



# MICROSENSORS FOR BIOMEDICAL APPLICATIONS

*Thérèse Leblois Université de Franche-Comté Institut FEMTO-ST Besançon France* 







**UNIVERSIT**ĕ FRANCHE-COMTĕ





# FEMTO-ST RESEARCH INSTITUTE

#### 750 MEMBERS

7 SCIENTIFIC DEPARTMENTS (AS2M, DISC, ENERGIE, DMA, MN2S, OPTIQUE, TF) 1 MICRO-NANO- FABRICATION CENTER (MIMENTO, CLEAN ROOM FACILITIES) AND 9 TECHNOLOGICAL CENTERS

1 R&D BUSINESS UNIT FOR TECHNOLOGY MATURITY GROWTH TOWARD THE INDUSTRY: **FEMTO-ENGINEERING** 

#### From fundamental research to industrial applications

Thematic fields: optics, acoustics, micro nanosciences, microsystems, timefrequency, automatic, microrobotics, computer science, mechatronics, as well as mechanics, materials and electrical engineering

Activities  $\rightarrow$  social economic impact: Energy and transport, healthcare, optics and phononic telecommunications and the space industry, instrumentation and metrology, watch making industry



**N cLocations**: Besançon, Montbéliard and Belfort









# **BIOMICRODEVICES TEAM**

### The team BioMicroDevices

- 14 permanent staff
- Pluridisciplinary team: bio-engineering, physico-chemistry of surfaces interfaces, nanobiocharacterization, microfluids, microfabrication, biosensors, lab-on-chips; organ-on-chips
- Field of applications: health, agrofood
- Close collaboration with health actors







### **BIOSENSING TECHNOLOGIES?**

Two widely used techniques, inexpensive, easy to use:

- lateral flow assays (LFA)

Analysis time~minutes / LOD~0.1µM / low cost / low volume

-Enzyme-linked immunosorbent assays (ELISAs) Analysis time ~ 1 hour / LOD ~ 1pM / volume (100µL)

- $\rightarrow$  Objective of Biosensors developement:
- Analysis time~minutes / LOD <1pM
- Portable, miniaturized, real-time, inexpensive, easy to use



# CONTENTS

# A- Biosensor

Introduction Biorecognition elements Transducers Examples of application C- Lab-on chip Actuators Lab-on-chip Organ-on-chip

# **B-Microfluidics / Microfabrication**



5

## **BIOSENSOR INTRODUCTION**

### Definition and characteristics of biosensor

Biosensor = Analytical device that is able to convert a biological response into an electrical signal.

The "golden" biosensor must be:

- highly specific
- Highly sensitive
- Able to reach a low LOD
- Independent of physical parameters (e.g., pH, temperature, etc.)
- Reliable
- Reusable
- Low cost

### Historical background

- 1956: Measurement of the concentration of oxygen dissolved in blood by Clark [Clark1]
- 1962: First amperometric enzyme electrode for the detection of glucose by Leland Clark and Lyons [Clark2].
- 1969: First potentiometric sensor to detect urea by Guilbault and Montalvo [Guilb].
- 1975: First commercial biosensor developed by Yellow Spring Instruments (YSI): glucose in diluted whole blood by use of an enzyme-based biosensor [Yoo].
- 1983: First surface plasmon resonance (SPR) immunosensor by Liedberg et al. [Liedberg].
- [Clark1] Clark, L. J. *Trans Am Soc Artif Intern Organs* 1956, 2, 41-48
  [Clark2] Clark, L. C.; Lyons, C. *Ann. N. Y. Acad. Sci.* 1962, 102, 29-45
  [Guil] Guilbault, G. G.; Montalvo, J. G., Jr. *J. Am. Chem. Soc.* 1969, 91(8), 2164-2165.
  [Yoo] Yoo, E.H., Sensors 2010:4558-4576
- [Liedberg] Liedberg, B, Sens. Actuators 1983;4:299-304



# **BIOSENSOR INTRODUCTION**

# Definition and characteristics of biosensor

Analytical device that is able to convert a biological response into an electrical signal.

The "golden" biosensor must be:

- highly specific
- Highly sensitive
- Able to reach a low LOD
- Independent of physical parameters (e.g., pH, temperature, etc.)
- Reliable
- Reusable



Number of published papers mentioning "biosensors" derived from statistics provided by the Web of Science [Singh]

 $\rightarrow$  Rapid developments in miniaturization and microfabrication

both at research and product developement

Singh et al., Alexandria Engineering Journal (2023) 67 673-691



# **BIOSENSOR INTRODUCTION**

### **4 Fields of applications**

Health Diagnosis – therapy - bioproduction Drug discovery Process monitoring *in vivo* implantable biosensor

### Environment Water quality management Detergents, pesticides, heavy metals Bacteria and pathogens detection Environemental monitoring

# **Biosensors**

Bioterrorism Toxic substances detection Germs, pathogens and toxins detection Chemical weapons Explosives Agrofood Chemical contaminants detection Foodborne pathogens detection Food product production Food quality monitoring

Mehrotra J Oral Biol Craniofac Res. (2016) 6(2) 153-159.



### **BIOSENSOR INTRODUCTION**

Definition





9

### **BIOSENSOR INTRODUCTION**



#### **Combinaison of Biology and Physics**

[Mont] Montrose A. PhD thesis Univ. Toulouse III, march 2013



# **BIORECOGNITION ELEMENTS**

### Methods of immobilisation



#### **Physical methods**:

AI- Easy, no need for chemical compounds, not very stable, low cost, reversible
AII- AIII- not versatile, high selectivity, high sensitivity, high cost, irreversible

#### **Chemical methods**:

**BI-** high stability, strong binding, high cost, **irreversible** 

**BII-** high stability, strong binding, cross-linking with or without inert protein, high cost, **irreversible** 

**BIII**- high selectivity, high sensitivity, labelling, high cost, **reversible** 

Asal et al. Sensor review (2018) 84



# **BIORECOGNITION ELEMENTS**

- Bioreceptors  $\rightarrow$  specificity of the biosensor
- Type of bioreceptors
- Classification into 5 types of bioreceptors
  - Enzymes, nucleic acids and antibodies bioreceptors: the most widely used
  - Cells and bacteriophages
- 3 major categories of bioreceptors:
  - Bioreceptors binding the analyte without modification
  - · Bioreceptors with catalytic activity
  - Biomimetic receptors

 $\rightarrow$  The recognition step can thus result either in a static state (affinity bioreceptors) or in a dynamic event (metabolic bioreceptors)



#### Different types of bioreceptors [Soto]

[Mont] Montrose PhD thesis Univ. Toulouse III, march 2013 [Soto] Soto D., *molecules* 2022 27:3841



# TRANSDUCER

### Definition

The transducer converts the received physicochemical reaction signal into measurable signal. The measured signal can indirectly reflect the concentration of the target.

Five types of transducers are commonly used for biosensor design:

A/ Electrochemical: electrical properties, production of redox species,

B/ Thermal: temperature accompanying a reaction,

C/ Optical: optical absorption, refractive index, fluorescence,

D/ Piezoelectric: gravimetry, physical and physicochemical

parameters,

E/ Mechanical: constraints, forces.

**Main characteristics**: Dynamic range, sensitivity, linearity, accuracy, limit of detection (S/3N), drift, reliability, Repeatability, reproductibility





## **OPTICAL TRANSDUCER (1/7)**

### **Colorimetric sensing**

Colorimetry is a scientific technique that is used to determine the concentration of colored compounds in solutions by the application of the Beer–Lambert law, which states that the concentration of a solute is proportional to the absorbance.

Not label-free method (calcein)

Limit of detection:  $3 \times 10^{-5}$  ng  $\mu$ L<sup>-1</sup>





[Sayad] Sayad et al. *Biosensors and Bioelectronics* 100 (2018) 96–104



# **OPTICAL TRANSDUCER (2/7)**

### Fluorescence sensing

- Fluorescence
  - Principle: Association of the target molecule with a fluorescent molecule called fluorescent marker. Affinity between fluorochrome and molecule of interest

Quantification of the presence of molecules of interest in an indirect way

- $\rightarrow$  One of the numerous labelling techniques
- Characteristics:
  - Limit of detection: a few fg/mL
  - Expensive microscope
  - Addition of fluorochrome / denaturation
  - Decrease of fluorescence in time
- Example of detection:
  - Direct
  - Indirect
  - Amplification





### **OPTICAL TRANSDUCER (3/7)**

### Surface Plasmon Resonance (SPR) / SPR imaging

- Principle: shift in the position of the plasmon resonance angle due to the modification of the medium refringence Δθ=0.1°⇔1ng/mm<sup>2</sup>
- Label-free method
- Limit of detection 1pg/mm<sup>2</sup> SPR et 5pg/mm<sup>2</sup> SPRi
- Depth penetration: 50 to 100nm





Evanescente wave



Damborsky P. Essays in biochemistry (2016) 60 91-100



### **OPTICAL TRANSDUCER (4/7)**

### Localized surface plasmon resonance (LSPR)

- Principle: based on metallic nanostructures MNPs (Au, Ag...)
- Interaction of incident light with MNPs  $\rightarrow$  localized plasmon resonance on the structures
- Laser power: 0.5  $\rightarrow$  1 mW



 Application for diagnosis: more sensitive than SPR, lower limit of detection, miniaturization, less bioreceptors, multiplex

Estevez et al, Analytica Chimica Acta 806 (2014) 55-73

case

case

17



# **OPTICAL TRANSDUCER (5/7)**

### Surface enhanced Raman Scattering (SERS)

- Principle: based on the amplification of the Raman response (incident light = laser) of an analyte interacting with the surface plasmon of metals such as Au, Ag, or Cu
- Label free method, non invasive, rapid
- Higher-efficiency than normal Raman spectroscopy
- Diagnosis: diagnostic specificity 97%





1600



Successfull differentiation of the liver cancers from the normal subjects with high-diagnostic sensitivity of 95.0% and diagnostic specificity of 97.6%

[Liu] Liu et al 2018



# **OPTICAL TRANSDUCER (6/7)**

### Interferometry

- Interoferometric method (« Dual Polarization Interferometry TM et TE» (DPI) Interference generated by two guides → Fringes
  - Principle: the immobilization of biomolecules on the surface of one waveguide modifies the effective index of the guided mode and induces Δφ between two polarizations



Laser He-Ne / polarizer/2 optical waveguides/camera

- Real time measurements
- LOD: a few pg/mm<sup>2</sup>

Thickness and density of Streptavidin binding free D-Biotin

Swann et al, Analytical Biochemistry, vol.329, pp. 190-198, (2004), D. Johnson BSc, PhD thesis, "Molecular level investigation of coiled-oil proteins" University of Nottingham, (2005).



### **OPTICAL TRANSDUCER (7/7)**

### **Comparison of performances**

| Biosensor                       | Multiplexing | Commercialization | Label-<br>free? | Selected biological<br>applications                                                                                                     |                                 |     |     |     |                                                                                                |
|---------------------------------|--------------|-------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----|-----|-----|------------------------------------------------------------------------------------------------|
| SPR                             | + +          | + + +             | Yes             | Kinetic analysis of biointeractions<br>Antigens in clinical samples<br>Proteins in biological samples<br>Xepoblotics and toxins in food | Bioluminescent<br>optical fibre | + + | +   | No* | Response of cells to genotoxic<br>agents<br>Multidetection of genotoxins by live<br>cell array |
|                                 |              |                   |                 | Carbohydrate-specific interactions                                                                                                      | Waveguide                       | + + | +   | Yes | Study of cellular responses and                                                                |
| SPRi                            | + + +        | + + +             | Yes             | Screening of biomarkers and<br>therapeutic targets                                                                                      | interferometric                 |     |     |     | processes<br>Virus detection                                                                   |
|                                 |              |                   |                 | Screening of drug-target protein<br>interactions                                                                                        | Ellipsometric                   | + + | +   | Yes | Characterizing viral receptor<br>profiles                                                      |
| LSPR                            | + +          | +                 | Yes             | Detection of DNA hybridization<br>Screening of antigen-antibody                                                                         |                                 |     |     |     | Detection of serum tumour<br>biomarker                                                         |
|                                 |              |                   |                 | interactions<br>Cancer biomarker detection<br>Toxin detection                                                                           | RIfS                            | + + | + + | Yes | Xenobiotics in food<br>Detection of circulating tumour<br>cells                                |
| Evanescent wave<br>fluorescence | + + +        | + + +             | No              | Clinical diagnostics, biodefence,<br>food testing                                                                                       | SERS                            | +   | +   | Yes | Detection of cancer proteins<br>Protein biomarker in environment                               |
|                                 |              |                   |                 | Clinical biomarkers<br>Toxin screening                                                                                                  |                                 |     |     |     |                                                                                                |



Damborsky P. Essays in biochemistry (2016) 60 91-100

# **ACOUSTIC TRANSDUCER (1/7)**

Acoustic waves: Propagative perturbation of the equilibrium of a medium or a material.

- Elastic regime
- Longitudinal/ transverse propagation
- Bulk acoustic wave, surface acoustic wave, plate wave



• Piezoelectric materials: quartz, ZnO, AIN, LiNbO<sub>3</sub>, LiTaO<sub>3</sub>, KNTiO<sub>3</sub>, SrTiO<sub>3</sub>, BiFeO<sub>3</sub> and BaTiO<sub>3</sub>



# **ACOUSTIC TRANSDUCER (2/7)**

#### **BAW: Quartz Crystal Microbalance (QCM)**

Principle: Piezoelectric effect  $\rightarrow$  resonance of the device  $\rightarrow$  shift in frequency  $\Delta f$  and change in resonance magnitude due to a change in mass

- Generation of shear waves
- Shift in resonance frequency  $\Delta f$  due to  $\Delta m$  and to liquid

$$\Delta f = \Delta f_m + \Delta f_L = -\frac{2f_0^2}{n(C_{66}\rho_q)^{1/2}} \left[\frac{\Delta m}{A} + \left(\frac{\rho_L \eta_L}{4\pi.f_0}\right)^{1/2}\right]$$

• Penetration depth : 250nm for  $f_0$ =5MHz, depending on the resonance frequency



- Sensitivity: : less than 1ng/cm<sup>2</sup>
- Good accurancy, reliability,
- Easy microfabrication, low power consumption

Ferreira G, Trends in Biotechnology, 27(12) 2009



### **ACOUSTIC TRANSDUCER (2/6)**

### **Comparaison between Quartz crytal Microbalance and SPR**

|     | LOD:<br>(mass/area)    | LOD <sub>M</sub> :<br>(total<br>mass) | Kinetics<br>Analysis<br>Capability | Multiple<br>Channels | Sample<br>Volume | Chips  |
|-----|------------------------|---------------------------------------|------------------------------------|----------------------|------------------|--------|
| SPR | 0.1 ng/cm <sup>2</sup> | ~1 fg                                 | Excellent                          | Easy                 | 10 to            | Au on  |
|     |                        |                                       |                                    |                      | 100uL            | Glass  |
| QCM | 1 ng/cm <sup>2</sup>   | ~1 fg                                 | Difficult                          | Difficult            | ~50 to           | Au on  |
|     | <b>,</b>               |                                       |                                    |                      | 200 uL           | Quartz |

 $\rightarrow$  Miniaturization and multiplex measurements





# **ACOUSTIC TRANSDUCER (3/6)**

### **BAW FBAR:** Thin-film bulk acoustic resonator

Principle: device consisting of a piezoelectric material manufactured by thin film methods between two conductive – typically metallic – electrodes and acoustically isolated from the surrounding medium.

- Two types of structures: membrane / SMR
- High resonance frequency: 200 MHz to 10 GHz
- Rather complex manufacturing
- More sensitive than QCM / Fragile / not often used in liquid

 $\Delta f_N$ 

Network Analyzer

Bottom

electrode

• In non Newtonian liquid  $\Delta f_M = \Delta f_N + \frac{J_R \Delta D}{2}$ 

Top electrode

• In Newtonian liquid

Liquid

O-ring

$$= -f_R^{3/2} \sqrt{\frac{\rho_l \eta_l}{\rho_0 \mu_0 \pi}}$$

With  $\Delta D$  = dissipation



Fu et al, Progress in materials science 89 (2017) 31-91Wingqvist et al, surface & coating technology 205 (2010) 1279-128624Patel R. et al, Materials today proc. 4 (2017) 10377–10382

# **ACOUSTIC TRANSDUCER (3/6)**

### **BAW FBAR**

- Application for diagnosis: detection of hPSA
- Resonance frequency: 1.5 GHz
- Structure Si/SiO<sub>2</sub>/ZnO/Cr-Au
- Sensitivity in mass: 0.5ng/cm<sup>2</sup> corrélation with ellipsometry





- •Low cost, label free, possibility of integration
- Sensitivity FBAR> Sensitivity QCM
- Limit of detection FBAR < Limit of detection QCM</li>



Zhao, Sensors and Actuators, B190(2014) 946-953



25

# **ACOUSTIC TRANSDUCER (4/6)**

**SAW: Love wave**  $\rightarrow$  Shear waves generated by two IDTs

- Three different materials: substrate rigid solid, a viscoelastic guiding layer, and the sensitive layer; a Newtonian liquid as the top layer
- Parameters: thickness, density, dielectric constants, piezo constants, elastic constants, viscosity
- Guided wave in a guiding layer, electric isolation of the IDTs





# **ACOUSTIC TRANSDUCER (4/6)**

#### SAW: Love wave transducer

Application : uri acid measurement

- LiTaO<sub>3</sub> and ZnO device
- Resonance frequency: f=53MHz
- chemical reaction:

Uricacid +  $O_2$  +  $H_2O \xrightarrow{Uricase} Allantoin + H_2O_2 + CO_2$ 



• LOD: 5µM

Mechanically robust device



:)



Rana et al, Sensors and actuators B 261 (2018)169-177



# **ACOUSTIC TRANSDUCER (5/6)**



#### Matthieu Desvergne, PhD thesis Univ Bordeaux, October 2007

#### Plate waves - Lamb waves

- Wavelength  $\lambda$ > plate thickness  $\rightarrow$  membrane
- Resonance frequency fr depending on the phase velocity and the geometry of the device  $f_r = \frac{nv_{\varphi}}{2L}$
- Waves propagate laterally
- Two types of geometries
- With reflectors / Plates free on one side \_



- Small radiation loss in the testing liquid ٠
- High sensitivity ٠
- Short response time ٠
- Low fabrication yield (<10%) ٠
- High insertion loss (>-50 dB) ٠



### **ACOUSTIC TRANSDUCERS (6/6)**

#### Comparison between several acoustic wave biosensors

Key parameters of typical acoustic wave biosensors used for disease-related biomarker detection.





# **ELECTROCHEMICAL TRANSDUCER (1/6)**

Analyte binding  $\rightarrow$  redox reaction/ electrical conductivity change at the interface

- some of the most used biosensors in the market, mainly due to glucose monitoring
- easily miniaturised, inherently inexpensive and require simple electronics for conditioning and read-out, making them ideal for point-of-care applications
- 5 types of transducers



Components and measurement formats associated with electrochemical biosensors [Cesewski]

[Cesewski] Cesewski et al., *Biosensors and bioelectronics* 159 (2020) 112214





### **ELECTROCHEMICAL TRANSDUCER (1/6)**

#### Types of electrochemical transducers

| Measurement type                   | Transducer                                                                           | Transducer analyte                                                                       |
|------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| 1. Potentiometric                  | ion-selective electrode (ISE)<br>glass electrode<br>gas electrode<br>metal electrode | $K^+$ , $Cl^-$ , $Ca^{2+}$ , $F^-$<br>$H^+$ , $Na^+$<br>$CO_2$ , $NH_3$<br>redox species |
| 2. Amperometric                    | metal or carbon electrode<br>chemically modified electrodes (CME)                    | O <sub>2</sub> , sugars, alcohols<br>sugars, alcohols, phenols,<br>oligonucleotides      |
| 3. Conductometric,<br>impedimetric | interdigitated electrodes, metal electrode                                           | urea, charged species, oligonucleotides                                                  |
| 4. Ion charge or field<br>effect   | ion-sensitive field effect transistor (ISFET), enzyme FET (ENFET)                    | H <sup>+</sup> , K <sup>+</sup>                                                          |

Type of electrochemical transducers for classified type of measurements, with corresponding analytes to be measured [Thevenot]

sciences & Technologies [Thevenot] Thevenot et al., *Biosensors and bioelectronics* 16 (2001) 121–131

# **ELECTROCHEMICAL TRANSDUCER (2/6)**

### Conductometry

### Conductivity change in the solution via the production or consumption of charged species

- Principle: Generation of an alternative voltage (fixed voltage) between two electrodes. Measurement with an impedance meter, Z= voltage/current ratio.
- Measurement: variations (consumption or production) of charged species during enzymatic reactions.
- Conductance G :  $G=\gamma A/\lambda$

γ (S.cm-1): conductance or specific conductivity of the product; A (cm): geometrical constant of the cell

- High sensitivity
- Miniaturization (only 2 electrodes)
- Differential measurement (with and without enzyme)



Electrical current (A)





# **ELECTROCHEMICAL TRANSDUCER (3/6)**

### Amperometry

- Current change due to a redox reaction in the solution pA < I < nA</li>
  - Principle: measuring currents due to the oxidation or reduction of electroactive species occurring locally in contact with a working electrode. Consumption of one of the products of the reaction.
  - Selectivity governed by the redox potential of the electroactive species present in the solution
  - fast, more sensitive, more accurate and more precise than potentiometric biosensors
  - Example: Glucose
    - Amperometric measurement of H<sub>2</sub>O<sub>2</sub>





33



# **ELECTROCHEMICAL TRANSDUCER (4/6)**

### Potentiometry

- Principle: measuring variations in open circuit potential, of which biologically sensitive field-effect transistors Voltage is a special type
- Potential change between an ionosensitive electrode (transducer) and a reference electrode Cal or Ag/AgCl
  - Local equilibrium at the transducer surface → potential proportional to the logarithm of the concentration of the sample according to Nernst's law :
    - E : potential redox couple
    - E<sup>0</sup>: normal potential redox couple
    - R: constant ideal gaz
    - a<sub>Ox</sub>/a<sub>Red</sub>: ratio of species activity dominating the potential in oxidized and reduced states
    - T: Temperature in Kelvin
    - Two methods: ISE (Ion Sensitive Electrodes: metallic electrode)/ ISFET (H+, K+, Na+, Ag+, F-, Br-, I-, Ca<sup>2+</sup>, NO<sub>3</sub><sup>-</sup>)



$$E = E^0 + 2, 3\frac{RT}{nF} \lg \frac{a_{Ox}}{a_{Red}}$$



### **ELECTROCHEMICAL TRANSDUCER (4/6)**

- ISE: ion sensitive electrodes (pH or monovalent ions)
  - Macroscopic device, analysis in 30 minutes
- ISFET (Ion sensitive Field Effect Transitor) based on MOSFET principle
  - Miniaturized, analysis in a few minutes, low cost, robust



(1) Rsivakumarsamy R. et al, nature materials 17(2018) 464-470
(2) 2) Bergveld P. et al, IEEE Trans. on Biomedical Engin. 17(1970)
(3) Singh A. et al, proc. 3<sup>rd</sup> Int. Conf. NANOCON, oct 2014



# **ELECTROCHEMICAL TRANSDUCER (4/6)**

### 0D ISFET: sensor ⇔ Si nanotransistor

Principle: measurement of ionic effects independent of pH.

- Technological development at nanoscale: nanotransistor Si technology
- •No selective coating for ionogram measurements in blood/ independant of pH

• Clinical application: dépistage (for hyperkalemy or renal insufficiency) or therapeutic monitoring

- Low cost, subnanoliter volume, miniturization, portable, reusable, label-free





36

# **ELECTROCHEMICAL TRANSDUCER (5/6)**

#### Impedimetry

Principle: measuring the ratio: impedance = AC potential / AC current.

- Electrochemical impedance spectroscopy (EIS)
- Impedance is measured over a wide range of AC potential frequencies, typically from 100 kHz to 1 MHz
- $\rightarrow$  useful information about the physico-chemical changes that take place when an analyte binds
- → Application: detection of cancer and other disease biomarkers, bacteria, polluting agents, toxins
- → Attomolar concentration



Detection of S Typhimurium

[Cesewski] Cesewski et al., *Biosensors and bioelectronics* 159 (2020) 112214



### **ELECTROCHEMICAL TRANSDUCER (6/6)**

#### Nanomaterial based electrochemical biosensors

Principle: nanomaterial modified electrodes for the construction of biosensors compared with planar electrodes

- $\rightarrow$  Lowering the limit of detection to unparalleled levels
- → Better accessibility of analyte molecules to reach immobilised biomolecules
- → Direct electronic wiring of redox enzymes allowing direct electron transfer between the modified electrode and active site of the enzyme making such enzymatic biosensors more selective
- → Graphene oxide much cheaper compared with other nanomaterials
- $\rightarrow$  ultrasensitive affinity-based electrochemical biosensors





New graphene biosensor can detect SARS-CoV-2 in under a minute

Hammond et al., *Essays in Biochemistry* (2016) **60** 69–80 Xu et al., *Biosensors and Bioelectronics* (2020) **170** 112673

### **ELECTROCHEMICAL TRANSDUCER (6/6)**

#### Nanomaterial based electrochemical biosensors

| Nanomaterial                       | Hybrid <sup>a</sup>                                                                                                                         | Target b                                    | Analytical Characteristics                                                                                         |                                                        | Comments                                                                                                                                                                                                                                                                                                                                           |                                                                             |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Manomaterial                       | ,                                                                                                                                           | langer                                      | Linear Range                                                                                                       | LOD                                                    | Comments                                                                                                                                                                                                                                                                                                                                           |                                                                             |
|                                    | 3D hybrid graphene-GNR.                                                                                                                     | $H_2O_2$                                    | 0 to 50 mM                                                                                                         | 2.9 µM                                                 | Metallic nanostructures have high catalytic activity,                                                                                                                                                                                                                                                                                              |                                                                             |
|                                    | TiO <sub>2</sub> nanoparticles encapsulated<br>ZIE-8                                                                                        | Glucose                                     | 2 to 10 mM                                                                                                         | 80 nM                                                  | easy preparation, and relatively low cost. However,<br>this kind of nanomaterial can change its oxidation state                                                                                                                                                                                                                                    |                                                                             |
| Metallic nanostructures            | Nanohybrid of VS <sub>2</sub> /AuNP and<br>CoFe <sub>2</sub> O <sub>4</sub> nanozyme                                                        | Kana                                        | $1 \ pM$ to $1 \ \mu M$                                                                                            | 0.5 pM                                                 | due to variations in conditions of the medium, such as<br>pH, ionic strength, and temperature upon time.                                                                                                                                                                                                                                           | Proteins Glycoproteins Antibodies Aptamens Cells Microorganisms             |
|                                    | Ag and hybrid Ag–Fe <sub>3</sub> O <sub>4</sub> metallic<br>nanoparticles.                                                                  | AA                                          | 0.2-60 µM                                                                                                          | 74 nM                                                  |                                                                                                                                                                                                                                                                                                                                                    |                                                                             |
|                                    | mSiO2@MWCNT.<br>MSF/APTES/AgNP                                                                                                              | Thrombin<br>STR                             | 0.0001 nM and 80 nM<br>1 to 6.2 ng/mL                                                                              | 50 fM<br>0.33 fg/mL                                    | These nanomaterials have high mechanical resistance,<br>thermal stability, long functional life, and versatility;                                                                                                                                                                                                                                  |                                                                             |
| Silicon nanomaterials              | Ap-GA-NH2MCM-41-GCE                                                                                                                         | hemin and Hb                                | $1.0\times 10^{-19}$ to $1.0\times 10^{-6}~M$                                                                      | $7.5 \times 10^{-20}$ M and<br>$6.5 \times 10^{-20}$ M | nonetheless, they require long synthetic processes, and<br>their application is limited to certain analytes.                                                                                                                                                                                                                                       | Biomarkers                                                                  |
|                                    | AuNPs loaded in functionalized<br>MSNPs                                                                                                     | CEA                                         | $1.0\times 10^{-3}$ to 100 ng/mL                                                                                   | $9.8 \times 10^{-4}$ ng/mL                             | II ,                                                                                                                                                                                                                                                                                                                                               |                                                                             |
| Carbon nanostructures              | MWCNTs and GQDs.<br>GQDs/AuNPs.<br>CQDs/AuNps<br>CoCu-ZIF@CDs                                                                               | IL-13Rα2<br>P53<br>Glucose<br>B16-F10 cells | 2.7 to 100 ng/mL<br>0.000592–1.296 pM<br>0.05 mM to 2.85 mM<br>1 × 10 <sup>2</sup> to 1 × 10 <sup>5</sup> cells/mL | 0.8 ng/mL<br>0.065 fM<br>17 μM<br>33 cells/mL          | These nanomaterials enjoy thermal stability, large<br>surface area, and a wide range of nanostructures and<br>functional groups. They are the main nanomaterials<br>used in the preparation of electrochemical biosensors.                                                                                                                         | Electrode                                                                   |
| Polymers                           | (Chi-Py) mixture, AuNPs, and<br>MWCNT<br>PANI/ active carbon and n-TiO2                                                                     | Escherichia coli<br>Glucose                 | $3 \times 10^1$ to $3 \times 10^7$ cfu/mL                                                                          | ~30 CFU/mL                                             | These have high biocompatibility, high affinity, strong<br>adsorption ability, low molecular permeability,<br>physical rigidity, and chemical inertness in biological<br>processes. However, functionalizing their surface is<br>necessary for the anchorage of bioreceptors, and some<br>polymers oxidize due to changes<br>in medium conditions. |                                                                             |
|                                    | PEG/AuNPs/PANI                                                                                                                              | alpha-fetoprotein                           | $10^{-14}$ to $10^{-6}$ mg/mL                                                                                      | 0.007 pg/mL                                            |                                                                                                                                                                                                                                                                                                                                                    | NPs Silicon CNTs Graphene QDs Polymers Others<br>nanomaterials nanomaterial |
| Other nanostructured nanomaterials | WSe <sub>2</sub> and AuNPs<br>MoS <sub>2</sub> /Ti <sub>3</sub> C <sub>2</sub> nanohybrids<br>AuNPs/Ti <sub>3</sub> C <sub>2</sub> MXene 3D | Thrombin<br>miRNA<br>miRNA155               | 0–1 ng/mL<br>1 fM to 0.1 nM<br>1.0 fM to 10 nM                                                                     | 190 fg/mL<br>0.43 fM<br>0.35 fM                        | Other hybrid nanostructures have a large specific<br>surface area, excellent electrical conductivity, and<br>electrocatalytic properties.                                                                                                                                                                                                          |                                                                             |

<sup>a</sup> GNR, graphene–gold nanorod; AuNPs, gold nanoparticles; Ap, aptamer; GA, glutaraldehyde; GCE, glassy carbon electrode; MSNPs, mesoporous silica nanoparticles; MWCNTs, multiwalled carbon nanotube; MSF, mesoporous silica thin film; APTES, (3-aminopropyl) triethoxysilane; AgNP, silver nanoparticles; CDs, carbon-dots; Chi-Py, pyrrole branched chitosan; PEG, polyethylene glycols; PANI, polyaniline. <sup>b</sup> AA, ascorbic acid; STR, streptomycin; miRNA; micro-RNA.

[Soto] Soto et al., *Molecules* (2022) 27, 3841



# **MECHANICAL TRANSDUCER (1/4)**

#### Static cantilever deflection (MC)

Principle: optical detection of displacement linked to the variation of the surface energy: intermolecular bonds in cantilever surface

- •Length L=200µm, width I=20µm, thickness d=0.5µm, silicon nitride
- Deflection  $\Delta h = 3\sigma(1 v)/E (L/d)^2$ ,  $\sigma = surface stress$



→Multiplex technique, miniaturization, label-free technique, specificity of capture

 $\rightarrow$ Response time to be improved (3-4h) – due to diffusion

→Clinical use

• PSA 0,2 ng/ml  $\rightarrow$  60 µg/ml in HSA and human plasminogen (1mg/mL)

Wu et al, nature Biotechnol., 2001(19), 856-860



# **MECHANICAL TRANSDUCER (2/4)**

### **Resonant microdevices (RM)**

Principle: Dynamic deflection of nanocantilevers linked to stress generated by the interaction between helicase HCV and aptamer ARN  $\rightarrow$  shift in resonance frequency

- PZT nanocantilevers Array, length L, fonctionnalized
- Shift in resonance frequency due to added mass negligeable compared to surface stress  $\omega_i = \left(\frac{\lambda_i}{L}\right)^2 \sqrt{\frac{\xi}{\mu}}$
- $\rightarrow$  stress

$$v_i \equiv \omega_i + \Delta \omega_i = \left(\frac{\lambda_i}{L}\right)^2 \sqrt{\left[\frac{\xi}{\mu + \Delta \mu}\right] \left[1 + \frac{2}{\pi^2} \frac{\tau L^3}{\xi}\right]}$$

$$\tau = \frac{\tau_0}{2} \left[ 2 \left( \frac{\Delta \omega_i}{\omega_i} \right) + \left( \frac{\Delta \omega_i}{\omega_i} \right)^2 \right]$$









- Resolution = concentration 100pg/mL in liquid, higher resolution compared to static cantilevers
- Label-free
- Intregration

sciences & Technologies Hwang et al, Biosensors and Bioelectronics 23 (2007) 459-465

42

### **MECHANICAL TRANSDUCER (3/4)**

### Resonant microdevices (RM): cantilevers (30nm width)

Principle: mass sensing of biological elements in physiological environment  $\rightarrow$  frequency shift

- Poly-L-lysine molecules coated on the surface of cantilever
- •Measurements of adherent living cells HeLa: MC + confocal microscope

• Positive dielectrophoresis trapping (6V, 1MHz)  $\rightarrow$  High speed displacement (0.5 – 1mm/s)

Change in resonant frequency





- In physiological environment (measurement at a single cell level)
- In real time, resolution a few ng
- Complementary characterization (microscopy)

Park et al, lab on Chip 2008 (8) 7, 993-1228



# **MECHANICAL TRANSDUCER (4/4)**

22 nM 70 nM .2 uM

15

### Suspended microchannel resonator (SMR)

Principle: resonant device out of fluid  $\rightarrow$  high Q factor (no attenuation due to viscosity)

- Electrostatic excitation, optical detection
- microcantilever in a SOI substrate, 200\*33\*7  $\mu m^3$
- Channel with biological sample in the MC 3\*8 $\mu$ m<sup>2</sup>, by-pass channel 30\*100 $\mu$ m<sup>2</sup>









- Limit of detection: 300ag
- Enhanced sensitivity compared to resonant devices in liquid
- In flow
- Small volume of sample

Burg et al, Nature 446 (2007) 1066 Arlett J. et al, Journ. Appl. Phys. 108 (2010) 084701



### TRANSDUCERS





Arlett J. L. et al DOI: 10.1038/nnano.2011.44



Limit of detection vs analysis time for the quantification of proteins using mechanical biosensors



### **MICROFABRICATION (1/6)**





# **MICROFLUIDICS (2/6)**

#### Technology based on Si/ SiO<sub>2</sub>/ thin layers (examples SEM images)

Cantilever with a single E. coli bound near the cantilever tip. Actuated in air, this cantilever measured the mass of a single cell to be 665 fg. Scale bar corresponds to 5 µm







Specialized cantilever fabricated to specifically bind analytes near the tip of the cantilever in order to maximize the effect of added mass. The nanoscale gold dot can be used with thiol-based binding chemistries to localize analyte binding → Detection at attogram quantities. Scale bar represents 2µm.

Arrays of bridge oscillators. Scale bar corresponds to 2 µm





Several cantilevers in a "Millipede" cantilever array, which contains an array of 32 X 32 fully integrated devices. Each cantilever is 50 µm in length

A 15 μm long, doubly-clamped nanomechanical resonator. Electrospun fibers are used as an etching mask in order to define the nanostring resonators.

llic et al, Journal of Applied Physics **95**, 3694 (2004) Waggoner et al, Lab Chip, 2007, 7, 1238–1255



### **MICROFABRICATION (3/6)**

#### Soft technology based on polymers: nanoimprint lithography

New substrates for flexibility, new features, miniaturized Polymer is cast in a structured mold

- Common polymers: PDMS, PMMA, etc.
- Moulding materials: SU-8, thick photoresist
- Nanoimprint: pattern micro/nano



Nanoimprint lithography for LSPR sensing

- Advantages of soft lithography:
- 1/ rapid prototyping
- 2/ low cost, biocompatible, disposable



Schematic illustration of the step and flash imprint lithography (S-FIL) process



## **MICROFABRICATION (4/6)**

#### **Microstructures obtained by replication**





### **MICROFABRICATION (5/6)**

#### **Examples of microfluidic circuits**



Chip made by hot embossing



Electrophoresis system by thermoforming



Microfluidic chip in soft lithography (PDMS)



3D Microfluidic in SU8



Filter obtained using tilted lithography



Lab on chip made by injection



Microfluidic connector microsterolithography

50

Abgrall P. PhD Thesis Univ Toulouse, February. 2006



# **MICROFABRICATION (6/6)**

#### Sensing systems designed with applying patterning techniques

| Patterning Technique        | Patterned Material       | Pattern Shape           | Detected Biomolecule     | Detection Methode | Detection Limit                   | Literature                 |
|-----------------------------|--------------------------|-------------------------|--------------------------|-------------------|-----------------------------------|----------------------------|
| Soft Lithography            | PS/PSMA                  | Micropillar             | Anti-IgG                 | Fluorescence      | 0.03 µg.mL <sup>-1</sup>          | Lee et al. (2011a, 2011b)  |
| Stencil Lithography         | Sillicon Nitride         | Au squar nanodot        | Streptavidin             | SPR               | 100 nM                            | Vazquez-Mena et al. (2011) |
| Wet Ethcing                 | ITO                      | Whell-like              | Glucose, Cholin, Lactate | ECL               | 14, 40, 97 µM                     | Zhou et al. (2014)         |
| Nanoimprint Lithography     | Glass                    | Au elliptical nano-disc | PSA                      | SPR               | 0.0012 ng.mL <sup>-1</sup>        | Lee et al. (2011a, 2011b)  |
| Nanoimprint Lithography     | PET                      | NanoDome                | IgG                      | LSPR              | 3.4 nM                            | Endo et al. (2010)         |
| Nanoimprint Lithography     | Photonic Crystal         | Nanohole                | Influenza Virus          | Reflectometry     | 10 pg.mL <sup>-1</sup>            | Choi and Semancik (2013)   |
| Soft Lithography            | PEG Hydrogel             | pH responsive-Circular  | Streptavidin             | Fluorescence      | -                                 | Lee et al. (2008)          |
| Non-contact Robotic Printer | APTES-coated glass slide | Spot                    | Escherichia coli         | Fluorescence      | 25 bacteria each have 1 nl volume | Melamed et al. (2011)      |

ECL: Electrochemiluminescence SPR: Surface Plasmon Resonance ITO: Indium-Tin Oxide PSA: Prostate Specific Antigen IgG: Immunoglobulin G PET: Polyethylene Terephthalate PEG: Polyethyleneglycole PS: Polystyrene PSMA: Poly (styrene-alt-maleic anhydride).

- •New materials
- New technologies
- Biocompatible
- •Low cost
- Disposable

Derkus, Biosensors Bioelectronics, 79(2016) 901-913



# **MICROFLUIDICS (1/5)**

- The main benefits of such a technology consists in:
  - Reduced volume of reagents
  - Lower costs
  - Fine control over parameters (size, shape)
    - $\rightarrow$  Reproduce *in vivo* condition
- Through miniaturization & automation, microfluidics are a great tool to:
  - Improve the precision of experiments
  - Lower limits of detection
  - Confine molecules produced by a cell in a nanometric space for detection purpose
  - Follow the kinetics of chemical reaction
  - Faster analyses due to the shorter reactions and/or separation times
  - Run multiple analyses simultaneously
  - Manipulate molecules (unique cell scale) directly and physically
  - Apply local or intense electric or magnetic fields without increasing voltage
  - Design portable devices for point-of-care applications



## **MICROFLUIDICS (2/5)**

### Fluid flow and microfluidic chip

# Flow equation for microfluidics F=my incompressibility / Newtionan fluid $\frac{D\mathbf{u}}{\mathbf{Dt}} = \frac{\partial \mathbf{u}}{\partial \mathbf{t}} + (\mathbf{u}\nabla)\mathbf{u} = -\frac{1}{\rho}\nabla P + \nu\Delta \mathbf{u} \qquad \mathbf{u} = \text{velocity} \\ P = \text{pressure} \\ \text{Inertia forces are small in miniaturized devices} \end{cases}$

 $0 = -\nabla P + \mu \Delta \mathbf{u}$ 

Approximation valid for microfluidics

Exceptions : microechangers spotters, inertial microfluidics

### Reynolds number Re

Ratio between the inertial and viscous forces acting on a fluid

- $\rightarrow$  Indicator of whether fluid flow is turbulent or steady
- $\rightarrow$  Re<2000 the fluid is considered to exhibit a laminar flow



An example of laminar and turbulent flow in the macroscale





# **MICROFLUIDICS (3/5)**

Case of Re<2000: laminar flow

- $\rightarrow$  Profil of velocity in a channel (Poiseuil)
- $\rightarrow$  Diffusion time vs convection time
- $\rightarrow$  Competition between T<sub>C</sub> et T<sub>D</sub> to reach the surface









Diffusion time

Convection time

 $t_{_{D}} \approx L_{_{D}}^{_{2}}/D$ 







## **MICROFLUIDICS (4/5)**

 $\frac{\text{diffusive time}}{\text{convective time}} \sim \frac{H^2/D}{H^2 W_c/Q} \sim \frac{Q}{DW_c} \equiv \text{Pe}_H$ 



Example: D=40 $\mu$ m<sup>2</sup>/s, u=1000 $\mu$ m/s  $\rightarrow$  Pe=2500

→ Mixing after 25cm and 4 minutes **Figure 1** Model system studied here. Solution with target concentration  $c_0$  flows with velocity U and volumetric flow rate  $Q \sim HW_cU$  through a channel of height *H* and width  $W_c$  over a sensor of length *L* and width  $W_s$  that is functionalized with  $b_m$  receptors per unit area. The kinetic rate constants for the (first-order) binding reaction are  $k_{on}$  and  $k_{off}$ , and the diffusivity of the target molecules is *D*.

Zone of depletion  $\delta$  / Comparison with  $\tau = L^2/D$ Region i: full collection, diffusion phenomenon prevails Region ii: depletion zone <H et L Region iii:depletion zone<H et >L convection phenomenon prevails



# Simulation results multiphysics in channel

Arlett et al, nature nanotechnology, 44 (2011) Squires et al, nature biotechnology 26 (2008)



## **MICROFLUIDICS (5/5)**

Microfluidic structures (soft matter, silicon, GaAs,...)



Microfabrication of a microfluidic multiplexer



Microfabrication of a microfluidic cell on silicon wafer



microfluidic cell on (110) silicon wafer / GaAs wafer



Microfabrication of microfluidic cells on silicon wafer



Microfabrication of microfluidic circuit on silicon wafer-T junction to obtain a two-phase mixture

Azzopardi, C.-L et al, Micromachines 8 (2017): 308



### **MICROFLUIDIC CHIPS**

#### **Timeline on microfludic technology**





57

\_

-

 $\rightarrow$ 

# LAB-ON-CHIP ACTUATION (1/3)

### Acoustophoresis: acousto fluidic interaction

Principle of acoustophoresis for particles concentration / sorting





58

## LAB-ON-CHIP ACTUATION (2/3)

#### Acoustophoresis

Design of the microdevice developped for acoustic sorting



Acoustic interaction area



# LAB-ON-CHIP ACTUATION (3/3)

# Acoustophoresis: acoustic sorting / separation of biological particles in a channel (w=375µm)





# **LAB-ON-CHIPS DETECTION (1/2)**

### Microdevice for the global assessment of primary haemostasis with flowing whole blood $\rightarrow$ detection of Willbrand's disease

Primary hemostasis = dynamic processus, in flow

- $\rightarrow$  Mimic *in vivo* conditions
- $\rightarrow$  Real time
- $\rightarrow$  multiplex
- $\rightarrow$  Low volume of sample



| PMMA    |  |
|---------|--|
| PDMS    |  |
| Quartz  |  |
| Silicon |  |

- Rectangular parallel plate perfusion chamber
- Width 5mm / Height 50µm
- Flow rate / Shear rate is in accordance with published recommendations



#### Microfabrication acoustic transducer

Oseev A., IEEE Transaction on biomedical engineering, 2020 3031542



C- Lab-on-chip

# LAB-ON-CHIPS DETECTION (2/2)



Experimental set up

#### **Biointerface protocol:**

Gold surface -> C11C16 -> SE -> HORM collagen 50µg/mL -> BSA 0.1% -> Ethanolamine

#### Conditions:

Whole blood Shear rate: 1500 s<sup>-1</sup> Perfusion time: 5min Real time Temperature: 23°C ± 1°C





AFM image: collagen and platelets





Oseev et al., nanomaterials 2020 10(10), 2079



### **ORGAN-ON-CHIPS (1/6)**

#### Lab-on-chips towards organ-on chips





### **ORGAN-ON-CHIPS (2/6)**

#### Milestones in the development of organs-on-chips and experimental techniques

| Organ-on-a-chip milestones                                               | Experimen       | ital focus                     |                      |                   |                    |                      |          |
|--------------------------------------------------------------------------|-----------------|--------------------------------|----------------------|-------------------|--------------------|----------------------|----------|
| Miniaturized total analysis system                                       | 3D (Bio)Prin    | ting                           |                      |                   |                    |                      |          |
|                                                                          | Scaling         |                                |                      |                   |                    |                      |          |
| <ul> <li>Cell patterning in microchannels</li> </ul>                     | Dosing expe     | eriments; ADME                 | E-Tox                |                   |                    |                      |          |
| <ul> <li>Cell handling in microchannels</li> </ul>                       | Control of ir   | ncubation parar                | meters               |                   |                    |                      |          |
| Cell culture in microchannels                                            | Surface mod     | lification for ce              | ll patterning        |                   |                    |                      |          |
| <ul> <li>Single OoC</li> </ul>                                           | Mechanical      | and material cu                | Jes                  |                   |                    |                      |          |
| <ul> <li>Multiple OoCs</li> </ul>                                        | Introductior    | n of PDMS a <mark>nd</mark> s  | soft lithography     |                   |                    |                      |          |
| <ul> <li>Spheroid/iPSC-derived OoC</li> </ul>                            | Cell seeding    | ı — good p <mark>ract</mark> i | ice/cell lines, prim | nary cells, iPSCs | 5                  |                      |          |
| • 3D cultures                                                            | Microfluidic    | cell perfusion:                | pumping, media,      | etc.              |                    |                      |          |
|                                                                          | Mixing and      | generation of g                | radients             |                   |                    |                      |          |
| Today                                                                    | Microfabrica    | ation of microcl               | hannels              |                   |                    |                      |          |
| <ul> <li>OoC for regenerative medicine</li> </ul>                        | Chip design     |                                |                      |                   |                    |                      |          |
| <ul> <li>OoC disease models</li> </ul>                                   |                 |                                |                      | De                | gree of complexity |                      |          |
| <ul> <li>Personalized OoC models</li> </ul>                              | Late<br>1980s   | 1990s                          | 2000s                | 2010              | )s 2020            | ls                   |          |
| ADME-Tox, absorption, distribution, met<br>PDMS, poly(dimethylsiloxane). | abolism, excret | tion and toxicol               | ogy; iPSC, induced   | pluripotent ste   | m cell;<br>Leunç   | g nature review (202 | 22) 2:33 |



### **ORGAN-ON-CHIPS (3/6)**

# Most common materials used for fabricating OoCs, their advantages and drawbacks and their main purpose in OoC devices

| Materials                             | Advantages                                    | Drawbacks                         | Experimental model              |
|---------------------------------------|-----------------------------------------------|-----------------------------------|---------------------------------|
| PDMS <sup>10,315,316</sup>            | Gas-permeability                              | Absorption of small molecules     | Disease modelling               |
|                                       | Optical transparency                          | Difficulty in mass production     | Mechanical and chemical stimuli |
|                                       | Elasticity                                    |                                   | Electrode patterning            |
|                                       | Biocompatibility                              |                                   |                                 |
| Thermoplastics <sup>277,317</sup>     | Optical transparency                          | Rigidity                          | Drug screening                  |
|                                       | Mass production                               | Difficulty in producing complex   | Large-scale experimentations    |
|                                       | Cost-effective                                | structures                        |                                 |
|                                       | Low absorption                                | Low permeability                  |                                 |
| 3D printing resins <sup>318,319</sup> | High mechanical and thermal properties        | Autofluorescence                  | 3D design modelling             |
|                                       | Low cost                                      | Opacity                           | Rapid prototyping               |
|                                       | Complexity and design freedom                 | Toxicity                          |                                 |
|                                       |                                               | Low permeability                  |                                 |
|                                       |                                               | Surface roughness                 |                                 |
| Glass <sup>320</sup>                  | Optical transparency                          | Laborious fabrication             | Electrode patterning            |
|                                       | Inert                                         | Fragile                           |                                 |
|                                       | Biocompatibility                              | Expensive                         |                                 |
|                                       | Low autofluorescence                          |                                   |                                 |
| Silicon <sup>321,322</sup>            | Low absorption                                | Laborious fabrication due to need | On-chip sensors                 |
|                                       | Generation of high-resolution channels on the | for clean-room facilities         | Formation of diffusive barriers |
|                                       | nanoscale                                     | Expensive                         |                                 |

OoC, organ-on-a-chip; PDMS, poly(dimethylsiloxane).



Leung nature review (2022) 2:33

65

### **ORGAN-ON-CHIPS (3/6)**

#### Experimental set-up for a generic two-organ system with supporting peripheral equipment



sciences & Technologies Leung nature review (2022) 2:33

66

### **ORGAN-ON-CHIPS (4/6)**





### **ORGAN-ON-CHIPS (4/6)**

#### Schematic drawings of multiple -OoCs





Multi-OoC developed consisting of several OoC compartments together in one device

Leung nature review (2022) 2:33

68



### **ORGAN-ON-CHIPS (5/6)**





Winter school Snoscells | Les Houches | 22/01 – 27/01

Ac Offline measurement

# **ORGAN-ON-CHIPS (6/6)**

- OoCs can represent a single tissue unit or multi-tissue units linked by microfluidic flow to recapitulate complex physiological functions such as cancer metastasis, inflammation and infection.
- OoCs are able to **approximate one or few organ- level functions**: barrier function of the lung, contractile function of the heart or filtration in the kidney.
- OoC systems that are based on the use of iPSCs and organoids offer an unprecedented opportunity to study **patient diversity** (racial and ethnic background, sex, age, state of health or disease) as a biological variable, and to conduct patient-specific studies of the progression of disease and effects of treatment.
- By using OoCs we can identify early-stage biomarkers, monitor disease progression and determine optimal therapeutic treatment regimens in a personalized manner.
- OoCs are poised to **become broadly accepted** in biological research, as they offer biologic fidelity along with experimental control in human tissue settings



Leung nature review (2022) 2:33









# Thank you for your attention!







### **BioMicroDevices team**



Contact: therese.leblois@femto-st.fr





websites: <a href="http://www.femto-st.fr">www.femto-st.fr</a>, <a href="http://teams.femto-st.fr/BioMicroDevice">http://teams.femto-st.fr/BioMicroDevice</a>

71