Journée micro et mini cogénérations

Tests en laboratoire et monitoring in-situ d'une installation hybride pile à combustible – chaudière à condensation

Vincent Lemort – vincent.lemort@uliege.be Nicolas Paulus – nicolas.paulus@uliege.be Camila Dávila – cdavila@uliege.be

Description of the project

- Collaborative study with Gas.be
- Study divided in two main parts:
 - Laboratory tests
 - Monitoring in-situ on residential buildings in Belgium
- Both parts will set a basis for create modeling tools oriented to simulate the impact of choices in terms of home heating systems.
- Different systems for heating and DHW
 - Vitovalor PT2 PEMFC
 - MyChi SOFC
 - Robur K18 condensing gas absorption heat pump
 - Remeha Tzerra hybrid electric heat pumps
 - BoostHeat hybrid Gas / Air / Water heat pump

Tests on climatic chamber

Vitovalor PT2 – Main features

Heating output	TV/TR 60/40 °C 30.8 kW TV/TR 36/30 °C 0.9 kW
Electrical output FC	750 W
Thermal output FC	1.1 kW
FC electrical efficiency	37%
Overall FC efficiency	Up to 92%
Peak load boiler termal efficiency	Up to 98%
Electr. Power consumption	28 W standby 1400 W maximum
Gas consumption	3.38 m ³ /h natural gas
Permissible ambient temperature	Max.: 40°C Min.: 5°C

- System intended to produce domestic hot water and heating for residential buildings
- Two modules connected by four water lines

Vitovalor PT2 – Water circuits and test bench diagram

• Water diagram of the system

• Diagram of the test bench

Vitovalor PT2 – Start up, control and user's access

• Start up process

- Control and user's access
 - Parameters of DHW T° and comfort room T° can be set by the user
 - The internal control of the system does not allow to operate just with the fuel cell
 - The system is driven by heat demand

How can we use this information?

Response of the system to DHW demand

Response of the system to heating demand

Results – Test campaign and efficiencies

- A test campaign based on EN 50465 and the restrictions of the system is proposed
- For the efficiency estimations a daily value of PCS was used
- The efficiencies were estimated as

 $\eta = \frac{\dot{m} * cp * \Delta T + W_{el}/1000}{\dot{V}_{gas} * PCS}$

Proposed test campaign:

DHW		Heating				
$60 \pm 2 \degree C$	Valve 50%	Valve 100%	Off			
55 ± 2 °C	Valve 50%	Valve 100%	Off			
50 ± 2 °C	Valve 50%	Valve 100%	Off			
45 ± 2 °C	Valve 50%	Valve 100%	Off			
40 ± 2 °C	Valve 50%	Valve 100%	Off			
$35 \pm 2 \ ^{\circ}\text{C}$	Valve 50%	Valve 100%	Off			
30 ± 2 °C	Valve 50%	Valve 100%	Off			
Off		$\Delta(20 \pm 1)$ °C	Valve 50%	Valve 100%		
Off		$\Delta(30 \pm 1)$ °C	Valve 50%	Valve 100%		
Off		$\Delta(40 \pm 1)$ °C	Valve 50%	Valve 100%		
Off		$\Delta(50 \pm 1)$ °C	Valve 50%	Valve 100%		
	Off $\Delta(60 \pm 1)$ °C Valve 50% Valve 10			Valve 100%		

Variation of the demand

Efficiency results:

	DHW 100%			DHW 50%		
	η_Syst	η_Th	η_El	η_Syst	η_Th	η_El
T2, DHW 60°C	0.81	0.79	0.02	0.82	0.80	0.02
T3, DHW 55°C	0.82	0.80	0.02	0.83	0.80	0.03
T4, DHW 50°C	0.82	0.80	0.02	0.83	0.80	0.03
T5, DHW 45°C	0.83	0.81	0.02	0.83	0.80	0.03
T6, DHW 40°C	0.84	0.81	0.03	0.86	0.82	0.04
T7, DHW 35°C	0.86	0.82	0.04	0.89	0.84	0.05
T8, DHW 30°C	0.87	0.82	0.05	0.88	0.81	0.07

	Heating 100%			Heating 50%		
	η_Syst	η_Th	η_El	η_Syst	η_Th	η_El
T13, ΔT 60°C	0.83	0.81	0.02	0.85	0.83	0.02
T12, ΔT 50°C	0.86	0.83	0.02	0.86	0.84	0.02
T11, ΔT 40°C	0.87	0.84	0.03	0.87	0.84	0.03
T10, ΔT 30°C	0.88	0.84	0.04	0.89	0.84	0.04
T9, ΔT 20°C	0.88	0.82	0.06	0.89	0.83	0.06

Field Monitoring – Configuration and sensors

Field Monitoring – Vitovalor electricity produced (Wh)

Electrical power delivered repeatability noticeable

Less power for Zoersel site \rightarrow What about the electrical consumption of the machine ?

Field Monitoring – Vitovalor electricity consumed (Wh)

Electrical power consumed similar for Huy & Oostmalle

About 2 times greater for Zoersel (probably due to pressure drops within the installation – way bigger house)

For Huy & Oostmalle, big power demand of the machine when the fuelcell stops. Happens also sometimes in Zoersel...

 \rightarrow Under investigation

Field Monitoring – Vitovalor heat generation (Wh)

Field Monitoring – Vitovalor electrical flows (Wh)

In those winter days : - Electricity produced is about 180% higher than <u>needed by the house</u> but still they have to take electricity from the grid - Lot of energy is rejected on the grid (about 80% of the production)

Draft numbers \rightarrow they depend on the time scale and day chosen as it will be shown later

Thermal energy (Wh)

Field Monitoring – Vitovalor electrical flows (Wh)

Behavior is similar for both houses and not ideal (machine shut down during that day – January 6th) – high rejection on the grid that day

Field Monitoring – Vitovalor electrical flows (Wh)

Conclusions

- Due to the size of its components, the fuel cell contribution to the global performance is small compared to that of the boiler
- Variations of the global efficiency linked mainly to the depart water temperature (between 3-6%)
- More analysis should be done, but the suitability of the system will be linked to the final user's behavior and application
- Monitoring has just started & will go on for 2 more heating seasons \rightarrow monitoring numbers needs to be confirmed

Further work

Laboratory: - Future test campaign to estimate the performance of the fuel cell and the boiler separately

- Analysis of the flue gases: NOx, SOx, CO2 and fine particles
- A SOFC MyChi from Elugie will be tested this year

Monitoring: - Two houses with MyChi systems will be monitored

Global: - Compare laboratory and monitoring results between them and also with other systems monitored and tested at ULiège

