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Wave-based methods – advantages 
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Interest of wave-based methods

• Linear elements occupy most of the domain but have simple 
dynamics

• The meshing used in finite element (FEM) approaches grants 
most of the computational time to linear elements

• Use wave solutions for the linear elements to eliminate or 
reduce their computational cost

FEM Wave approaches

Many dof on the 
linear elements

Wave solutions for 
the linear elements

Captures the 
intricate dynamics 
of the nonlinear 
singularity

Captures the 
intricate dynamics 
of the nonlinear 
singularity
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Wave-based methods – state of the art 
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Analytical approaches Numerical approaches

• Nonlinear dynamics of

bar and beam assemblies

[Chouvion, 2019]

• Diffusion coefficients and nonlinear modes of bars 

and beams with a nonlinear joint [Vakakis and 

Nayfeh, 1993], [Tang et al., 2018], [Abdi et al., 2022]

• Nonlinear dynamics of bar assemblies [Balaji et al., 

2022]

Need for new numerical methods to deal with

 Complex waveguide geometries

 Strong nonlinearities

Limited to
 Simple waveguide geometries
 Weak, smooth nonlinearities

Limited to
 Simple waveguide geometries, trusses
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Wave-based methods – The Wave Finite Element Method (WFEM)
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Wave Finite Element Method (WFEM)

• Deal with periodic waveguides

• Unit-cells (UC) of arbitrarily complex geometry
discretised with finite elements

• Bloch waves to represent the waveguide’s dynamics

Method with applications in

• Metamaterial design

• Non-destructive testing

• Vibration control

• Vibro-acoustics
 Account for localised nonlinearities
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Main steps of the nonlinear WFEM formulation
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1. Look for time-periodic solutions

2. Express the equations governing the motion 
• Inside the waveguide 
• At the waveguide boundaries

3. Derive a general solution of the displacement inside the waveguide using a 
Bloch waves expansion

4. Use the boundary conditions to derive the Bloch waves’ amplitude

5. Reconstitute the displacement field

Main steps
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Equations governing the waveguide dynamics
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𝐅 𝑡 = ℜ 

ℎ=0

𝐻

𝐟ℎ𝑒
jℎΩ𝑡 , 𝐔𝑛 𝑡 = ℜ 

ℎ=0

𝐻

𝐮𝑛,ℎ𝑒
jℎΩ𝑡

Distinguish the motion in the waveguide and at the boundaries

DRL
ℎ
𝐮𝑛−1,ℎ + DLL

ℎ
+ DRR

ℎ
𝐮𝑛,ℎ + DLR

ℎ
𝐮𝑛+1,ℎ = 0, 𝑛 = 1,… ,𝑁 − 1 1

DLL
ℎ
𝐮0,ℎ + DLR

ℎ
𝐮1,ℎ = 𝐅nl, 𝑒

jℎΩ𝑡 , 2

DRL𝐮𝑁−1,ℎ + DRR𝐮𝑁,ℎ = 𝐟ℎ = 𝐅, 𝑒jℎΩ𝑡 3

Motion in the 
waveguide

Boundary
conditions

D ℎ : condensed dynamic stiffness matrix of a unit-cell for harmonic ℎ

Look for 
periodic 
solutions

𝐻: number of harmonics 
retained in the harmonic 
balance method (HBM)
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General solution in the waveguide: Bloch waves expansion
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Spatial 
attenuation

Propagation 
term

Bloch waves expansion

𝑞𝑏,ℎ
± : wave amplitudes, 𝜆𝑏,ℎ = 𝜆𝑏,ℎ

+ = Τ1 𝜆𝑏,ℎ
−

𝐔𝑛 𝑡 = 𝐮𝑛,0 + ℜ 

ℎ=1

𝐻



𝑏=1

𝑁𝐵

𝑞𝑏,ℎ
+ 𝜆𝑏,ℎ

𝑛 𝝍𝑏,ℎ
+ + 𝑞𝑏,ℎ

− 𝜆𝑏,ℎ
𝑁−𝑛𝝍𝑏,ℎ

− 𝑒jℎΩt

Negative-
going waves

Positive-
going wavesStatic term Satisfies the internal 

waveguide equation
ℎ ≥ 1

𝒖𝑛,ℎ

Bloch’s theorem

Changes in the waveguide’s geometry are ℓ − periodic

 Look for Bloch wave solutions
𝒖𝑛,ℎ = 𝜆𝑛𝝍

𝜆: propagation constant

𝑘: wavenumber such that 𝜆 = 𝑒−j𝑘ℓ = 𝑒ℑ 𝑘 ℓ𝑒−jℜ 𝑘 ℓ

𝝍: wave shape (ℓ − periodic function)
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Satisfy the boundary conditions
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Solving the boundary conditions

General 
solution

𝐔𝑛 𝑡 = 𝐮𝑛,0 + ℜ 

ℎ=1

𝐻



𝑏=1

𝑁𝐵

𝑞𝑏,ℎ
+ 𝜆𝑏,ℎ

𝑛 𝝍𝑏,ℎ
+ + 𝑞𝑏,ℎ

− 𝜆𝑏,ℎ
𝑁−𝑛𝝍𝑏,ℎ

− 𝑒jℎΩt
Wave amplitudes 𝑞𝑏,ℎ

±

Static terms 𝐮𝑛,0

Z𝒙 + 𝐟nl(𝒙) = 𝐟
Nonlinear 

forces

External 
forces

Dynamic 
stiffness matrix

𝒙 =

𝐮𝟎,𝟎
𝐮𝐍,𝟎
𝐪

Static terms

Wave amplitudes

Equation at boundaries Vector of unknowns Resolution procedure

• Iterative Newton solver

• Arc-length continuation

• Alternating frequency-time 
to express nonlinear forces



II. Nonlinear WFEM formalism III. Numerical validation and case studyI. Context IV. Conclusion

Outline

11Vincent MAHE

I. Context and research contributions

II. Nonlinear formulation of the Wave Finite Element Method

III. Numerical validation and case study

IV. Conclusion



II. Nonlinear WFEM formalism III. Numerical validation and case studyI. Context IV. Conclusion

Bar with a quadratic and cubic nonlinearity
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Comparison of the WFEM to the FEM
and the Ray Tracing Method (RTM)

Strong nonlinearity

Validation on a simple system
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Periodic waveguide discretised by 2D finite elements
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Comparison of the WFEM to 
the FEM using Craig-Bampton 
(CB) procedures 

Validation on a periodic 
finite-element structure
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Computational performances
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FEM+CB
WFEM+

CB
Gain 

(ratio)

System 
size

252 21 12

Time per 
point [s]

1.121 0.249 4.5

Total 
time [s]

9133 1511 6

Superior computational 
efficiency of the WFEM

Larger gain expected on 
models of larger size
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Shifting of a band-edge mode in the bandgap
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Bandgap computed with the WFEM

Strongly softening band-edge mode

Nonlinear resonance in the bandgap

Potential use in metamaterial design

Must be avoided for vibration 
reduction
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Conclusion
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A nonlinear WFEM formulation
was presented 𝐔𝑛 𝑡 = 𝐮𝑛,0 +ℜ 

ℎ=1

𝐻



𝑏=1

𝑁𝐵

𝑞𝑏,ℎ
+ 𝜆𝑏,ℎ

𝑛 𝝍𝑏,ℎ
+ + 𝑞𝑏,ℎ

− 𝜆𝑏,ℎ
𝑁−𝑛𝝍𝑏,ℎ

− 𝑒jℎΩt
Static term

Bloch waves expansion

WFEM Validated on a bar and a periodic
waveguide discretised with 2D finite
elements

The computational efficiency was exposed

Observation of large vibrations in the
bandgap of a locally resonant metamaterial

FEM+CB WFEM+CB Gain (ratio)

Total time [s] 9133 1511 6
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Applications
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Waveguides in civil engineering
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Waveguides are present in many civil engineering structures

Need for numerical tools to predict
• The waveguides response to dynamic excitations

• The wave propagation and diffusion in the waveguides



Periodic waveguides
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Many waveguides exhibit a periodic pattern

Periodicity causes the presence of bandgaps, 
were waves do not propagate.

Periodicity can be used to reduce the size of 
the model

𝑑



Nonlinearities in civil engineering waveguides
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Nonlinearities bring several difficulties

• Amplitude dependency  The wave 

amplitudes and phases depend nonlinearly on 

the source amplitude

• Harmonics generation  The diffusion of a 

single wave generates waves at multiples 

frequencies

• Instabilities The response depends on the 

initial conditions, bifurcation points, energy 

transfers



Theory
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Waveguide FEM model
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Equation of motion

Structure discretised using the Finite Element Method (FEM):

ℳ ሷ𝓤 𝑡 + 𝒞 ሶ𝓤 𝑡 +𝒦𝓤 𝑡 = 𝓕 𝑡

𝓕 𝑡 has fundamental angular frequency Ω
→ Look for a periodic response

Harmonic response

→ 𝓤 𝑡 = ℜ 𝒖𝑒jΩt

Notations

𝑁: number of unit-cells (UC)

𝜅: spring constant

𝑐: viscous damping coefficient

𝐔𝑛 𝑡 : displacements at interface 𝑛

𝐅 𝐑 𝑡 : external forces applied on 
the right side of the waveguide

𝓤 𝑡 : global displacements

𝓕 𝑡 : global forces



UC FEM model
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Equation of motion of a unit-cell

M𝑐
ሷ𝐔 𝑛 𝑡 + C𝑐 ሶ𝐔 𝑛 𝑡 + K𝑐𝐔

𝑛 𝑡 = 𝐅 𝑛 𝑡

𝐔 𝑛 (𝑡) =

𝐔𝑛−1
𝐔𝑛
I

𝐔𝑛

, 𝐅 𝑛 (𝑡) =

𝐅𝑛−1
𝐅𝑛
I

𝐅𝑛

−Ω2M𝑐 + jΩC𝑐 + K𝑐
G Ω

𝐮 𝑛 = 𝐟 𝑛

𝐔 𝑛 𝑡 = ℜ 𝐮 𝑛 𝑒jΩ𝑡 ,

𝐅 𝑛 𝑡 = ℜ 𝐟 𝑛 𝑒jΩ𝑡

D Ω
𝐮𝑛−1
𝐮𝑛

=
𝐟𝑛−1
𝐟𝑛

G Ω → D Ω

DRL𝐮𝑛−1 + DLL + DRR 𝐮𝑛 + DLR𝐮𝑛+1 = 0

Equation of motion of an 
infinite waveguide

D(Ω) =
DLL DLR
DRL DRR

condensed dynamic 
stiffness matrix

Fo
u

ri
er

 
tr

an
sf

o
rm

D
yn

am
ic

 
co

n
d

e
n

sa
ti

o
n

Combine 
unit-cells



Computing Bloch waves
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DLL
ℎ

DLR
ℎ

DRL
ℎ

DRR
ℎ

D ℎ Ω

𝐮𝑛−1,ℎ
𝐮𝑛,ℎ

=
−𝐟𝑛−1,ℎ
𝐟𝑛,ℎEOM of the 𝑛th UC

DRL
ℎ
𝐮𝑛−1,ℎ + DLL

ℎ
+ DRR

ℎ
𝐮𝑛,ℎ + DLR

ℎ
𝐮𝑛+1,ℎ = 0, 𝑛 = 1, … , 𝑁 − 1

EOM inside the 
waveguide

𝒖𝑛,ℎ = 𝜆𝑛𝝍Look for Bloch 
wave solutions

𝜆−1DRL
ℎ
+ DLL

ℎ
+ DRR

ℎ
+ 𝜆DLR

ℎ
𝝍 = 0

Bloch waves
equation



Forced response – linear 
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൞

DRL𝐮𝑛−1 + DLL + DRR 𝐮𝑛 + DLR𝐮𝑛+1 = 0, ∀𝑛 ∉ 0, 𝑁 1

DLL𝐮0 + DLR𝐮1 = − 𝜅 + jΩ𝑐 𝐮0, 2

DRL𝐮𝑁−1 + DRR𝐮𝑁 = 𝐟 𝑅 3

Waveguide equations

Bloch wave decomposition

 1 Satisfied by definition

Wave amplitudes

Combine 2 and 3 → W
𝐪+

𝐪−
=

𝟎
𝐟 𝐑

Solve and deduce the 𝐮𝑛

𝐮𝑛 = 

𝑏=1

𝑁𝑏

𝑞𝑏
+𝜆𝑏

𝑛𝝍𝑏
+ + 𝑞𝑏

−𝜆𝑏
−𝑛𝝍𝑏

−

Positive-
going waves

Negative-
going waves

𝐪+ = 𝑞1
+, … , 𝑞𝑁𝑏

+ T



Advantage of the 𝑘 Ω approach over the Ω 𝑘 approach
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𝛀 𝒌 𝒌 𝛀

Solve linear eigenvalue 
problem

Solve quadratic 
eigenvalue problem

Real quantities, no 
damping

Complex wavenumber, 
damping considered

No spatial attenuation Spatial attenuation

No information in the 
bandgap

Information in the 
bandgap

WFEM

Propagation 
constant

Spatial 
attenuation

Propagation 
term

𝜆 = 𝑒−j𝑘𝑑 = 𝑒ℑ 𝑘 𝑑𝑒−jℜ 𝑘 𝑑



Numerical methods
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Alternating frequency-time procedure
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Z𝒙 + 𝐅nl 𝒙 = 𝐅

Alternating frequency-time procedure

System to solve:

1. Express 𝒙 in the time domain (iFFT): 
𝒙 → 𝑿 𝑡

2. Compute the nonlinear forces 𝐟nl 𝑡 :
𝐗 𝑡 → 𝐟nl 𝐗 𝑡 , 𝑡

3. Express 𝐟nl 𝐗 𝑡 , 𝑡 in the frequency domain (FFT):
𝐟nl 𝐗 𝑡 , 𝑡 → 𝐅nl 𝒙

The smoothness of 𝐟nl 𝐗 𝑡 , 𝑡 dictates the 
number of harmonics to be retained in the HBM



Continuation procedure
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System to solve

𝐑 𝒙 = Z𝒙 + 𝐅nl 𝒙 − 𝐅 ≈ 𝟎HBM residual:

ഥ𝐑 𝒙, Ω ≈ 𝟎Continuation residual:

 Additional unknown: Ω
 Additional equations: Arc-length
 Unknowns are functions of the 

arclength parameter 𝑠: 𝒙 𝑠 , Ω s

ഥ𝒙 =
𝒙
Ω

Prediction-correction

1. Initial solution ഥ𝒙𝑖

2. Predicted solution ഥ𝒙𝑝 = ഥ𝒙𝑖 + 𝝉𝛿𝑠

3. Corrected solution ഥ𝒙𝑐 = solve ഥ𝐑, ഥ𝒙𝑝

HBM equation



Periodic waveguide
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Waveguide parameters
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Computational efficiency
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Waves overview
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Component modes convergence
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CB mode 𝝎𝒊 [rad/s]

1 74067

2 135205

3 156135

4 240599

5 259797



Locally resonant 
waveguide
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Waveguide parameters
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Dynamics overview
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Dynamics around the low frequency bandgap 
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Harmonic convergence
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Higher harmonics
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Operational shapes
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Peak to peak
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