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Matrix Stiffness Controls Cell Adhesion and Motility

• The stiffness of hydrogels such as poly(acrylamide) gels regulates cell spreading.
• Focal Adhesion formation and protein phosphorylation are also affected.
• Cell motility is also regulated by matrix mechanics. 
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Matrix Mechanics Impacts Stem Cell Differentiation

• Mesenchymal Stem Cells (MSCs) 
differentiation is directed by matrix 
mechanics.

• Expression of differentiation markers 
correlates with matrix mechanics.
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Stem Cell Self-Renewal is Regulated by Matrix Stiffness

• Muscle Stem Cell self-renewal is 
regulated by matrix stiffness.

• Results in improved engraftment 
in vivo.

• Should be important design 
parameter for tissue 
engineering.
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How to Organise a Complex Dynamic Contractile Cytoskeleton?
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The Regulation of Cell Membrane Deformation at the Lamellum

• Cell spreading and motility are sustained 
by cyclic progression of cell membrane 
(lamellipodium).

• Each cycle is associated with the 
persistence of adhesion molecules (a-
actinin, paxilin).
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Actin Flow and the Molecular Clutch Model

• Actin flow regulates membrane 
deformation and sustains forces 
associated with adhesion reinforcement.

• Actin flow dynamics defines the 
transition between the lamellipodium
and lamella.

• A molecular clutch enables traction 
forces to be generated on the matrix.

Nature Cell Biology 17(8). DOI 10.1038/ncb3191
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• Integrins bind talin, which can bind actin 
directly.

• Vinculin can bind talin when the talin rod is 
stretched. In turn vinculin binds more actin 
molecules.

• a-actinin crosslinks actin filaments to 
stabilise stress-fibres.

Focal Adhesion Formation
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Talin is an Essential Mechano-Sensor of Cell Adhesions

• Multi domain protein containing three main regions: head, neck and rod, with distinct 
functions.

• The talin rod is constituted of helix bundle repeats.
• The head binds integrins whereas the tail of the rod binds F-actin.
• There are up to 11 vinculin binding sites within the rod, some of which are cryptic (hidden).
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Stretching Talin Molecules Unfolds Helix Bundles

Del Rio et al. Faseb J. 2016

• Unfolding of helix bundles associated with 
forces in the range of 20-50 pN.

• Unfolded talin rod spans 145 nm.
• Talin unfolding exposes potentially hidden 

(cryptic domains).

SCIENCE, 2009, Vol 323, p. 638-641
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Talin Unfolding Exposes Cryptic Binding Sites for Vinculin

• Magnetic tweezers can be used to actuate magnetic 
beads.

• Used to stretch talin rod domain.
• Unfolding is associated with the binding of fluorescently 

tagged vinculin molecules that photobleach therefore 
enabling the counting of single molecules.

SCIENCE, 2009, Vol 323, p. 638-641
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Vinculin Strengthens the Link Between Talin and F-Actin

• Multi domain protein containing three main regions: head, neck and tail, with distinct functions.
• The head binds talin whereas the tail of the rod binds F-actin.
• Other binding sites for focal adhesion proteins.
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Vinculin Activation Allows Talin-F-Actin Strengthening 

• Talin unfolding regulates vinculin recruitement.
• Vinculin recruitment is associated strengthening and force transmission.
• However focal adhesion maturation is not associated with mechanical 

strengthening.
• Basis for the revised molecular clutch mechanism.

Paxilin staining and Actin Flow Maps
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Recruitment of Focal Adhesion Proteins and Signalling

• Recruitment of many other proteins to focal 
adhesions.

• Enzymes such as kinases (including focal adhesion 
kinase or Src).

• Direct or indirect impact on growth factor 
receptors.

• Signalling cascade involving MEK and MAP kinases.
• Control of many cell functions.
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Stiffness Sensing or Deformation Sensing?

• PDMS microposts display controlled 
flexural moduli.

• Cells respond to such apparent change 
in stiffness, as on hydrogels.

• Results in changes in cell spreading and 
phenotype (MSC differentiation).

• Cells seem to respond to matrix 
deformation.
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Stem Cell Phenotype and 3D Matrix Mechanics

• MSCs cultured in non 
degradable, predominantly 
elastic alginate hydrogels.

• Cell traction results in matrix 
local deformations, despite 
the absence of cell spreading.

• Mechanical sensing results in 
altered MSC phenotype, as 
on 2D matrices.

Ligand Clustering

Gel Modulus
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Cell Phenotype and Matrix Mechanics Are Not Always Correlated

Burdick et al. Nature Mater. 2013

• MSCs differentiate into osteoblasts in soft matrices allowing remodelling and spreading.
• Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked

three-dimensional hydrogels
• The exact opposite to what occurs in non-degradable matrices and 2D matrices.
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PDMS and 
Polyacrylamide
experiments are 

apparently contradicting: 
do cells actually feel the 

bulk modulus?

Do Cells Sense Bulk Mechanical Properties ?

Trappmann, Gautrot et al. 
Nature Mater. 2012
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Focal Adhesions

Vinculin

PAAm gels

PDMS

Substrate Mechanics and Cell Adhesion/Spreading

0.5 kPa

0.1 kPa

740 kPa

2300 kPa

Focal adhesion formation is not sensitive to 
bulk mechanical properties!

Trappmann, Gautrot et al. Nature Mater. 2012
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Stress Relaxation in Soft PDMS

• No residual stress after long relaxation times.
• Ultra soft PDMS (Sylgard 100:1) behaves more like a liquid than a solid.

Kong et al. Faraday Discussions, 
2017, 204, 367-381.
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Cell Can be Cultured on Liquid Silicones

• HaCaT culture on liquid silicone (Sylgard).
• Not on defined PDMS oils with a wide range of viscosities. 

Suggest a role for additives or surfactants in this process.

Kong et al. Faraday Discussions, 2017, 204, 367-381.

PDMS viscosity (cSt)
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Cell Culture on Liquid Substrates is Controlled by the Presence of Surfactants

• HaCaT culture at the surface of non viscous fluorinated oil (0.77 cSt).
• Behaviour depends on the concentration of surfactant.

Kong et al. Nano Letters, 2018, 18 (3), 1946-1951.
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A Nanoscale Quasi 2D Interfacial Layer

Kong et al. Nano Letters, 2018, 18 (3), 1946-1951.
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The Nanoscale Architecture of Protein Nanosheets

Neutron Reflectometry

Ali Zarbakhsh
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Interfacial Rheology

Characterisation of Interface Mechanics

Kong et al. Faraday Discussions, 2017, 204, 367-381.

Serum
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Proteins Assembly at Oil-Water Interfaces

Before protein adsoprtion

After protein adsoprtion

Kong et al. Nano Letters, 
2018, 18 (3), 1946-1951.
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Gecko – the Molecular 
Adhesion and Friction Driven

Water striders – Surface Tension 
Driven

http://www.sciencemag.org
https://www.pestwiki.com/
water-strider-facts-rid/

Cell

What is the Adhesion to Liquids Physical Mechanism?
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Model of AFM Indentation at Liquid Interfaces

Colloidal Probe Force 
Microscopy
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Augmented Young – Laplace Model (YLM)

Superposition of YLM with model of 
deformation of supported membrane 
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• YLM only taking into account electrostatic and van 
der Waals components of the disjoining pressure P.

• Supported membrane model in shear deformation.

Megone et al. JCIS, 2021, 594, 650-657.
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Orders of Magnitude Switch in Mechanical Anisotropy

AFM Indentation Interfacial Rheology

Mechanical anisotropy switches by 5 orders of magnitude 
(from 10-3 before nanosheet adsorption to 102 after self-
assembly).
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Impact of Pro-Surfactant on 
Indentation Mechanics

• Little impact of pro-surfactants on indentation 
stiffness of protein nanosheets. 

• Interfacial stiffness mainly determined by 
surface tension.

Interfacial shear properties dominate cell adhesion.

Overall Contribution of Interfacial Shear Mechanics to Cell Adhesion

Kong et al. Nano Letters, 2018, 18 (3), 1946-1951.

Cell Adhesion Mainly 
Contributes to Shear 

Deformation
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Proteins Assembly at Oil-Water Interfaces

Before protein adsoprtion

After protein adsoprtion

Kong et al. Nano Letters, 
2018, 18 (3), 1946-1951.
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Correlation Between Cell Expansion and Interfacial Mechanics?

• Interfacial shear moduli poorly correlate with cell 
expansion at the surface of liquids.

• What nanoscale mechanical properties do cells sense?
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se, elastic stress

s1+s2 viscous relaxation

Impact of Surfactant on Interfacial Stress Relaxation

• Fit stress relaxation profiles with a double exponential.
• Surfactant concentration strongly impact elasticity level.

Interfacial Stress Relaxation Impact of Different Surfactants on 
Interfacial Viscoelasticity
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Interfacial Viscoelasticity Dictates Cell Proliferation on Liquids

• Degree of elasticity predicts cell expansion on liquids.
• Reactive surfactants are essential to drive elasticity up.

Kong, Peng et al. Biomaterials 2022, 121494
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What is the Origin of Interfacial Viscoelasticity in Protein Nanosheets?
Impact of [PFBC] on PLL 
nanosheet viscoelasticity
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Microscale Viscoelasticity of Interfaces Reinforced with PLL Nanosheets
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• Reversed viscoelastic profile at the microscale.
• High heterogeneity in agreement with AFM 

indentation data and fluorescence microscopy.

Armando Del Rio
Carlos Matellan

Kong, Peng et al. Biomaterials 2022, 121494
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Impact of Molecular Weight on Interfacial Moduli
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• PLL molecular weight does not significant 
impact on fluorination levels.

• Apart from the lowest molecular weight, no 
impact of Mw on interfacial stiffness.

Peng et al. BioRxiv doi.org/10.1101/2022.03.31.485540
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Impact of Molecular Weight on Fracture and Interfacial Viscoelasticity

• Viscoelasticity is reduced on low Mw PLL nanosheets.
• This correlates with fracture mechanics and the formation of domains.

Peng et al. BioRxiv doi.org/10.1101/2022.03.31.485540
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Impact of Molecular Weight on Interfacial Toughness
Unusual Damping Function
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• Shift in damping function with 
higher Mw.

• Toughness increases with Mw.
• Soft domains dissipate energy.

Peng et al. BioRxiv doi.org/10.1101/2022.03.31.485540
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MSCs Fracture Weak Protein Nanosheets

• MSCs wrinkle nanosheets and fracture them.
• Nanosheet toughness prevents fracture and gap formation.

Peng et al. BioRxiv doi.org/10.1101/2022.03.31.485540
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Keratinocyte Spreading on Nanosheet Reinforced Oils is Mediated by Focal Adhesions

• Primary keratinocyte spreading at liquid-water 
interfaces depends on stiffness.

• Controlled by focal adhesion formation and 
stress fibre generation.

Dexu Kong, ACS Nano, 2018, 12 (9), 9206-9213.
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Lamellipodia and Filopodia Formation on Oils

• Disruption of cytoskeleton assembly induces 
similar changes in cell spreading and shape on 
liquids.

• Blocking of integrin ligation results in comparable 
changes in cell spreading and actin assembly.

Dexu Kong, ACS Nano, 2018, 12 (9), 9206-9213.
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Rapid Growth in Stem Cell Technologies
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Cell Culture on Solid Substrate: A Hurdle for Cell Manufacturing and Biotechnologies

Cell Expansion

Enzymatic Treatment
Cell Detachment

Reduces cell quality

Cell Re-seeding

Cell isolation

Scalability

Cell sorting

• Cell manufacturing remains difficult to automate, difficult to scale up.
• Reliance on expensive solid microparticles, difficult to separate from cell products 

and process.
• Systems remain highly reliant on plastics and microplastics.
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Cell Culture on Liquids

Increased 
throughput
Increased quality
Reduced cost

ü
ü
ü

Cell Culture 
on Liquids

A Paradigm Shift in Stem Cell Manufacturing

• Liquid-liquid systems such as emulsions simple to automate and process. 
• Very competitive costs (>10 fold more affordable). 
• Replacement of microplastics with oils validated for medical/consumer applications.
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Impact of Long-Term Culture on Liquids on MSC Phenotype

Peng et al. Mat. Today Bio, 2021, 12, 100159.
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Nuclei
Actin
Vinculin

• Morphology of MSCs typically correlates with their phenotype.
• Cell morphologies comparable after culture on plastic (TPS), 

emulsions or solid microcarriers (Synthemax).
• Impact of passage time on morphology far more significant.

Morphological Analsysis

Peng et al. Mat. Today Bio, 2021, 12, 100159.
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• Retention of key surface markers of 
MSC phenotype up to P8.

• Absence of negative markers.
• MSCs retain ability to differentiate into 

osteogenic lineages following long term 
expansion on Novec oil microdroplets 
stabilised with PLL nanosheets.

• Comparable results with Alizarin red 
stainings and with adipo/chondrogenic 
differentiation.

Microcarriers EmulsionTPSControl

P4
P6

Differentiation

Long Term Retention of Stem Cell Phenotype

Peng et al. Mat. Today Bio, 2021, 12, 100159.
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Culture of Broader Range of Stem Cells at Liquid Interface

• Growth at liquid-liquid interfaces results in the 
formation of large colonies.

• Fewer single cells growing independently.

• Retention of stem cell markers Oct3/4 and Nanog.

Culture of iPSC Colonies
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iPSC Culture on Microdroplets

• Generation of microdroplets in 
a microfluidic system.

• Assembly of iPSCs at the 
surface of droplets and 
formation of large colonies.
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Bioemulsions for the Production of Biotherapeutics by Adherent Cells
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• HEK293 cells, commonly used for biotherapeutics 
manufacturing (recombinant proteins, exosomes, 
vaccines) particularly well in bioemulsions.

• Reduction in cost of carriers for 3D scale up 
compared to solid microcarriers by 20-50 fold.
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Conclusions

• Cell adhesions are important mechanosensing hubs that impact on downstream transcription 
factors and regulate a broad range of phenotypes.

• However cell response to the mechanics of their environment is complex and does not only
correlate with bulk mechanics.

• Cells respond to biomaterials by directly probing their nanoscale mechanical properties.

• Adhesion to materials displaying “no” bulk mechanical properties but a stiff interface is 
mediated by integrins and acto-myosin contractility.

• Opens new opportunities for technology development in tissue engineering and regenerative 
medicine.
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