time integration
- Linearised system at each time step (Qblade)
- Method based on Floquet's theory using numerical time scheme
- Coleman Transformationor multiblade coordinate transformation

$$
q_0 = \frac{1}{N} \sum_{b=1}^N q_b, \qquad q_n^c = \frac{2}{N} \sum_{b=1}^N q_b \cos n\psi_b, \qquad q_n^s = \frac{2}{N} \sum_{b=1}^N q_b \sin n\psi_b
$$

SIEMENS

SOL414 Rotor Dynamics

Hill's method

- Build a finite element model of the time coupling ODE between the stationary and rotating structures.
- ▶ We will use the Floquet theory and study the stability thanks to the eigenvalues of the monodromy matrix computed using a Newmark scheme

- Each of the rotating components is expressed in a floating frame of reference. Þ
- The position vector of a rotating structural component with respect to a stationary component is written as

 $\overline{\mathbf{r}} = \mathbf{s} + (\mathbf{I} + \mathbf{B}(\beta))\mathbf{H}(\Omega t)(\mathbf{r} + \mathbf{\rho})$

$$
V = \frac{1}{2} \int\limits_V \boldsymbol{\sigma}_0 : \boldsymbol{\epsilon}(\boldsymbol{\rho}) dV + \frac{1}{2} \int\limits_V \boldsymbol{\sigma}_d^T : \boldsymbol{\epsilon}(\boldsymbol{\rho}) dV
$$

No time coupling on elastic and geometric stiffness matrices

 $\bar{\mathbf{r}} = \mathbf{s} + (\mathbf{I} + \mathbf{B}(\boldsymbol{\beta}))\mathbf{H}(\Omega t)(\mathbf{r} + \boldsymbol{\rho})$

We introduce

 $B_0(\Omega t)\beta = B(\beta)H(\Omega t)r$ $\bar{\mathbf{r}} = \mathbf{s} + \mathbf{B}_0 \boldsymbol{\beta} + \mathbf{H}(\Omega t) \boldsymbol{\rho} + \mathbf{H}(\Omega t) \mathbf{r} + \boldsymbol{B}(\boldsymbol{\beta}) \mathbf{H}(\Omega t) \boldsymbol{\rho}$

The time derivative of the position derivative is given by:

 $\dot{\bar{r}} = \dot{s} + B_0 \dot{\beta} + \dot{B}_0 \beta + \dot{H} \rho + H \dot{\rho} + BH \dot{\rho} + \dot{H} r$

We define the operator

 $P = [IB_0 H H]$

Time coupling on structural mass matrix, structural gyroscopic matrix and centrifugal stiffness matrix.

$$
T = \frac{1}{2}m(\dot{\mathbf{w}}\mathbf{P}^{\mathsf{T}}\mathbf{P}\dot{\mathbf{w}} + \mathbf{w}\dot{\mathbf{P}}^{\mathsf{T}}\dot{\mathbf{P}}\mathbf{w} + 2\mathbf{w}^{\mathsf{T}}\dot{\mathbf{P}}^{\mathsf{T}}\mathbf{P}\dot{\mathbf{w}})
$$

The fully coupled Lagrange equations gives the following equation of motion \blacktriangleright without damping

$$
m\begin{bmatrix} \mathbf{I} & \mathbf{B}_0 & \mathbf{H} \\ \mathbf{B}_0 & \mathbf{B}_0^T \mathbf{B}_0 & \mathbf{B}_0^T \mathbf{H} \\ \mathbf{H}^T & \mathbf{H}^T \mathbf{B}_0 & \mathbf{I} \end{bmatrix} \begin{Bmatrix} \ddot{\mathbf{s}} \\ \ddot{\boldsymbol{\beta}} \\ \ddot{\boldsymbol{\beta}} \end{Bmatrix} + 2m\Omega \begin{bmatrix} 0 & \overline{\mathbf{B}}_0 & \overline{\mathbf{H}} \\ 0 & \mathbf{B}_0^T \overline{\mathbf{B}}_0 & \mathbf{B}_0^T \overline{\mathbf{H}} \\ 0 & \mathbf{H}^T \overline{\mathbf{B}}_0 & \mathbf{H}^T \end{bmatrix} \begin{Bmatrix} \dot{\mathbf{s}} \\ \dot{\boldsymbol{\beta}} \\ \dot{\boldsymbol{\beta}} \end{Bmatrix} + m\Omega^2 \begin{bmatrix} 0 & \overline{\mathbf{B}}_0 & \overline{\mathbf{H}} \\ 0 & \mathbf{B}_0^T \overline{\mathbf{B}}_0 & \mathbf{B}_0^T \\ 0 & \mathbf{H}^T \overline{\mathbf{B}}_0 & \mathbf{H}^T \overline{\mathbf{H}} \end{bmatrix} \begin{Bmatrix} \mathbf{s} \\ \mathbf{\beta} \\ \dot{\boldsymbol{\beta}} \end{Bmatrix} + m\Omega^2 \begin{bmatrix} 0 & \overline{\mathbf{B}}_0 & \overline{\mathbf{H}} \\ 0 & \mathbf{B}_0^T \overline{\mathbf{B}}_0 & \mathbf{B}_0^T \\ \mathbf{H}^T \overline{\mathbf{B}}_0 & \mathbf{H}^T \overline{\mathbf{H}} \end{bmatrix} \begin{Bmatrix} \mathbf{s} \\ \mathbf{\beta} \\ \mathbf{\beta} \end{Bmatrix} + \mathbf{K}_T \begin{Bmatrix} \mathbf{s} \\ \mathbf{\beta} \\ \mathbf{\beta} \end{Bmatrix} = \begin{Bmatrix} -m\overline{\mathbf{H}}\mathbf{r} \\ \mathbf{r}_D & \mathbf{r}_D^T \overline{\mathbf{H}} \end{Bmatrix}
$$

▶ Simple Rotating beam* and ground resonance model

Verification of the different terms

 $\mathbf{M}(t)\ddot{\mathbf{q}} + \mathbf{D}(t)\dot{\mathbf{q}} + \mathbf{K}(t)\mathbf{q} = \mathbf{0}$

Newmark scheme between t_n and t_{n+1}

$$
\mathbf{Q}_{n+1} = \mathbf{D}_n \mathbf{Q}_n
$$
 natrix $\mathbf{D}_n = \mathbf{H}_1^{-1} \mathbf{H}_0$

Transition matrix $\mathbf{D}_n = \mathbf{H}_1^{-1} \mathbf{H}_0$ \blacktriangleright

$$
\mathbf{H}_{1} = \begin{bmatrix} \mathbf{M} + \beta h^{2} \mathbf{K}_{n+1} & \beta h^{2} \mathbf{D}_{n+1} \\ \gamma h \mathbf{K}_{n+1} & \mathbf{M} + \gamma h \mathbf{D}_{n+1} \end{bmatrix} \begin{bmatrix} \mathbf{L} \\ \mathbf{L} \end{bmatrix}
$$

$$
\mathbf{H}_{0} = \begin{bmatrix} \mathbf{M} - \left(\frac{1}{2} - \beta\right) h^{2} \mathbf{K}_{n} & h \mathbf{M} - \left(\frac{1}{2} - \beta\right) h^{2} \mathbf{D}_{n} \\ -(1 - \gamma) h \mathbf{K}_{n} & \mathbf{M} - (1 - \gamma) h \mathbf{D}_{n} \end{bmatrix}
$$

M, C, K
q_0, \dot{q}_0
\downarrow
Compute \ddot{q}_0
$t_{n+1} = t_n + h$
$\ddot{q}_{n+1}^* = \dot{q}_n + (1 - \gamma) h \ddot{q}_n$
$\ddot{q}_{n+1}^* = q_n + h \dot{q}_n + (0.5 - \beta) h^2 \ddot{q}_n$
Computation of accelerations
$S = M + h \gamma C + h^2 \beta K$
$S \ddot{q}_{n+1} = p_{n+1} - C \dot{q}_{n+1}^* - K q_{n+1}^*$
$\ddot{q}_{n+1} = \dot{q}_{n+1}^* + h \gamma \ddot{q}_{n+1}$
$q_{n+1} = \dot{q}_{n+1}^* + h^2 \beta \ddot{q}_{n+1}$

Verification: Ground Resonance model

Rigid model

FE model parameters

- Stability of the GR model
- Equal stability prediction

Rigid model – Runge-Kutta FE model – Runge-Kutta

Equivalent behaviour

- More crossing with 0 axis with the FE model due to higher number of dof
- Validation of the partial coupling using the established FE model using Runge- \blacktriangleright Kutta integration scheme

- Problem with each of the related Newmark algorithm to find consistent results
- Conditionning of the coupled matrices ?
-

• High modal frequencies ? $\qquad \qquad \vdash$ To be further investigated in a future work.

Formulation of system with coupling between rotating frame and static frame

Implementation in a finite element framework \blacktriangleright

Numerical scheme for time integration

 \blacktriangleright Preliminary results on stability analysis of coupling system

Find out more about why the Newmark scheme and relative do not work.

▶ Use reduction method such as Craig-Bampton to reduce computation time.

Use aerodynamic force to get a better prediction of the whirl-flutter instability.

Validate the code using an experimental setup.

Computational methods for whirl flutter analysis *urban air mobility vehicles*

Charles Jacquet, Camille Denoël, Loïc Salles Département d'aéronautique et mécanique, Université de Liège