

Computing the dynamics of periodic waveguides with nonlinear boundaries using the Wave Finite Element Method

Vincent Mahé^{1,2} Adrien Mélot¹ Benjamin Chouvion³ Christophe Droz¹

- 1 Université Gustave Eiffel, Inria, COSYS-SII, I4S
- Institut de Recherche en Génie Civil et Mécanique, GeM, UMR 6183 CNRS -
- École Centrale de Nantes Université de Nantes
- 3 Centre de Recherche de l'Ecole de l'air (CREA), Ecole de l'air et de l'espace

vincent.mahe@ec-nantes.fr

II. Nonlinear WFEM formalism

III. Numerical validation and case study 00000

IV. Conclusion

Outline

- I. Context and research contributions
- II. Nonlinear formulation of the Wave Finite Element Method (WFEM)
- III. Numerical validation and case study
- IV. Conclusion

II. Nonlinear WFEM formalism 00000 III. Numerical validation and case study 00000

IV. Conclusion

Wave-based methods – advantages

Interest of wave-based methods

- Linear elements occupy most of the domain but have simple dynamics
- The **meshing** used in finite element (FEM) approaches grants most of the computational time to linear elements
- Use wave solutions for the linear elements to eliminate or reduce their computational cost

FEM	Wave approaches
Many dof on the linear elements	Wave solutions for the linear elements
Captures the intricate dynamics of the nonlinear singularity	Captures the intricate dynamics of the nonlinear singularity

I. Context 00●0 II. Nonlinear WFEM formalism 00000 III. Numerical validation and case study 00000

IV. Conclusion

Wave-based methods – state of the art

Analytical approaches

 Diffusion coefficients and nonlinear modes of bars and beams with a nonlinear joint [Vakakis and Nayfeh, 1993], [Tang et al., 2018], [Abdi et al., 2022]

Nonlinear dynamics of bar assemblies [Balaji *et al.,* 2022]

Limited to

- → Simple waveguide geometries
- → Weak, smooth nonlinearities

II. Nonlinear WFEM formalism 00000 III. Numerical validation and case study 00000

IV. Conclusion

Wave-based methods – The Wave Finite Element Method (WFEM)

Wave Finite Element Method (WFEM)

- Deal with **periodic** waveguides
- Unit-cells (UC) of arbitrarily complex geometry discretised with finite elements
- Bloch waves to represent the waveguide's dynamics
- → Account for **localised nonlinearities**

Method with applications in

- Metamaterial design
- Non-destructive testing
- Vibration control
- Vibro-acoustics

II. Nonlinear WFEM formalism ●0000 III. Numerical validation and case study 00000

IV. Conclusion

Outline

- I. Context and research contributions
- II. Nonlinear formulation of the Wave Finite Element Method (WFEM)
- III. Numerical validation and case study
- IV. Conclusion

II. Nonlinear WFEM formalism O●OOO III. Numerical validation and case study 00000

IV. Conclusion

Main steps of the nonlinear WFEM formulation

Main steps

- 1. Look for time-periodic solutions
- 2. Express the equations governing the motion
 - Inside the waveguide
 - At the waveguide **boundaries**
- 3. Derive a **general solution** of the displacement inside the waveguide using a **Bloch waves expansion**
- 4. Use the boundary conditions to derive the Bloch waves' amplitude
- 5. Reconstitute the displacement field

II. Nonlinear WFEM formalism III. Numerical validation and case study **IV.** Conclusion I. Context 0000 00000 00000 00 Equations governing the waveguide dynamics 1^{st} UC n^{th} UC N^{th} UC Periodic forcing $\mathbf{F}(t)$ Nonlinear $\rightarrow \mathbf{U}_0(t)$ \rightarrow U_{n-1}(t) $\rightarrow \mathbf{U}_n(t)$ $\rightarrow \mathbf{U}_N(t)$ force $\mathbf{F}_{nl}(\mathbf{U}_0(t),t)$ Look for *H*: number of harmonics $\mathbf{F}(t) = \Re \left| \sum_{h=0}^{n} \mathbf{f}_{h} e^{jh\Omega t} \right|, \qquad \mathbf{U}_{n}(t) = \Re \left| \sum_{h=0}^{n} \mathbf{u}_{n,h} e^{jh\Omega t} \right|$ retained in the harmonic periodic balance method (HBM) solutions Distinguish the motion in the waveguide and at the boundaries Motion **in the** $D_{RL}^{(h)}\mathbf{u}_{n-1,h} + \left(D_{LL}^{(h)} + D_{RR}^{(h)}\right)\mathbf{u}_{n,h} + D_{LR}^{(h)}\mathbf{u}_{n+1,h} = 0, \qquad n = 1, ..., N-1$ (1)waveguide $D_{\mu}^{(h)} \mathbf{u}_{0,h} + D_{\mu}^{(h)} \mathbf{u}_{1,h} = \langle \mathbf{F}_{nl}, e^{jh\Omega t} \rangle$ (2)

$$\mathbf{D}_{\mathrm{RL}} \mathbf{u}_{N-1,h} + \mathbf{D}_{\mathrm{RR}} \mathbf{u}_{N,h} = \mathbf{f}_h = \langle \mathbf{F}, e^{jh\Omega t} \rangle$$

Boundary conditions

(3)

 $D^{(h)}$: condensed dynamic stiffness matrix of a unit-cell for harmonic h

II. Nonlinear WFEM formalism 000●0 III. Numerical validation and case study 00000

IV. Conclusion

General solution in the waveguide: Bloch waves expansion

Bloch waves expansion

$$\begin{aligned}
\boldsymbol{u}_{n,h} \\
& \text{Static term} \\
\boldsymbol{U}_{n}(t) = \boldsymbol{u}_{n,0} + \Re \left[\sum_{h=1}^{H} \left(\sum_{b=1}^{N_{B}} q_{b,h}^{o} \lambda_{b,h}^{n} \boldsymbol{\psi}_{b,h}^{+} + q_{b,h}^{-} \lambda_{b,h}^{N-n} \boldsymbol{\psi}_{b,h}^{-} \right) e^{jh\Omega t} \right] \quad \longrightarrow \quad \text{Satisfies the internal waveguide equation} \\
& (h \ge 1) \\
& q_{b,h}^{\pm}: \text{ wave amplitudes,} \quad \lambda_{b,h} = \lambda_{b,h}^{+} = 1/\lambda_{b,h}^{-}
\end{aligned}$$

II. Nonlinear WFEM formalism

III. Numerical validation and case study ●0000 IV. Conclusion

Outline

- I. Context and research contributions
- II. Nonlinear formulation of the Wave Finite Element Method
- III. Numerical validation and case study
- IV. Conclusion

II. Nonlinear WFEM formalism 00000

III. Numerical validation and case study O●OOO IV. Conclusion

Bar with a quadratic and cubic nonlinearity

II. Nonlinear WFEM formalism 00000 III. Numerical validation and case study OO●OO IV. Conclusion

Periodic waveguide discretised by 2D finite elements

Comparison of the **WFEM** to the **FEM** using Craig-Bampton (CB) procedures

Validation on a periodic finite-element structure

II. Nonlinear WFEM formalism 00000 III. Numerical validation and case study OOO●O

IV. Conclusion

Computational performances

	FEM+CB	WFEM+ CB	Gain (ratio)	
System size	252	21	12	
Time per point [s]	1.121	0.249	4.5	
Total time [s]	9133	1511	6	

Superior computational efficiency of the WFEM

Larger gain expected on models of larger size

II. Nonlinear WFEM formalism 00000 III. Numerical validation and case study $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

IV. Conclusion

Shifting of a band-edge mode in the bandgap

Bandgap computed with the WFEM Strongly softening band-edge mode Nonlinear resonance in the bandgap Potential use in metamaterial design Must be avoided for vibration reduction

II. Nonlinear WFEM formalism

III. Numerical validation and case study 00000

IV. Conclusion ●O

Outline

- I. Context and research contributions
- II. Nonlinear formulation of the Wave Finite Element Method
- III. Case studies
- IV. Conclusion

I.	Context
C	0000

II. Nonlinear WFEM formalism 00000 III. Numerical validation and case study 00000

IV. Conclusion $O \bullet$

Conclusion

WFEM **Validated** on a bar and a periodic waveguide discretised with 2D finite elements

The **computational efficiency** was exposed

Angular frequency

Computing the dynamics of periodic waveguides with nonlinear boundaries using the Wave Finite Element Method

Vincent Mahé^{1,2} Adrien Mélot¹ Benjamin Chouvion³ Christophe Droz¹

- 1 Université Gustave Eiffel, Inria, COSYS-SII, I4S
- Institut de Recherche en Génie Civil et Mécanique, GeM, UMR 6183 CNRS -
- École Centrale de Nantes Université de Nantes
- 3 Centre de Recherche de l'Ecole de l'air (CREA), Ecole de l'air et de l'espace

vincent.mahe@ec-nantes.fr

Additional slides

Applications

Waveguides in civil engineering

Waveguides are present in many civil engineering structures

Need for **numerical tools** to predict

- The waveguides response to **dynamic excitations**
- The wave propagation and diffusion in the waveguides

Periodic waveguides

Many waveguides exhibit a **periodic pattern**

Periodicity causes the presence of **bandgaps**, were waves do not propagate.

Periodicity can be used to **reduce the size of the model**

wave frequency ω

Nonlinearities in civil engineering waveguides

Nonlinearities bring several difficulties

- Amplitude dependency → The wave amplitudes and phases depend nonlinearly on the source amplitude
- Harmonics generation → The diffusion of a single wave generates waves at multiples frequencies
- Instabilities → The response depends on the initial conditions, bifurcation points, energy transfers

Theory

Waveguide FEM model

Equation of motion

Structure discretised using the **Finite Element Method** (FEM):

 $\mathcal{M}\ddot{\boldsymbol{\mathcal{U}}}(t) + \mathcal{C}\dot{\boldsymbol{\mathcal{U}}}(t) + \mathcal{K}\boldsymbol{\mathcal{U}}(t) = \boldsymbol{\mathcal{F}}(t)$

 $\mathcal{F}(t)$ has fundamental angular frequency Ω \rightarrow Look for a **periodic response**

Harmonic response

$$\rightarrow \boldsymbol{\mathcal{U}}(t) = \Re \left[\boldsymbol{u} e^{\mathrm{j}\Omega t} \right]$$

Notations *N*: number of unit-cells (UC) κ : spring constant c: viscous damping coefficient $\mathbf{U}_n(t)$: displacements at interface n $\mathbf{F}^{[\mathbf{R}]}(t)$: external forces applied on the right side of the waveguide $\boldsymbol{u}(t)$: global displacements $\mathcal{F}(t)$: global forces

UC FEM model

Computing Bloch waves

Forced response – linear

Advantage of the $k(\Omega)$ approach over the $\Omega(k)$ approach

$oldsymbol{\Omega}(oldsymbol{k})$	$k(\Omega)$
Solve linear eigenvalue problem	Solve quadratic eigenvalue problem
Real quantities, no damping	Complex wavenumber, damping considered
No spatial attenuation	Spatial attenuation
No information in the bandgap	Information in the bandgap

WFEM

Numerical methods

Alternating frequency-time procedure

Alternating frequency-time procedure

System to solve: Zx -

$$\mathbf{x} + \mathbf{F}_{nl}(\mathbf{x}) = \mathbf{F}$$

- 1. Express \boldsymbol{x} in the time domain (iFFT): $\boldsymbol{x} \rightarrow \boldsymbol{X}(t)$
- 2. Compute the nonlinear forces $\mathbf{f}_{nl}(t)$: $\mathbf{X}(t) \rightarrow \mathbf{f}_{nl}(\mathbf{X}(t), t)$
- 3. Express $\mathbf{f}_{nl}(\mathbf{X}(t), t)$ in the frequency domain (FFT): $\mathbf{f}_{nl}(\mathbf{X}(t), t) \rightarrow \mathbf{F}_{nl}(\mathbf{x})$

The smoothness of $\mathbf{f}_{nl}(\mathbf{X}(t), t)$ dictates the number of harmonics to be retained in the HBM

Continuation procedure

Periodic waveguide

Waveguide parameters

Material parameters	<i>E</i> [GPa]	ν	ho [kg/m ³]	η [%]				
	200	0.3	7850	0.2				
Waveguide parameters	N	N_B	<i>ℓe</i> [m]	ℓ [m]	<i>L</i> [m]	<i>d</i> _e [m]	<i>d</i> [m]	$A_{\rm max} [{ m m}^2]$
	100	8	0.01	$6\ell_e$	Nℓ	ℓ_e	$6\ell_e$	$8\ell_e d$
Joint parameters	κ ₁ [N/m]	κ ₃ [N/m ³]						
	$A_{\max}E/(4L)$	$\kappa_1 \times 2.5 \times 10^5$						

Computational efficiency

	WFEM+CB	FEM+CB	Gain (ratio)	
Pre-processing	22	135	6.1	
time [s]				
System size after	21	252	12	
pre-processing				
Time per contin-	0.249	1.121	4.5	
uation point [s]				
Post-processing	0.006	0.132	22	
time per contin-				
uation point [s]				
Total time [s]	1511	9133	6.0	

Waves overview

Component modes convergence

CB mode	ω_i [rad/s]
1	74067
2	135205
3	156135
4	240599
5	259797

Locally resonant waveguide

Material parameters	E [GPa]	ν	ho [kg/m ³]	η [%]	β[s]	
Intermediate material	70	0.3	2700	0.2	4×10^{-8}	
Soft material	0.04	0.5	1300	0.2	4×10^{-8}	
Heavy mass	200	0.3	7850	0.2	4×10^{-8}	
Other parameters	N	N_B	<i>ℓe</i> [m]	ℓ [m]	<i>L</i> [m]	<i>d</i> [m]
	10	12	0.02	$5\ell_e$	Nℓ	0.05
Joint parameters	κ ₁ [N/m]	κ ₃ [N/m ³]				
	$5.83 imes 10^6$	-9.72×10^{11}				

Dynamics overview

Dynamics around the low frequency bandgap

Harmonic convergence

Higher harmonics

Operational shapes

Peak to peak

