

Liquid-Liquid Phase Separation (LLPS) in Biological Materials and Bioinspired Engineering

École Thématique CNRS – Surface and Bio-Interfaces au Service d'une Santé

21-26 September 2025, Cargèse

Ali Miserez

Center for Sustainable Materials

School of Materials Science and Engineering

School of Biological Sciences

Nanyang Technological University (NTU), Singapore

ali.miserez@ntu.edu.sq

http://www3.ntu.edu.sg/home/ali.miserez/index.html

https://web.mse.ntu.edu.sg/susmat/

Sustainable plastic

into the patient

Intracellular delivery or macromolecular therapeutics Gene and cell therapy

Molecular Biomimicry: Grand Challenge

Biological model systems

Mechanical performance

Composition:

How does Nature go from its basic building blocks to the final structure?

- Biofabrication process ?
 - From molecules to final structure
 - Spatio-temporal growth

 Optical properties (camouflage)

Molecular Biomimetic: Discovery Pathway

Guerette et al, Nature Biotechnology 2013, 31, 908-15.

Miserez, Yu, Mohammadi, Chemical Reviews 2023, 123, 2049-111

Liquid-Liquid Phase Separation / Coacervation

Brangwynne, **JCB** 2013, 203, 875-81

Sun et al.,
 MRS Bulletin
 2020, 45,
 1039-47

Flory-Huggins free energy of mixing, F_{FH}

$$F_{FH} = (K_B T) \left[\frac{\phi}{N_n} \ln \phi + (1 - \phi) \ln(1 - \phi) + \chi \phi (1 - \phi) \right]$$

• Electrostatic interactions: Overbeek-Voorn

$$F_{FH} = (K_B T) \left[\frac{\phi}{N_p} \ln \frac{\phi}{2} + (1 - \phi) \ln(1 - \phi) - \alpha (\sigma \phi)^{3/2} \right]$$

p: polymer volume fraction

N_p: polymerization degree

χ: Flory-Huggins parameterz: coordination number

 $\chi = \frac{z}{K_B T} \left[u_{ps} - \frac{1}{2} \left(u_{pp} - u_{ss} \right) \right]$

lpha: charge per site

 σ : linear charge density of polyion

χ: strength of enthalpic interactions

Unique Properties of Coacervates

- High biopolymer concentration with liquid-like properties → Viscous flow
- Low surface tension (10^{-6} to 10^{-3} N/m) \rightarrow Good wetting properties
- Shear-thinning -> Facilitates flow in micro-porous network

C High chain concentration with liquid-like properties, enabling flow

Harrington, Mezzenga, Miserez, Nature Review **Bioengineering** 2024, 2, 260-78

d Low interfacial energy LLPS

- Spherical
- Single or multicomponent
- Isotropic
- Isotropic surface tension (v)
- Highly viscoelastic
- $v \approx 10^{-6}$ to 10^{-3} Nm⁻¹
- Enthalpy dominated
- Water content <90%

e Shear thinning

Historical perspective

No. 4250 April 14, 1951

NATURE

A Soluble Protein derived from Elastin Adair, Davis, Partridge

at any te buffer of I

The non-diffusible protein was soluble in water at temperatures below 25° C., giving a pale yellow mobile solution. On raising the temperature to 25-30° C. in the presence of dilute buffer (pH 4-6), a precipitate consisting of liquid droplets separated. The droplets showed no birefringence under crossed nicols and immediately redissolved on reducing the temperature. On centrifuging at 37° C. the droplets coalesced to form a lower layer of viscous liquid; refractive index measurements showed the two liquid phases to consist of aqueous protein solutions of different concentration.

Elastin: main component of arterial walls

(with collagen)

G.A. Holzapfel Nonlinear Solid Mechanics. A Continuum Approach for Engineering, 2000.

- Hydrophobic domains [VGVXP]
- Domain 36 (C-terminus)
- Cross-linking domains KP: [AKPGVGGL]

KA: [AAAKAAAKAA]

Miserez, Yu, Mohammadi, Chemical Reviews 2023, 123, 2049-111

Biochemical characteristics:

- Hydrophobic domains (G,V,P, A) in repeats of 3-6: GVGVP, GVGVAP, etc.
- Hydrophilic domains rich in Lys and Ala. K typically separated by 2-3 A residues, AAAKAAKAA
- C-terminal highly conserved, basic (2 Cys)
- Overall 72 kDa in humans

Elastin processing: coacervation

- > Tropoelastin: soluble < 20°C
- ➤ Higher (physiological) T: cloudy solution forms → Lower Critical Solution Temperature (LCST)
- > Solution phase-separates: coacervation
- Not a precipitate: both liquid phases co-exist
 - Bottom layer forms sticky viscoelastic phase containing tropoelastin and only 60% water
 - Top layer is an aqueous equilibrium solution

Coacervation of tropoelastin: physico-chemical mechanism

- LCST behavior: inverse observed for many proteins
- Due to hydrophobic interactions of tropoelastin
- Low T: water molecules closest to the protein cannot form interactions with the

hydrophobic domains of tropoelastin

H-bond water forms a clathrate configuration around the domains

- T increases: H-bonding network disturbed and tropoelastin free to interact → coacervation
- This behavior is important during fibrillogenesis:
 - Concentrates and aligns tropoelastin molecules prior to cross-linking

Transcribed from a single gene and alternatively spliced in the nucleus

A. Tropoelastin associates with EBP and FKBP65 in the rough endoplasmic reticulum. The tropoelastin-EBP complex moves through the Golgi and is secreted to the cell surface

- **B.** Secreted tropoelastin coacervates, is oxidized by LOX, and associates with microfibrils to generate the nascent elastic fiber
- C. Continued secretion, oxidation, and deposition of tropoelastin occupy the bulk of elastin synthesis

Biomimetic Applications of Elastin

I. Recombinant elastin: Production and Self-Assembly

- Gene encoding full-length human tropoelastin cloned in E. coli: now routine
- Purification is straightforward by exploiting coacervation (heat/cooling cycles)
- Multi-scale assembly close to native tropoelastin
- No immune response, no cell cytotoxicity: highly biocompatible materials
 - Example of applications:
 - Hydrogels
 - Electro-spun fibers
 - Sutures

Wise et al, Acta Biomat. 2014

Biomimetic Applications of Elastin

I. Recombinant elastin: Tissue Engineering Applications

Hydrogels

Annabi et al., Biochem. Eng J. 2013

Skin fibroblast penetration and growth within Porous 3D hydrogels

Electrospun fibers / hollow tubular grafts

 Attachment and proliferation of various cell types (endothelial cells, dermal fibroblast, etc)

- Cross-linking curing and mechanical stabilization:
 - Chemical cross-linking: succinimidyl, glutaraldehyde
 - Enzymatic cross-linking: lysyl oxidase
 - Physical cross-linking (pH change induced)

Elastin-Like Polypeptides (ELPs)

- Basic sequence design based on pentapeptide: (VPGXG)_n
- Production by genetic engineering:

X: guest residue (anything by Pro)

➤ Simple purification by temperature cycling across T_t (ELP used as a purification tag for many other recombinant proteins)

- Recursive direction ligation with enzymes cleaving at specific locations
- Re-ligation → doubling the length of gene encoding ELPs

Varamko et al. Ann. Rev. Biom. Eng

Biomolecular Engineering of ELPs

Tuning Phase-Transition of ELPs

Roberts et al, FEBS Letters, 2015

- Phase-transition temperature is tunable:
 - Guest residue
 - Peptide length
 - "Smart" stimuli-responsiveness in biomedical applications

Nanoarchitecture/Drug Delivery

> Two main areas of applications:

- Drug delivery
- Tissue Engineering

Tissue Engineering

Biomolecular Engineering of ELPs: Injectable Depots

Varanko, Ann. Rev. **Biom. Eng.** 2020

In vivo injection in diabetic mouse model

Amiram, **PNAS** 2013

- Injectable glucagon-ELP depots for diabetes II treatment
- GLP: glucagon-like peptides (for glucose management)

Glucose reduction after single injection

Blood glucose level 52 h after injection

Biomolecular Engineering of ELPs: Drug Nanocarriers

Varanko, Ann. Rev. Biom. Eng. 2020

 Self-assembled ELPs/drug nanoparticles

- DOX conjugated with Cys
- Enhanced plasma circulation
- Tumor targeting

Orange: more hydrophobic ELP block (T_{t2}) **Blue**: more hydrophilic ELP block (T_{t1})

> $T_{t1} > T > T_{t2}$: orange block aggregates but blue block is soluble: micelle-like

Ligands (RGD) within the ELP \rightarrow cell uptake with targeting ability

ELP fused to TRAIL **TRAIL**: Ligand inducing tumor necrosis

Le et al., Mol. Syst. **Des. Eng**, 2019

Protective Tubes of the sandcastle worm

Worms can build protective tubes with many materials

Stewart, Weaver, Morse & Waite, J. **Exp. Biol.** 20024

Tube Cement: Proteins with Dopa and P-serine

Pc-1; MW = 18,240 kDa; pl = 9.74

YGCGVGIGC- AGGRCGGACG GK**cygyg**g-k l**gygayg**kgg i**ggygyg**kgc v**ggygyg**glg agk----- l**ggygyg**gsk c**ggygyg**gQk l**ggygyg**kk l**ggygy**aakk v**ggygyg**akk

VGGYGYGAKK VGGYGYGAKK VGGYGYGYGAKK VGGYGYGYGAKK VGGYGYGYKK

VGGYGYG---

Pc-2; M = 21,116 kDa; pl= 9.91

CGGAGG WRSGSCGG

RWGHPAV----HKALGGYG-G YGAHPAVHAAVHKALGGYGAGAYGAG

AWGHPAV----HKALGGYGAGA WGHPAV----HKALGGYG-G

YGAHPAVHVAVHKALGGYGAGACGHKTGGYGG

YGAHP-VAV---KA--AY-NHGFNYGANNAIKSTKRF**GG**

YGAHP-V-VK--KAFSRGLSHGAY-AGSKAATGYGYGSGKAAGGYGY

Pc-4; MW = 24,330 kDa; pl = 9.5

GYPTYSPSGGTHSGYNGPHGNVVKK TYRGPYGAGAAK AWNGYHGAGYT SVHHGPASTSWHTS

WSNKKGGYGYGLKNKG YGYGLKKVGYGVGLHAAGW HGVGPYGAGYHGAGW NGLGYHGAGYGV

HGVGLHGAGYGL HGVGLHGVGYGL HGVGLHGAGYGI HGVGLHGAGYGI

HGVGLHGVGYGL HGVGLHGAGYGL HGVGLHGAGYGI HGVGLHGAGCGI HKTACYGVGL-- HGHY

Pc-3; M = 30,000 kDa; pl = 2.5 (80% serine, with phospho-serine groups) ___

GGYGYG

SSSSY

Complex Coacervation of Cement Proteins

Processing is as important as chemistry: Cross-linkable coacervates

Herb Waite **UCSB**

- > The tricks of complex coacervation worth mimicking
- Oppositely charged polyelectrolytes
- Viscous dispersion: spreads on wet surface, fills gaps, but no dispersion in seawater
- Trigger for curing: pH change (~ 5 to 8.2 for seawater)

Coacervation

Mixture, addition of cations, pH increase

Shao and Stewart, Adv. Materials, 2010

Shao, Bachus, Stewart, Macromol. Biosci, 2009

Complex coacervation now a "hot" topic of synthetic bioadhesives

Progress in Polymer Science 139 (2023) 101649

Progress in Polymer Science

journal homepage: www.elsevier.com/locate/progpolymsci

Soft underwater adhesives based on weak molecular interactions

Mehdi Vahdati a,*, Dominique Hourdet b, Costantino Creton b

Vadhati et al, Prog. Pol. Science, 139, 2023

REVIEW

Sticky Science: Using Complex Coacervate Adhesives for Biomedical Applications

Ayla N. Kwant, Julien S. Es Sayed, Marleen Kamperman, Janette K. Burgess, Dirk-Jan Slebos, and Simon D. Pouwels*

Kwant et al, Adv. Health Care Mat, 14, 2025

"In this review, we critically discuss the state-of-the-art in the design and characterization of soft viscoelastic coacervates and gels based on specific weak molecular interactions for underwater adhesion"

Synthetic Bioadhesives of Complex Coacervates

Polyoxymetalate / Gly-His-Lys tripeptide (Li et al, Langmuir 2019, 4995)

Tannic acid/poyvinly acid (Hbonded coacervates) (Lee et al. ACS AMI, 2020, 20933)

Tannic acid/PEG/PPG (Peng et al, ACS AMI 2021, 48239

- Mussel byssus: a multi-protein fiber with various levels of Dopa
 - Core of the fiber: collagen-like and silk-like proteins
 - Adhesive plaque: disordered proteins with high Dopa content
 - Protective cuticle: Deca-peptide repeat with 20% Dopa

Protective cuticle: Metal-Protein Complex

Harrington *et al.*, **Science 328**, 206–211 (2010)

Mussel Adhesives Biofabrication

Mussel Adhesives Biofabrication (Harrington Lab, McGill)

Coacervation in Biological Composites: The Squid Beak

Humboldt squid, Dosidicus gigas

Function

Miserez et al., Acta. Biomat. 2007, 3, 139-49 Miserez et al., Science 2008, 319,. 1816-19 Sun et al., Acc. Chem. Res 2024, 57, 164-75

- Hard "biotool"
- Mechanical function (chewing)
- Prey handling

Unique Characteristics

- Not calcified
- No metal ions
- The composition is FULLY organic
- Graded structure of proteins/chitin/water

Squid beak: A Biomolecular Graded Composite

The beak is a graded composite of

1 - Chitin

2 - Gly, Ala, His-rich proteins

3 - Tanned pigment

Miserez et al., Acta. Biomat. vol 3, pp. 139, (2007) Miserez et al., **Science**, vol. 319, pp. 1816, (2008)

Elastic modulus

Spans 2 orders of magnitude (hydrated conditions)

- Interfacial stresses are minimized by the mechanical gradient
- One of the strongest fully organic material known (stronger than most tough polymers)

Squid Beak Synthesis and Biofrabrication

Beak transcriptome (beccublast cells) + proteomics

Beaks are made of 2 protein families

Chitin-binding proteins (CBPs)

Beccublast cells

His-rich beak proteins (HBPs) with repetitive motifs on the C-terminal

Squid Beak Synthesis and Biofabrication

Histidine-rich beak proteins (HBPs)

Coacervate microdroplets

Tan et al., Nature Chem. **Biol**. vol. 11, pp. 488, 2015

Squid Beak Synthesis and Biofabrication

Harrington, Mezzenga, Miserez, Nature Review **Bioengineering** 2024, 2, 260-78

Tan et al., Nature Chem. Biol. vol. 11, pp. 488, 2015

LLPS in the slime of the velvet worm

Velvet Worm Slime: Fully Recyclable Biopolymer

Unique characteristics:

- Dried slime is as stiff and strong as synthetic polymer...
- ... but can be re-solubilized in water
- Resolubilized slime: a solution of protein-based nanoglobules surrounded by lipids
- Fibers can be redrawn from the colloidal solution

Yang, Sharma et al, Advanced Science 9 (18), 2022

Velvet Worm Slime: Fully Recyclable Biopolymer

WAXS of hardened fibers

Baer et al, ACS Nano 13. 4992, 2019

DLS and AFM of re-dissolved slime

Baer et al., Nature Commun 8, 974, 2017

TEM micrographs of re-dissolved slime (negative stain)

Velvet Worm Slime: Biochemical Features

- Sub-groups of Onychophora: Peripatidae and Peripatopsidae
- Diverted ~ 380 Million years ago

With Harrington Lab **McGill University**

- High MW bands: Multi-protein complex held by disulfide bonds
- Phosphorylation
- Glycosylation

Hu, Baer et al, PNAS 122, e2416282122, 2025

High Molecular Weight Proteins of the slime

- Key primary features
- High Pro (17%, many hydroxylated)
 and Lys (10%)
- Disordered regions dominate
- Repeat domains: Di-basic peptides
 (RR/RK/KK) | PP/IIP/PI motifs | single acidic residues
- FUS-like (GS-rich) domain at Ntermini
- A few Cys residues, near the termini

Yang, Sharma *et al*, **Advanced Science** 2022 Hu, Baer *et al*, PNAS **122**, e2416282122, 2025

LLPS HMW Slime Constructs

N-terminus of ES P1 has a predicted IDP structure

MKILLSVLVL LIVVECGNSR KIRHRGGSRR GSGGGSGGSS GGSSGGSDGS YGGSDGGSGG 120 SYGDSGGGSG DSTGSNGGPG DSYSESGGSS GDGGSGGSYG GSDGGPGGSY GGSGGSGGG 130 GGGGGGGG SGSDNNPPEG

Recombinant construct of N-terminus region

4°C

> 20°C (Centrifuged)

Homology with FUS → LLPS ?

```
SQNTGYGTQSTPQGYGSTGGYGSSQSSQSSYGQQSSYPGYGQQPAPSSTSGSYGSSSQS- 119
       -SSYGQPQSGSYSQQPSYGGQQQSYGQQQSYNPPQGYGQQNQYNSSSGGGGGGGGGGYG 178
ES P2-NT ---YGELGSGG-----------LFGGS--GGGGFGPGGSYG 88
                                            :. * ..*. * **.**
        QDQSSMS---------SGGGSGGGGGGGGGGGGGGGGGQQDRG- 214
```

Yang, Sharma et al, Advanced Science 9 (18), 2022

Mid Molecular Weight Proteins of the slime

- Leucine-rich repeat (LRR)
 - Strong homology to Toll-like receptor: "horseshoe-like" structure
 - LRR involved in innate immunity, development, cell adhesion and signaling
 - First example of LRR in an extra-corporeal biological materials

Hu, Baer *et al*, PNAS **122**, e2416282122, 2025

High-MW / Mid-MW Complex Predictions

Hu, Baer et al, PNAS 122, e2416282122, 2025

- Protein-protein interactions: AlphaFold 3
 - High confidence of high-MW / Mid-MW interactions (β-sheet rich regions)
 - Receptor/ligand interactions → supramolecular biopolymer
- Possible implications for slime biofabrication
 - High MW and Mid MW segregated in the slime
 - Shear during secretion: elongate high MW and expose ligands → Network formation based on receptor/ligand interactions
 - In water: concentration of receptor/ligand decreases
 - → Returns to the lowest energy state: the slime

Take Home Message

Living World / Biology

 Sustainable, "green" chemistry principles: protein-based materials provide countless peptide design principles

> LLPS / Coacervation involved in biogenesis of

- Extra-cellular materials (elastin)
- Bioadhesives (sandcastle worm cement, mussel adhesives)
- Biological composites (squid beak, insect cuticles)
- Extra-corporeal fibers (velvet worm slime, spider silk)

Sustainability

Making sustainable materials using synthetic biology, and aqueous-based chemistry

Biomedical field applications

Bio-based materials are (usually) safe and can be used in numerous healthcare applications → Lecture 2

Acknowledgements

- Students and researchers that have contributed to coacervates research
- Dr. Paul Guerette
- Dr. Ping Yuan
- Dr. Bartosz Gabryelczyk
- Dr. Zhi Wei Lim*
- Dr. Sun Yue*
- Dr. Sushanth Gudlur
- Dr. Anastasia Shebanova
- Dr. Wu Xi*
- * Former PhD students
- ** Current PhD students

- Ms. Zilin Chen**
- Mr. Quentin Perrin**
- Mr. Congxi Huan**
- Mr. Filipe Fereira **
- Mr. Syed Maricar**

Funding support

NATIONAL RESEARCH FOUNDATION

> Collaborators

- Dr. Shawn Hoon (A*Star, Singapore)
- Prof. Herb Waite (UCSB)
- Prof. Konstantin Pervushin (NTU)
- Prof. Yansong Miao (NTU)
- Prof. Julien Lescar (NTU)
- Prof. Yu Jing (NTU)
- Prof. Bertrand Czarny (NTU)
- Prof. Atul Parikh (UC Davis/NTU)
- Dr. Farid Ghadessy (A*Star)
- Dr. Antony Partridge (MSD, Genentech)
- Dr. Chandra Verma (A*Star)
- Prof. Raffaele Mezzenga (ETH Zürich)
- Profs. Michael Landreh and Marie Arsenian-Henriksson (Karolinska)

