
Stirling machine as auxiliary power unit for range extender hybrid electric vehicles

Sylvie BEGOT, Steve DJETEL, François LANZETTA– Femto st Wissam BOU NADER – Groupe PSA

CAFE = Corporate Average Fuel Economy / ICE=Internal Combustion engine / EMS = Energy Management Strategy 2

Internal Combustion Engine (ICE) powertrains main problematics

Powertrain efficiency

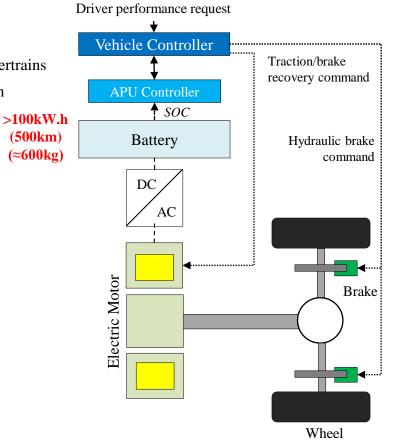
Carnot Engine	ICE Max efficiency	
New Energy Converter or Combined Cycle Potential of gain Thermal based powertrain Piston Internal		Combined cycle
Combustion Engine Same efficiency for the same cost & complexity Cost & Complexity	Stirling	Gas-Turbine Split cycle
ICE multi-fuel compatibility		Confort thermal energetic needs
$ \begin{array}{c} \hline \\ \hline $		Reflection, transmission, tran

On the other hand... ongoing development of Battery Electric Vehicles (BEV)

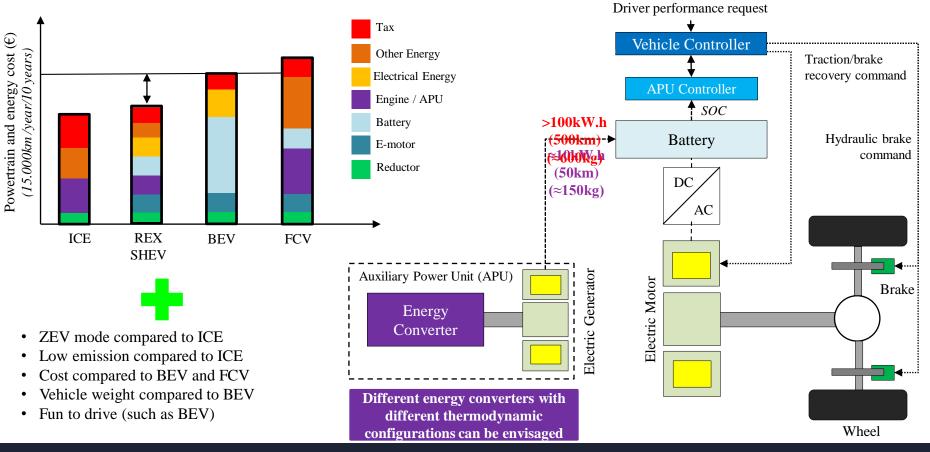
Tesla

Citroën C0

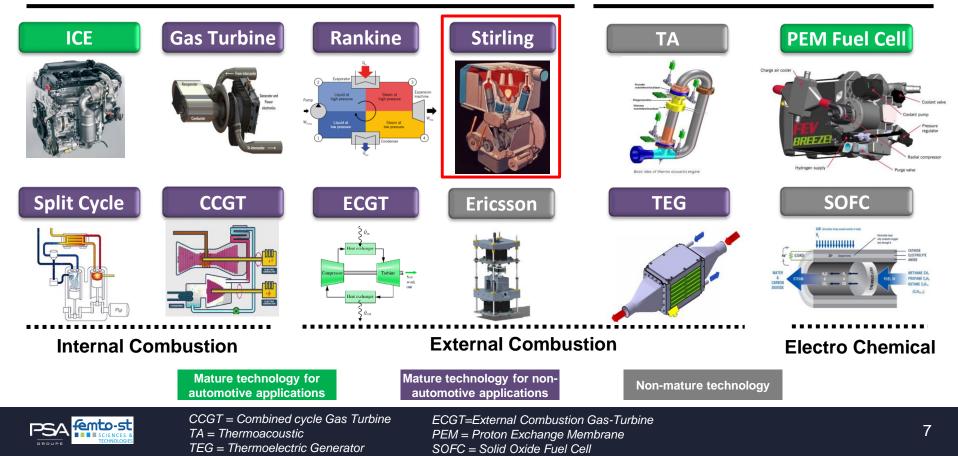
Renault Zoe

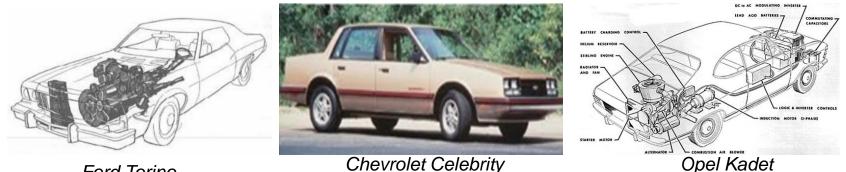

Benefit of Zero Vehicle Emission (Tank to wheel emissions !!!)

However, BEVs present many drawbacks


- Large battery capacities for long autonomy range: Additional weight
- Thermal confort such as heating is not free compared to thermal based powertrains
- CO2 emission (well to wheel analysis) depends on the electricity production
- Geopolitical problematic for European automotive manufacturers
- Cost for the customer

Range Extender powertrain seems to be a comprimise





BEV = Battery Electric Vehicle, FCV = Fuel Cell Vehicle, REX = Range Extender Vehicle, SHEV = Series Hybrid Electric Vehicle, ZEV = Zero Emission Vehilce

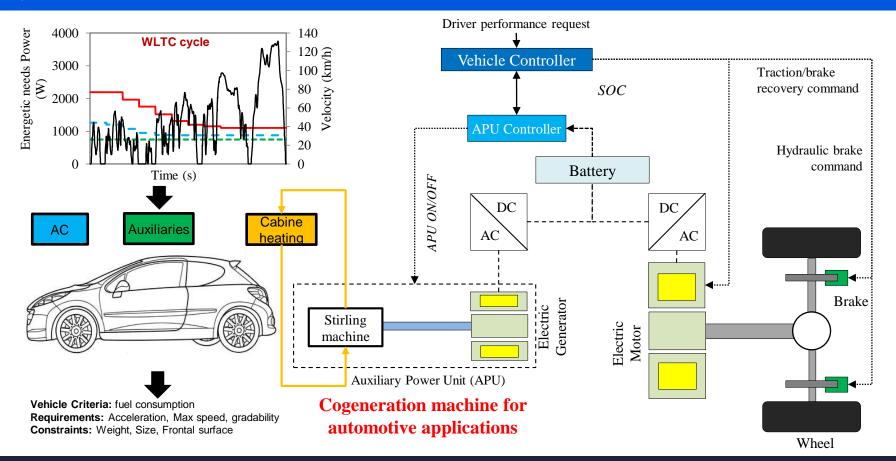
Conventional

Non Conventional

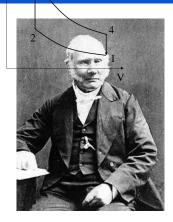
Ford Torino

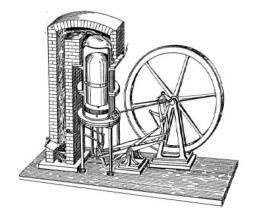
Chevrolet Celebrity

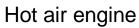
Automotive intrinstic benefits: Multi-fuel capability, good thermal efficiency, high torque at low speed, silent operation, low vibration.


Many reasons hindered their deployments: Leakage, controllability, Investment costs, and particularly the simplicity and price of the ICE at that time

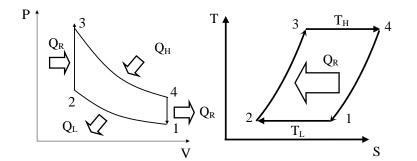
- Development of <u>Series Hybrid Electric Vehicles (SHEV)</u> :
 - o efficiently operation under all driving cycle
 - o quasi-stable operating state: reduce control complexity
- External combustion machine Emission reduction through:
 - Choice of fuel and continuous combustion
- Development of magnetic coupling systems:
 - Complete sealing to avoid working fluid leakages
- Material advancement to reach higher temperature and pressure:
 - Higher thermodynamic cycle efficiency and higher power density




Target of this work



Stirling cycle - Theory

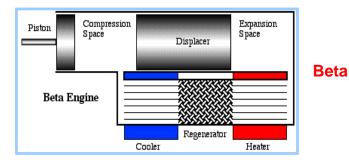


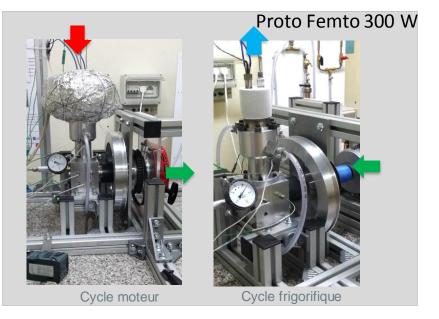
Robert Stirling (1816)

Stirling engines

- External heat supply
- Closed cycle
- Regenerative engine

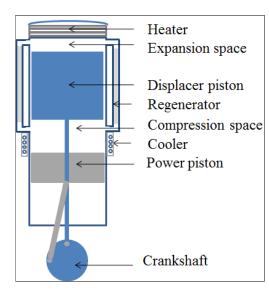
Ideal Stirling Cycle


- 2 isothermal transformations
 - Expansion 3-4
 - Compression 1-2
- 2 isochoric transfromations
 - Heating 2-3
 - Cooling 4-1

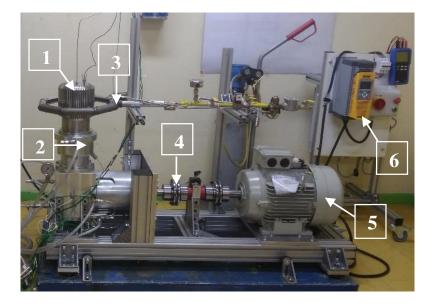


Configuration

Mechanical configuration : Beta


- One cylinder with 2 pistons
- Work piston : compression and expansion
- Displacer piston : no work done, moves the gas from the expansion space to the compression space

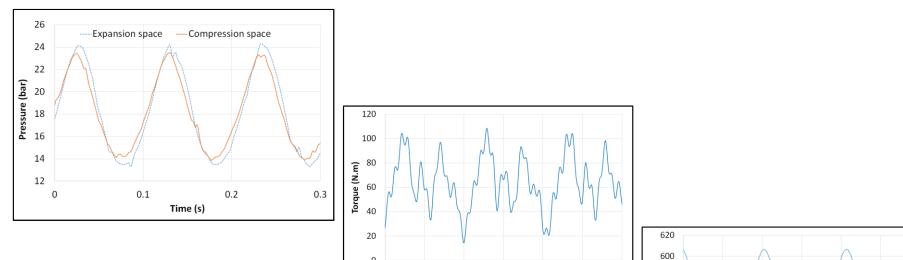
Designed prototype characteristics



Engine characteristics		
Beta type	Single cylinder	
Working gas	Nitrogen	
Pressure	60 x 10 ⁵ Pa	
Power	12 kW	
Generator	3 phase	
Power piston diameter	10 ⁻¹ m	
Compression swept volume	4.5 x 10 ⁻⁴ m ³	
Hot temperature	937 K	
Cold temperature	337 K	
Efficiency (target)	39 %	
Frequency	35 Hz	

PV Diagram from isothermal analysis (Schmidt)

1: hot exchanger, 2: cold exchanger, 2: and burner, 4: torquemeter


- 3: gas burner, 4: torquemeter,
- 5: electrical engine,
- 6: power electronics converter.

First tests :

- engine is driven by an electric drive
 - > asynchronous engine
 - > Inverter
- Reduced pressure 15 bar instead of 60 bar
- Reversed cycle : heat pump or refrigerating cycle

Results: pressure, torque, rotational speed for a few cycles

0.1

0.15

Time (s)

0.25

0.3

580

500 480

0

0.05

0.1

0.15

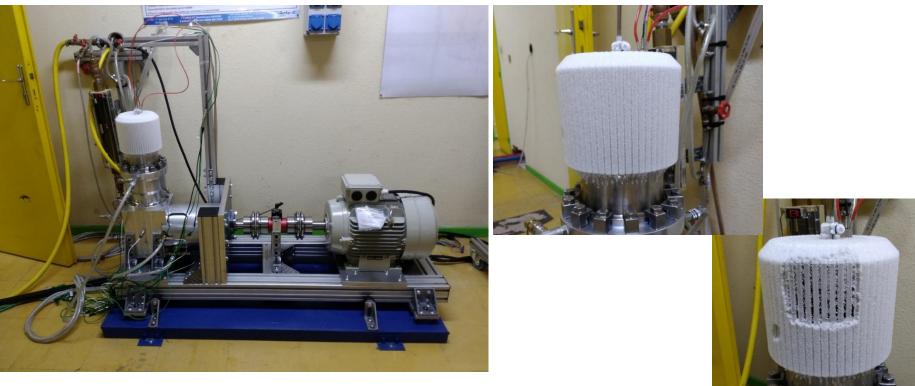
Time (s)

0.2

0.25

0.3

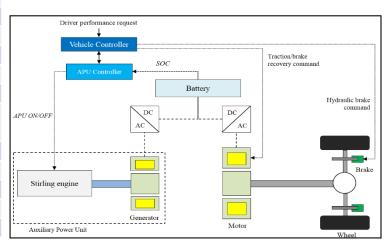
0.2


0

0

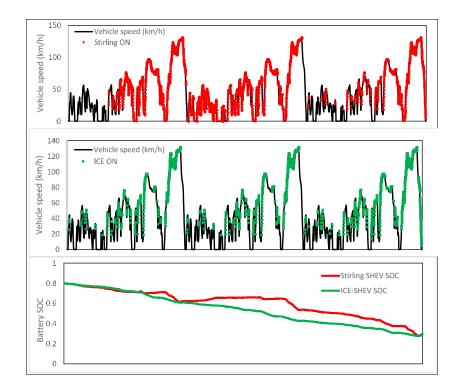
0.05

Results: as a refrigerating machine

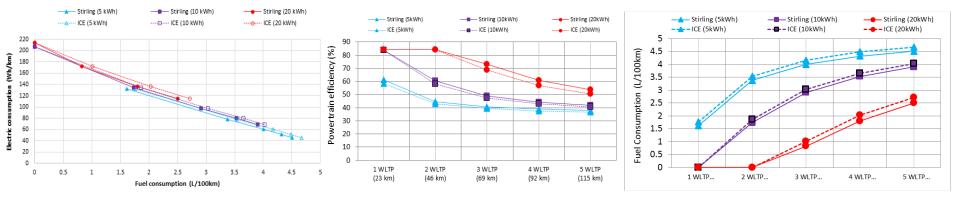


-30°C dans le volume de détente

Vehicle model including an APU with ICE or Stirling engine


Vehicle specifications		
Vehicle mass (+ driver)	1210 kg	
Wheel friction coefficient	0.0106	
Air density	1.205 kg/m ³	
Wheel radius	0.307 m	
Auxiliaries consumption	750 W	
Battery max. power	78 kW	
Battery capacity	[5, 10, 20] kWh	
Battery mass	[188, 259, 356]	
	kg	
Battery state of charge	[0.4, 0.6, 0.8, 1]	
Stirling system	12 kW	
Stirling efficiency	39 %	
ICE power	97 kW	
ICE max. efficiency	36 %	

Vehicle specifications		
uons		
12 kW		
05.0/		
95 %		
80 kW		
93 %		
5.4		
97 %		
42.5 MJ/kg		


Model results

Energy converters operation

- for both Stirling and ICE on plug-In SHEVs powertrains
- three repeated WLTP
- 10kWh battery capacity
- Stirling engine operates at a lower power and more continuously than ICE

Battery and fuel energy trade-off for the plug-in configuration on one to five-repeated WLTP, under the three investigated battery capacities. **Powertrain efficiency** of the plug-in configuration, on one to five-repeated WLTP, under the three investigated battery capacities.a

Fuel consumption results between Stirling-system and ICE of the plug-in on one to five-repeated WLTP, under the three investigated battery capacities.

- Alternative automobile powertrains are needed
- Series Hybrid Vehicles including a Stirling engine as APU is a good candidate
- Powertrain efficiencies and fuel consumption present good performances when compared to a conventional ICE APU
- A 10 kW Stirling engine prototype has been developed and is currently under tests

