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Design of Polymer Brushes for the Biomedical Field 

1. Synthesis and physico-chemical properties.
2. Interactions with biomacromolecules.
3. Biofunctionalisation.
4. Polymer brushes for biosensing.
5. Design of cell based assays.
6. Polymer brushes for gene delivery.
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1. A Wealth of Chemical Diversity

Chem Rev 2014, 114, 10976-11026
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• Grafting to: potentially, control of polymer PDI and size. The chemistry of the polymer can be 
fully characterised. But low grafting density.

• Grafting from: high grafting density, but typically difficult to control the polydispersity of the 
polymer chains generated. Characterisation is limited.

Grafting To

Grafting From

1. Different Strategies To Make Polymer Brushes
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Controlled radical 
polymerisation

Free radical 
polymerisation

𝑅! = 𝑘! 𝑀 % [𝑀] 𝑅"= 2𝑘"[𝑀 %]#

• Fast surface recombination in the 
case of free radical polymerisations: 
prevents brush growth.

• Controlled radical polymerisation
techniques such as ATRP, RAFT or
NMP can help reducing termination.

• Linear increase in thickness in living 
radical polymerisations.

1. Grafting From: the Requirement of a Controlled Radical Polymerisation
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Chem. Rev. 2001, 101, 2921
J. Am. Chem. Soc. 2008, 130, 10702

1. Atom Transfer Radical Polymerisation – A Controlled Radical Polymerisation Technique

• Controlled radical polymerisations rely on the 
establishment of an equilibrium to reduce the 
instantaneous radical concentration.

• This results in a reduction in termination with a 
power 2 factor, essentially allowing radicals to 
persists throughout propagration.

• This can be used to generate a wide range of
polymer architectures with multiple blocks, star 
shapes or brush structures.
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Thiol ATRP initiator Silane NMP initiator

• Different initiators used for functionalising different substrates.
• The active functionality can remain the same or be tuned to the 
monomer type.

• Functionalisation of a wide range of surfaces (mica, silica, 
polymer…), providing they are charged or can be functionalised to 
display surface charges.

• ATRP initiator easily coupled to PHEMA backbone.

1. Examples of Surface Initiating Systems

ATRP macro-initiator
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• As predicted by the model of Alexander, a linear increase of thickness with increasing molecular weight 
of polymer chains is typically observed.

• Similar profile if plotting the increase in thickness as a function of time.
• Often the line does not cut the y axis at 0, but slightly above. Also levelling off after some time.
• Kinetics and profiles are strongly impacted by environmental parameters (solvent, pH, electrolytes, 
types of catalyst and ligands).

Macromolecules 1999 32, 1424. Langmuir 2002 18, 1265.

1. Typical Brush Growth Profile
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• In poor solvents, the grafting 
density leads to wide 
changes in brush height.

• In a good solvent, especially 
for charged polymers 
(polyelectrolytes), chains are 
more globular and even 
stretched to decrease 
osmotic pressure.

• The grafting density and 
interactions between brush, 
solvent and substrate hugely 
impact the surface 
morphology.

Langmuir 2002 18, 1265.

Grafting Density

1. Impact of Density on the Morphology of Brushes
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1. Predicting the Swelling of Brushes

h, brush height.
N, degree of 
polymerisation.
s, grafting density.

Alexander model

• Alexander model describes the relationship 
between brush height, degree of polymerisation (so 
chain length) and the grafting density.

• Linear relationship between the brush height and 
the degree of polymerisation (here noted N).

• The quality of the solvent is particularly important.
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1. Responsive Brushes

Langmuir, 30 (2014), 1827-36
Macromolecules, 40 (2007), 4403-05 

• Depending on the chemistry of brushes, their swelling and collapse can be altered by 
environmental parameters such as ionic strength, ion type, pH, solvent or temperature.

• Such phenomena can be used to design sensors and biosensors.
• It is also important to design and understand interfaces for other applications, in which 
such physico-chemical properties my impact other processes, as in cell and tissue culture 
platforms to generate cell sheets.

Ion Response pH Response Temperature Response
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2. Interactions with biomacromolecules.
3. Biofunctionalisation.
4. Polymer brushes for biosensing.
5. Design of cell based assays.
6. Polymer brushes for gene delivery.
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2. Biomacromolecular Interactions with Polymer Brushes

• A range of biomacromolecules may interact with polymer brushes, further impacting their (bio)physico-
chemical properties and altering their performance for biomedical applications.

• Protein adsorption results from a collection of hydrophobic, electrostatic and hydrogen bonding-based forces.
• It is opposed to the brush osmotic pressure and associated restriction in diffusion through the brush thickness.
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2. Protein Adsorption to Polyelectrolyte Brushes

Langmuir 2008, 24, 6575 Phys. Chem. Chem. Phys. 2006, 8,5269

Protein adsorption to poly(acrylic acid) brushes Impact of Brush Chemistry

• Protein adsorption is driven by the brush structure and chemistry.
• Like-charged proteins can still adsorb to polymer brushes, although often
more weakly.

• Entropically-driven process.
• It results in the transformation of the surface physico-chemical properties.

Integr. Biol. 2013, 5, 899
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Specific recognition

Non-specific bindingDetermination of non-specific binding by SPR
Serum PBS

Coating
Dextran – 4 nm
OEGMA – SAM

POEGMA – 30 nm
POEGMA – 30 nm

Serum
WHS
WHS
WHS
FBS

WHS: Whole Horse Serum

FBS: Foetal Bovine Serum

• Non-specific adsorption is key in the determination of the bioactivity of biomaterials.
• In some cases it is beneficial (for example to promote cell adhesion), but often results in poor and 
uncontrolled performance of biointerfaces.

• Polymer brushes are particularly good at resisting unwanted protein adsorption (proteins cannot diffuse 
through the dense brush easily).

2. Protein Resistance
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2. The Role of Brush Architecture on Protein Resistance

• The brush architecture (thickness, grafting density, 
length of side chains) plays an important role in 
dictating protein resistance.

• But the chemistry of the repeat units is prevalent.
• Some brushes are so protein resistant that protein 
adsorption is beyond the detection limit of highly 
sensitive techniques such as SPR or QCM.

Human Serum: 24.5 ng.cm-2

Human Plasma: 52.8 ng.cm-2

PHPMA
Human Plasma: < 0.03 ng.cm-2

Zheng et al. Langmuir 2010, 17375.

Cesar Rodriguez-Emmenegger Macromol. Rapid Comm. 2011, 952.

See also: Jiang et al. Langmuir 2009, 11911; Anal. Chem. 2008, 7894.

PCBAA
Human Plasma: < 0.03 ng.cm-2
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3. Coupling of Amines to Carboxylic Acids and Hydroxyls

• Carboxylic acids need to be activated in order to react 
effectively with amines (typically primary), forming amide 
bonds.

• Hydroxyls can either be converted into acid functions or can be 
activated with carbonates (i.e. DSC) or chloroformates (i.e. NPC), 
prior reaction with amines to form urethane bonds.

• These reactions lack specificity and can be relatively sensitive to 
water (e.g. in the case of EDC/NHS coupling).

EDC/NHS Coupling to Carboxylic Acids

DSC or NPC Coupling to Hydroxyls
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3. Coupling of Peptides via Cysteines using Thiol-Ene Chemistry

• Thiols are attractive moieties for the coupling of 
biomolecules such as peptides, as naturally occur, with 
cysteines.

• Thiol-ene coupling is very specific, especially if alkenes that 
are not active for Michael additions are use.

• This reaction is relatively tolerant to oxygen, although at low 
concentration it can be affected (not always negatively).

• The position of the cysteine is important (not N –terminal 
for radical thiol-ene and terminal for Michael addition).

IKVAV sequence 
for cell binding

Cysteine for 
coupling

Colak et al. Bioconjugate Chem. 2016, 27, 9, 2111–2123.
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Following Coupling via Ellipsometry Impact of thiols/photoinitiator  (T/P)

• Fast coupling to polymer interfaces, leading to slight 
increase in thickness associated with the mass added.

• Ratios of thiol/initiator and their concentration has a large 
impact on the coupling: catalytic reaction (1 radical can 
enable many coupling reactions).

• Sufficiently active and oxygen tolerant to enable reactive 
microcontact printing and patterning.

Acetyl cysteine

Cysteamine

3. Optimising Thiol-Ene Reactions on Brushes and for Patterning

Control (no photoinitiator)
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3. Coupling of Proteins using Biotin-Streptavidin Binding and Ni-NTA/His-Tags

• Biotin binding to streptavidin and avidin with binding constants of 1014 and 1015 M-1. 
• Avidin has a higher affinity constant, but is more positively charged and tends to aggregate (harder to use).
• NTA ligands can capture histidine-tagged proteins (6-10 histidines in a row). 
• Can be displaced to regenerate the surface and re-bind new proteins: often used to capture proteins for 
biosensors, but also for the purification of recombinant proteins.

Monomeric

Tetrameric

StreptavidinBiotin-Streptavidin Coupling

Ni-NTA/His-Tag Coupling
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3. Impact of the Brush Architecture on Biofunctionalisation

Macromolecules 2011, 44, 6868.

Macromolecules 2013, 46, 6151.

Small molecule Protein

• Fast coupling to polymer interfaces, leading to slight 
increase in thickness associated with the mass 
added.

• Ratios of thiol/initiator and their concentration has a 
large impact on the coupling: catalytic reaction (1 
radical can enable many coupling reactions).

• Sufficiently active and oxygen tolerant to enable 
reactive microcontact printing and patterning.
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4. Biotin-Based Platforms for Biosensing

Trmcic et al. Biomacromolecules 2009
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• Either direct coupling of streptavidin to the brush surface of 
via a biotin residue.

• Retains excellent background and protein resistance against
non-specific binding.

• Detection down to the ng/mL range.
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PCBAA

• Zwitterionic PCBAA (poly(carboxybetain acrylamide)) 
brushes are completely non-fouling, even in blood or 
plasma.

• After functionalisation with antibodies (e.g. EDC-NHS 
coupling), the detection of markers is enabled, even
directly in plasma.

• Activated carboxylic acids can hydrolyse if not reacted, 
reversing to zwitterionic moieties (neutral), therefore 
retaining ultra-low fouling properties.

4. Zwitterionic Polymer Brushes for Biosensing in Blood or Plasma

Biosensors and Bioelectronics 24 (2009) 1924
Anal. Chem. 2008, 80, 7894
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• No coupling of antibodies required for the infiltration of antibodies to poly(oligoethylene glycol 
methacrylate) (POEGMA) brushes: simple adsorption and partial drying after spotting (for 
printing of microarrays).

• Antibodies detect an analytes, followed by further interaction with a tagged antibody (sandwich 
assay analogous to many lateral flow tests).

• Excellent limit of detection in the pg/mL range.

4. Antibody Micro-Arrays for Sensitive Biodetection

Adv. Mater. 2009, 21, 1–4
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• Protein resistant POEGMA brushes can be activated 
for the coupling of alkene/alkyne molecules.

• Peptide functionalisation can then be mediated via 
thiol-ene/yne radical chemistry.

• This promotes specific and selective cell adhesion 
and patterning.

5. Peptide Micro-Patterning using Polymer Brushes

Biomacromolecules 2018, 
19, 1445−1455

Peptide Patterning 
Guiding Cell Adhesion
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• Brushes can be patterned to restrict protein 
adsorption to defined areas.

• Use of ultra-low fouling protein resistant 
polymer brushes.

• Efficient and simple patterning of proteins with 
µm-resolution.

5. Protein Micro-Patterning using Polymer Brushes

Gautrot et al. 
Biomaterials 2010
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Single Cell Spreading Area

Single Cell Shape

• ECM protein patterns (based on collagen or
fibronectin) guide the formation of cell adhesions 
and control cell spreading.

• Cell adhesive islands area and shape directs cell 
spreading and shape.

• This in turn affects cell behaviour and differentiation.

Connelly, Gautrot et al. Nature Cell Biology 2010

5. Shape Induced Differentiation Assay
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5. New Models for Wound Healing are Needed

Gurtner et al. Naure 2008
Inflammatory stage New Tissue Formation Remodelling

Scratch assay
• Consists in forming a cell monolayer and inducing a scratch 
before monitoring the closure of the “wound”.

• No real control on the wound bed geometry and the 
process can be difficult to automate.

• It is currently difficult to control the matrix biochemistry and 
mimic the microenvironment of a wound bed.
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5. Polymer Brushes for the Dynamic Control of Cell Adhesion

Costa, Gautrot and Connelly Biomater. Acta 2014

• Polymer brushes used to restrict cell adhesion 
initially.

• Then the brush is photo-coupled to a cell 
adhesive peptide that enables cell migration.

• Requires non-toxic chemistry that is compatible 
with physiological and/or cell culture conditions.

• Thiol-ene chemistry was used for such system as 
it can be photo-activated in mild conditions.
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5. Dynamic Cell Adhesion for Probing Wound Healing

Costa, Gautrot and Connelly 
Biomater. Acta 2014

• Upon photo-activation, cells start to invade the surrounding environment.
• The invasive behaviour is ligand specific and modulated by ligand density.
• This assay will allow the probing of the role of specific peptide sequences 
and receptor ligation during wound healing processes.
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6. Opportunities and Challenges in Gene Delivery

• Targeting a wide range of diseases and conditions from 
cancer to osteoarthritis and atherosclerosis.

• Development of vaccines and tissue engineering strategies. 

• Protection of genetic material and 
increased stability of vectors.

• Low toxicity.
• Improved targeting.
• Reduced doses.
• Prolonged efficacy.

Opportunities

Challenges

Molecular Therapy - Methods & Clinical Development (2016) 3, 16023
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6. Growth From Mesoporous Silica Nanoparticles – Controlled Degradation

• Growth from a broader range of in organic 
nanoparticles.

• Independent control of core and brush 
shell physico-chemical properties.Chang et al. European Polym. J. 2021, 110593
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6. Substrate-Independent Approach and Co-Labelling

• Polyelectrolyte macroinitiator for brush growth 
from any charged substrate.

• Labelling within the initiator layer, without 
affecting brush chemistry.

• Study the impact of core size and shape 
independently of brush chemistry.

Li et al. Chem. Commun. 2019, 14166



SNOSCELLS 2023 – Les Houches

Dense Brush (100 %) Sparse Brush (10 %)

6. Strong Binding of Nucleic Acid Molecules to PDMAEMA Brushes
Surface Plasmon Resonance

Krishnamoorthy et al. 
Biomacromolecules 2017
Li et al. Biomacromolecules

2018, 606
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6. Model of Adsorption Kinetics

• Kinetics model of adsorption and infiltration.
• Higher brush densities improve the binding factor (inversely proportional 
to the maximum density of oligonucleotide per chain).

• Thicker brushes do not reduce the binding factor, but limit the affinity 
constant.

• RNA infiltration associated with a lower affinity constant but higher 
surface density (very low binding factor).Qu et al. Biomacromolecules 2019, 2218
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6. Knock Down Efficiency with PDMAEMA Brushes

• Excellent siRNA delivery and knock down efficiency.
• Comparable to Lipofectamine control.
• Improved at high density and thicker brushes.

Qu et al. Biomacromolecules 2019, 2218
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6. Burst Cytosolic Release from Common Cationic Polymeric Vectors

• Release of oligonucleotides from poly(ethylene imine) 
complexes within a few seconds.

• Apparently triggered by cytosolic entry.
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How to control it?

6. What is the mechanism for RNA release in the cytosol?
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6. The Cytosolic Interactome of Polycationic Vectors

• Significant pool of proteins associated 
with DNA/RNA binding and translation.

• Other pool associated with 
endosomes, transport and proteasome

• Some proteins with very high IP.
• Significant level of RNA/DNA 
macromolecules adsorbed at the 
surface of cationic vectors.

Raynold; Li et al. Nat. Commun. 2021 (12) 6445



SNOSCELLS 2023 – Les Houches

Does competitive binding regulate RNA desorption 
from vectors upon cytosolic entry?

Potentially also alters translational activity and 
underlies off-target effects?

6. Is Molecular Crowding Regulating RNA desorption?

Polycationic Vector

small RNA

Endogenous 
cytoplasmic RNA

Cytoskeleton
Components

Cytoplasmic
Proteins
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6. Model of Competitive Desorption of Oligonucleotides

• Kinetics model of oligonucleotide desorption based 
on competitive interactions.

• Physiological cytoplasmic [RNA] clearly sufficient 
to displace oligonucleotides.

• But GAGs and proteoglycans should play 
important role.
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Raynold; Li et al. Nat. Commun. 2021 (12) 6445
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6. Regulation of Oligonucleotide Release

• Charge-shifting group in CS-PMETAC to allow cleavage and 
release of oligonucleotides to initiate in the endosome.

• PMETAC displays stronger interactions with oligonucleotides 
and better retains them upon cytosolic entry.

z-Potential Change - PMETAC SPR – Release from CS-PMETAC Cytosolic Release

Raynold; Li et al. Nat. Commun. 2021 (12) 6445
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6. Regulation of Oligonucleotide Release

Long-Term Knock DownControlled Cytosolic Retention

• Rapid release in cytoplasm in CS-PMETAC.
• PDMAEMA and PMETAC display improved 
retention of oligonucleotide upon cytoplasmic 
entry.

• Release data correlates with long term knock 
down efficiency observed for PMETAC 
brushes.

Day 10

Raynold; Li et al. Nat. Commun. 2021 (12) 6445
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Pure block copolymer brush growth kinetics on silicon 
wafers (Left) and gold substrates (right)

POEGMA

PDMAEMA

6. Design of Block Copolymer Brushes for siRNA Delivery

• Control of polymer brush re-initiation.
• Block copolymers retain the ability to bind 
RNA efficiently.

• Protein adsorption from serum is restricted.

16 nm

Scale bar: 100 nm

TEM images of SiO2-BCEllipsometry

Li et al. Biomacromolecules
2018, 606 siRNA binding 10 % FBS binding
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• Excellent stability in serum.
• Low cytotoxicity resulting from 
screening of positive charges.

6. Stability of Block Copolymer Brush-Nanoparticles and Cytotoxicity

Images were at N/P=10
Green: live cells
Red: dead cells

Light Scattering – Particles Stability Live/Dead Assay

Li et al. Biomacromolecules 2018, 606
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N/P=10

6. Knock Down Efficiency with Block Copolymer Brushes

• Excellent knock down efficiency for GFP in engineered 
HaCaT cells and EGFR in cancer cell lines.

• Retain high viability and serum stability, potentially for 
long term delivery in complex physiological fluids.

Efficient Knockdown of GFP EGFR Knockdown in Cancer Cells

Li et al. Biomacromolecules 2018, 606
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Conclusions

• Polymer brushes allow the precise control of surface chemistry, morphology and patterning.
• They enable tailoring interactions with biomacromolecules, whether proteins or 
oligonucleotides.

• Their rational design and biofunctionalisation can be applied to a broad range of biomedical 
applications.

• Dense brushes are particularly effective at stabilising high densities of oligonucleotides and 
controlling their release upon internalisation and cytosolic entry.
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