Stirling machine as auxiliary power unit for range
extender hybrid electric vehicles
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Context and short term solutions

g ~ China fuel economy standards
3 200 Japan S
— ~
o fueleconomy,,.......cerenns . DX
0 standards U7 L
3 ~ ' ~
£ 150 i |
u S
§ EU €02 standards
: 1309 CO2/km.
= - 130g CO2/km
4
v
>
<
v 50
¥
[
2 -37,5%
o
v 9
2005 2010 2015 2020 2025

Year

2030

=>» Problematic arises for post 2025 due to more stringent

reglementation regarding CO2 emissions

Energetic demands

Additional
energy

CO2 emission

~
~

fuel consumption

Powertrain & EMS

Auxiliaries

: weight Rolling
consumption

Thermal

resistancce

CAFE = Corporate Average Fuel Economy / ICE=Internal Combustion engine / EMS = Energy Management Strategy




Internal Combustion Engine (ICE) powertrains main problematics
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On the other hand... ongoing development of Battery Electric Vehicles (BEV)

Renault Zoe

Benefit of Zero Vehicle Emission
(Tank to wheel emissions !!!)




However, BEVs present many drawbacks

»  Large battery capacities for long autonomy range: Additional weight
»  Thermal confort such as heating is not free compared to thermal based powertrains
*  CO2 emission (well to wheel analysis) depends on the electricity production

*  Geopolitical problematic for European automotive manufacturers >100kW.h
«  Cost for the customer (500km)
(=600kg)
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Range Extender powertrain seems to be a comprimise
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Fun to drive (such as BEV) different thermodynamic
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BEV = Battery Electric Vehicle, FCV = Fuel Cell Vehicle, REX = Range Extender Vehicle,
SHEV = Series Hybrid Electric Vehicle, ZEV = Zero Emission Vehilce



State of the art — Energy converters for automotive application
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Early development of Stirling machine for automotive applications

Ford Torino

Automotive intrinstic benefits: Multi-fuel capability, good thermal efficiency, high
torque at low speed, silent operation, low vibration.

Many reasons hindered their deployments: Leakage, controllability, Investment
costs, and particularly the simplicity and price of the ICE at that time




Today with CO2 and emissions topics, Stirling for automotive applications gain interest

® Development of Series Hybrid Electric Vehicles (SHEV) :
o efficiently operation under all driving cycle
o quasi-stable operating state: reduce control complexity

« External combustion machine - Emission reduction through:
o Choice of fuel and continuous combustion

 Development of magnetic coupling systems:
o Complete sealing to avoid working fluid leakages

« Material advancement to reach higher temperature and pressure:
o Higher thermodynamic cycle efficiency and higher power density




Target of this work
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Stirling cycle - Theory

Robert Stirling (1816) Hot air engine
|deal Stirling Cycle
Stirling engines . 2 |sotherma_l transformations
* EXxpansion 3-4
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Configuration

Mechanical configuration : Beta

One cylinder with 2 pistons

Work piston : compression and

expansion

Displacer piston : no work done,
moves the gas from the expansion
space to the compression space
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Beta Engine

Cooler Heater

Beta - e al SR
Cycle moteur

Proto Femto 300 W

= \4
Cycle frigorifique




Designed prototype characteristics

Heater _ Engine characteristics
Expansion space

Displacer piston Beta type Single cylinder
4— Regenerator Working gas Nitrogen
3 Compression space Pressure 60 x 10° Pa
g<—  Cooler
Power piston Power 12 kW
Generator 3 phase
Power piston diameter 101 m

Crankshaft S;Trgl;ession swept 45x 104 m3
Hot temperature 937 K
Cold temperature 337K PV Diagram from isothermal
Efficiency (target) 39 % analysis (Schmidt)

Frequency 35 Hz




Designed prototype characteristics

1: hot exchanger, 2: cold exchanger,
3: gas burner, 4: torquemeter,

5: electrical engine,

6: power electronics converter.

First tests :

engine is driven by an electric drive
» asynchronous engine
> Inverter

Reduced pressure 15 bar instead of 60
bar

Reversed cycle : heat pump or
refrigerating cycle



Results: pressure, torque, rotational speed for a few cycles
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Results: as a refrigerating machine

-30°C dans le volume de détente




Vehicle model including an APU with ICE or Stirling engine

Vehicle specifications

[Vehicle mass (Fdriver) ™ 1210 kg
‘Wheel friction coefficient  0.0106

PAirdensity I 1.205 kg/m3 T ————

AWieB adius S 0.307 m

Auiliaries consumption 750 W :

Battery max. power 78 kW == ,

IBatteryicapacity N [5, 10, 20] kWh

BRI (o= ) | L

kg A(‘: AC

I Batiery state of charge" [0.4, 0.6, 0.8, 1] [c-----rrmommmrmmmommmomnbees Vehicle specifications

Stirlingsystem ~ 12kw R— —!

Stirling efficiency 39 % (I e B | Generator max. power 12 kW

NICEFOWSRIEI o7 kw s — 95 %

|ICE max. efficiency  36.% T
80 kW
93 %
5.4
97 %

42.5 MI/kg
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Model results

Energy converters operation

® for both Stirling and ICE on plug-In SHEVsS
powertrains

® three repeated WLTP
¢ 10kWh battery capacity

® Stirling engine operates at a lower power
and more continuously than ICE




Model results
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Conclusion

Alternative automobile powertrains are needed
Series Hybrid Vehicles including a Stirling engine as APU is a good candidate

Powertrain efficiencies and fuel consumption present good performances when
compared to a conventional ICE APU

A 10 kW Stirling engine prototype has been developed and is currently under tests




