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INTRODUCTION: CONTEXT

More than 25000 road accidents in 2018 within EU region. (European Commission, 2019)

Crash boxes

Force

Important parameters

• Material property

• Direction of impact

• Geometry of crash box

• Velocity of car

• Total mass

➢ Crash problem, impact loading: nonlinear dynamic problem

➢ Possible variation all the parameters = uncertainties

Uncertainty propagation of an impact problem

(www.cgtrader.com)
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INTRODUCTION: UNCERTAINTY PROPAGATION

modelling input 
uncertain 

parameters

Uncertainty 
propagation

Uncertainty 
Quantification: 

statistics of 
output

• Random 
variable/field

• Expert’s 
knowledge

• Computational 
cost

➢ Monte Carlo 
simulation

➢ Metamodels

• Mean, std 

• Probability 
density 
function (PDF)

Sensitivity analysis



4

• Assumptions on uncertain input parameters

– Known statistical law (normal, uniform, etc.) 

– Independent variables

– May be reduced to standard deviates

•

•

POLYNOMIAL CHAOS EXPANSION: ASSUMPTIONS ON UNCERTAIN PARAMETERS



POLYNOMIAL CHAOS EXPANSION: PRESENTATION
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• Discretization of random quantity Y

•

• 𝑛: number of terms in the expansion

• Multivariate Polynomial chaos (Wiener 1938):

–

– 𝐽𝑖= degree(𝜙𝐽𝑗)

– | 𝐽 |= degree(Φ𝐽) = σ𝑖=1
𝑟 𝐽𝑖

– 𝑝:maximal degree of all Φ𝐽 = degree(Φ𝑛)= PCE degree

with



POLYNOMIAL CHAOS EXPANSION: PRESENTATION

6

• Known univariate orthogonal polynomial 

– Hermite polynomial (normal variate) 

– Legendre polynomial (uniform variate)

• Unknown vectors

– Non-intrusive approach: e.g. Regression

– Intrusive approach: Galerkin projection (effective only for linear problem)



POLYNOMIAL CHAOS EXPANSION: NON INTRUSIVE APPROACH
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• NI-PCE: data-driven approach: N samples of the output

𝑁 × 𝑛 system of equations 

=> regression approach + … 

• The coefficients must be computed at each time-step



POLYNOMIAL CHAOS EXPANSION: PROPER ORTHOGONAL DECOMPOSITION (POD)
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• Finding a time domain basis 

• POD: Eigenvalue decomposition of C (or SVD of 𝑌(𝑡𝑑 , Ξ𝑠))

• “Correlation” matrix

• Time discretization 

with



POLYNOMIAL CHAOS EXPANSION: PROPER ORTHOGONAL DECOMPOSITION (POD)
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• Finding a time domain basis

• POD expansion

In the following

• POD coefficient

• POD-PCE coefficient



POLYNOMIAL CHAOS EXPANSION: PROPER ORTHOGONAL DECOMPOSITION (POD)

10

• Decoupling time domain and randomness:

• POD-PCE expansion

with 𝑎𝐽,𝑖 estimated by the non-intrusive approach (e.g. regression)



RANDOM IMPACT OSCILLATOR: PRESENTATION
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• Impact law: Hert’z law

• Motion equation

with



RANDOM IMPACT OSCILLATOR: PRESENTATION
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• Deterministic input data

• Stiffness
• Multiple impacts

• Mass 

• Damping ratio 

• Random input data

•
• 𝜉𝑖: uniform distribution: mean=0; std=1

• 𝛿𝑝𝑖 = 10 %



RANDOM IMPACT OSCILLATOR: METAMODEL; QUANTITIES OF INTEREST (QOI)
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• Metamodels for

• Impact force 𝑓𝑐
• Projectile displacement 𝑦𝑝

• Projectile velocity ሶ𝑦𝑝



RANDOM IMPACT OSCILLATOR: METAMODEL; POD-PCE CHARACTERISTICS
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• POD-PCE model

• PCE degree: two cases: 
• 𝑝 = 2 (𝑛 = 10)

• 𝑝 = 3 𝑛 = 20

• 𝑁 = 50 samples

• 𝑛𝑏: chosen to keep 99.99% of the "energy«

• Time discretization

• 𝑛𝑡 = 3001

• ∆𝑡 = 1𝜇𝑠



RANDOM IMPACT OSCILLATOR: METAMODEL; POD-PCE CHARACTERISTICS
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• Comparison:

• Reference model: Monte Carlo simulation (MCS)

• POD-PCE estimation

• 𝑁𝑀𝐶𝑆 = 104 samples

• Relative error

• Mean relative error



RANDOM IMPACT OSCILLATOR: METAMODEL; MEAN & STANDARD DEVIATION OF THE 
QOI
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Contact force Projectile displacement Projectile velocity



RANDOM IMPACT OSCILLATOR: METAMODEL; PREDICTION OF 5 RESPONSES
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Contact force Projectile displacement Projectile velocity



RANDOM IMPACT OSCILLATOR: METAMODEL; COMMENTS
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• Time domain basis and randomness basis with POD-PCE.

• Good accuracy → few POM.

• Good accuracy using low degree polynomials.

• POD-PCE model → 1% coefficients as compared to PCE model for 
contact force.

• Non-physical negative forces predicted due to the consequence of PCE 
model.

• “Discontinuity” of velocity predicted well

• 50 samples: too much?



RANDOM IMPACT OSCILLATOR: METAMODEL; COMMENTS
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• 50 samples: too much?

 Sparse POD-PCE model

• Least Angle Regression (LAR): L1-regression (Brad Efron et al., Least Angle Regression, the 

Annals of statistics, vol 32(4), 2004)

• Variational Bayesian inference with automatic relevance determination (Jan Drugowitsch, 

Variational Bayesian inference for linear and logistic regression, arXiv 1310.5438, 2019-v4)

• Same errors with 5 samples! 



MOTORCYCLE HELMET: HOMOLOGATION
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• ECE 22.05 standard on helmet
homologation: Impact tests

• Test conditions
• Several anvils: flat and "kerbstone"

• 1 impact velocity target: 7.5 m/s

• Several impact points 

• Measurements: headform acceleration

• Criteria of success: 
• Maximum of acceleration: 

• a𝑀 < 275 𝑔

• Head Injury Criterion: 

HIC < 2400

COST 327 – Motorcycle safety helmet
Final report, 2001

ECE 22.05, 2002

P

B

[ 𝑎 ]=𝑔, [ 𝑡 ]=𝑠



MOTORCYCLE HELMET: HOMOLOGATION
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• ECE 22.05 standard on helmet
homologation: Impact tests

 Uncertainties
 Velocity 7.5, 7.5 + 0.15 m/s

 Impact point location
 B: disc of radius 10 mm

 P: disc of radius 50 mm

• Considering the uncertainties, what is 

the probability to pass the impact test?

 Answering the question requires a 
model:

• Problem of a validated model

• Numerous simulations 

=> metamodel?
COST 327 – Motorcycle safety helmet
Final report, 2001

ECE 22.05, 2002

P

B



MOTORCYCLE HELMET: FE MODEL
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• Unifi’s helmet model

 Based on a medium-size commercial 

helmet

 Material properties

 Experiments

 EC project APROSYS

 LS-dyna

 ~20 min/simulation

=> metamodel is necessary

International Journal of Crashworthiness
(2011), 16(5), 523-536. A. Pratellesi et al.



MOTORCYCLE HELMET: UNCERTAINTY MODEL
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• Uncertainties: uniform random 
variables

▪ Velocity: 

▪ Impact point location
▪B: disc of radius 10 mm =>

▪P: disc of radius 50 mm =>

• Samples

 1 model simulation: ~15 min

 budget = 60 simulations

 LHS (Latin Hypercube Sampling): 60 samples

 60 outputs 

 60 (maximum of) acceleration

 60 HIC



MOTORCYCLE HELMET: METAMODEL
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• 𝑝 = 10

=> 286 terms

=> sparce PCE

• 60 model evaluations

▪ 50 (randomly drawn): PCE identification

▪ 10 (the others): PCE validation

▪calculation of an error (𝑥 = 𝑎𝑀 or HIC )

▪50 repetitions: 

• calculation of a mean error

=> metamodel validated



MOTORCYCLE HELMET: METAMODEL: RESULTS

25

• Probability density function (pdf)

▪ Estimated with the metamodel

▪ Monte Carlo simulation

▪ 10 000 samples (Latin Hypercube Sampling)

• Point B

Pr 𝑎𝑀 > 275 g ~ 0

Pr HIC > 2400 ~ 0



MOTORCYCLE HELMET: METAMODEL: RESULTS
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• Probability density function (pdf)

▪ Estimated with the metamodel

▪ Monte Carlo simulation

▪ 10 000 samples (Latin Hypercube Sampling)

• Point P

Pr 𝑎𝑀 > 275 g ~ 0

Pr HIC > 2400 ~ 0,55

275 g 2400



CONCLUSIONS
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• Effective sparse POD-PCE for uncertainty propagation for impact problem

• But, physical conditions should be added (positiveness of an impact force)

• Optimal PCE degree?

• Optimal number of samples?

=> adaptative procedure
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