Influence of composition and physical properties of the surrounding medium on cell-to-cell communication in Streptococcus salivarius

ulie Geortay 1, Mathilde Aubry 2, Julien Damoczi 2, Pascal Hols 2, Alain M. Jonas 1, Karine Glinel 1

nstitute of Condensed Matter and Nanosciences (Bio- and Soft Matter), UCLouvain, Belgium

Louvain Institute of Biomolecular Science and Technology (Biochemistry and Genetics of Microorganisms), UCLouvain, Belgium

timicrobial resistance has become a major global health threat, highlighting the need for alternative strategies to control pathogenic bacteria. One promising approact the use of commensal bacteria that naturally secrete antimicrobial peptides to inhibit competitors.

Streptococcus salivarius, the production of such peptides is tightly regulated by cell-to-cell communication. This signaling process between cells involves a casents: (i) a producer strain (1) releases a signaling peptide, (ii) a receptor strain (2) senses the signal and activates transcriptional pathways, leading to (iii) the seattimicrobial molecules acting on target pathogens.

ille the genetic and molecular basis of this communication system has been extensively studied, the influence of the surrounding medium on signal propagation orly understood. Physical and chemical properties of the medium such as nutrient composition and diffusional constraints may strongly affect the timing and effici cterial cross-talk.

cuerial cross-tails. re, we investigate how the composition and physical state of the environment modulate intercellular signaling between S. salivarius strains, with the goal of ide ategies to better control commensal activity in complex settings and ways to control the temporal dynamics of this activity.

XPERIMENTAL SET-UP

Signaling peptide

Compartmentalized co-culture system

Compartment A Compartment B

Strain 1 (producer)

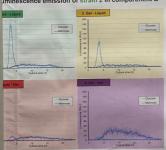
Strain 2 (receptor)

Dilum A MEDIUM B

Track-etched membrane

Procedure: producer inoculated first in A; receptor added 1.5 h later

to synchronize exponential growth phases.


Reporter sys luminescence

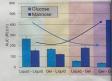
Conditions tested

	Medium A	Medium B
Condition 1	Liquid	Liquid
Condition 2	Gel	Liquid
Condition 3	Liquid	Gel
Condition 4	Gel	Gel
		+
	Carbon source = glucose OR mannose	

ESULTS

uminescence emission of strain 2 in compartment B

Signal confirmed: luminescence detected in compartment B under all tested conditions peptide is produced in A and diffuses across the membrane.


- · Carbon source effect:
- Glucose → strong but short response (~4 h).
 Mannose → weaker but long-lasting response (~20 h).
- · Impact of physical environment:
 - Liquid-liquid & Gel-liquid → similar profiles; only a slight decrease of intensity when gel is present
 - in A.

 o Liquid-gel → dramatically decreased response with
 - glucose; effect mainly linked to the presence of gel in B.

 Gel-gel response with glucose almost abolished, but response with mannose strongly increased (>2x), suggesting enhanced under these conditions.
- → Carbon source is the dominant factor; get in compartment B strongly limits glucose-induced signaling but unexpectedly boosts mannose-induced response.

Areas under the luminescence c

(~ bacteriocir

- Area under the curve (AUC) quantifuminescence over time.
- With glucose: AUC decreases from liquid
 Identify and a gel-gel
- gel-liquid > liquid-gel > gel-gel.

 With mannose: opposite trend, with AUC across the same sequence of conditions.
- → The presence of gelled medium, e in compartment B, enhances mannose signaling and reduces glucose-induced signaling.

ONCLUSION

ell-to-cell communication in S. salivarius was successfully reconstituted in a compartmentalized co-culture device: signaling peptide produced in compartment pross the membrane and activates the luminescent reporter (~ bacteriocin secretion process) in compartment B.

arbon source strongly shapes the cascade response:
Glucose → rapid but short cell activation, highest in liquid—liquid conditions, progressively lost with mechanical properties of the medium increasing.

Mannose → slower but long-lasting cell activation, remarkably enhanced under gel-gel conditions.

hysical environment has a net impact on receptor response: the presence of gel medium around the receptor (compartment B) drastically reduces glucos
gnaling but unexpectedly boosts mannose-induced signaling.

Take-home message: both nutrient composition and physical constraints of the medium modulate bacterial cross-talk. Harnessing these parabuld guide the design of smart commensal systems with tunable antimicrobial activity and dynamics.