Batteries de Carnot : intégrations thermique et électrique dans des bâtiments

Vincent Lemort, Olivier Dumont et Antoine Laterre

Journée micro et mini cogénérations Paris, le 1^{er} février 2023

What are we looking for?

- Electricity storage solution with high round-trip efficiency, low environmental impact and low cost
- Systems producing multiple energy vectors (electricity, heat/cold) from one single piece of equipment

What do we benefit from?

Low-grade heat (district heating, waste heat)

=> Carnot battery with thermal integration and using a reversible HP/ORC is a promising solution

Agenda of the presentation

- 1. Introduction
- 2. Carnot battery (CB)
- 3. Reversible Heat pump/ORC
- 4. Integration of low-grade heat in CBs
- 5. First prototype
- 6. Second prototype
- 7. Conclusions

Carnot battery Operating principle

Carnot battery = system primarily used to store electricity (Power-to-Heat-to-Power)

Charging: electricity is used to establish a temperature difference between 2 reservoirs (high and low temp.) by means of a HP.

Electricity is therefore stored as thermal exergy.

Discharging: heat flows from high to low temp. reservoirs and part is converted into electricity by a HE.

Round-trip efficiency:
$$\varepsilon_{rt} = \frac{E_{he}}{E_{hp}}$$

- Different technologies of HP and HE: vapor compression systems, Brayton cycles, electrical heater.
- Vapor compression: off-the-shelf components, lower temperatures
- Different technologies of thermal energy storage for the heat reservoirs.
- Environment to replace one of the heat reservoirs.

Carnot battery Atmosphere as one of the thermal reservoirs

Simple configuration using air as HP heat source and HE heat sink

heat pump thermal storage heat engine (ORC)

« Reversible » heat pump/ORC Carnot batteries *Principle*

Technical "proximity" between ORC components and heat pump (chiller) components => Could we develop an "reversible" (inversible) ORC/HP unit? (question already asked in 2006)

« Reversible » heat pump/ORC Carnot batteries First prototype: conversion of solar energy into electricity

Reversible HP/ORC unit instead of a classical residential heat pump

Components and costs close to a classical residential heat pump (cheap)

Large solar roof (absorber) + horizontal ground heat exchanger

3 operating modes (DH, HP, ORC) with low cost architecture

Eurostars Single HPA Unit project (2015-2016) coordinated by Innogie « Reversible » heat pump/ORC Carnot batteries First prototype: conversion of solar energy into electricity

• Prototype:

- Sized to produce 4030 kWhe per year
- COP of 4.21 (Tev=21°C/Tcd=61°C)
- ORC efficiency of 5.7% (Texcd=25°C/Tsuev=88°C)

- Economical profitability not demonstrated versus PV + heat pumps (2016).
- Looking to other applications of reversible heat pumps/ORCs.

Agenda of the presentation

- 1. Introduction
- 2. Carnot battery (CB)
- 3. Reversible Heat pump/ORC

4. Integration of low-grade heat in CBs

- 5. First prototype
- 6. Second prototype
- 7. Conclusions

Integration of low-grade heat

CB round trip efficiency

$$\varepsilon_{rt} = (\eta_{TES}) COP_{HP} \eta_{RC}$$

with

$$COP_{HP} = \frac{Q_{cd}}{E_{el}} = g_{HP} \frac{T_{hot}}{T_{hot} - T_{cold}}$$
$$\eta_{RC} = \frac{E_{el}}{Q_{ev}} = g_{RC} \left(1 - \frac{T_{cold}}{T_{hot}}\right)$$

Integration of low-grade heat

CB round trip efficiency

$$\varepsilon_{rt} = g_{HP} \frac{T_{hot}}{T_{hot} - T_{cold}} g_{RC} \left(1 - \frac{T_{cold}}{T_{hot}} \right) = g_{HP} g_{RC}$$

Roundtrip efficiencies don't easily reach values over 50%

Integration of low-grade heat CB round trip efficiency

Performance can be improved by integrating waste heat into the process (Heat Pump + ORC configuration is well suited for low-grade waste heat integration): TIPTES (Thermally Integrated Pumped Thermal Energy Storage).

Integration of low-grade heat CB round trip efficiency

Integration of low-grade heat

CB round trip efficiency

Agenda of the presentation

- 1. Introduction
- 2. Carnot battery (CB)
- 3. Reversible Heat pump/ORC
- 4. Integration of low-grade heat in CBs

5. First prototype

- 6. Second prototype
- 7. Conclusions

First prototype of reversible ORC/HP CB 1 kWe Carnot battery

- Mechanical scroll Variable speed VR=2.2 Swept volume = 121 cm³
- Plate heat exchangers 25 kW
- <u>Hot and cold water storage</u> Perfect stratification 2X900 L
- <u>Plunger pump</u> 70 g/s
- Manual expansion valve

First prototype of reversible ORC/HP CB 1 kWe Carnot battery

- Net electrical power and efficiency increase with temperature lift.
- Lower performance than expected (expander efficiency to be improved).

$$\eta_{global} = \frac{\dot{W}_{exp,el} - \dot{W}_{pp,el}}{\dot{Q}_{ev,r,oil}}$$

• Very high COP at low temperature lift.

ORC

$$COP = \frac{\dot{Q}_{cd,r,oil}}{\dot{W}_{cp,el}}$$

=> Roundtrip efficiency of 72.5% (ORC efficiency of 5% (lift: 49 K) and COP of HP of 14.4 (lift: 8 K)).

Yearly COP $\simeq 5$ Yearly ORC efficiency $\simeq 8\%$ Charging time: 1967 hours Discharging time: 1296 hours Direct heating: 290 hours

Conclusions and perspectives

- Carnot batteries are a promising technology for electricity storage with heat sector coupling
- Carnot batteries offer a lot of R&D perspectives, incl.:
 - ✓ Minimize performance degradation in off-design (other heat source/sink temperature) and part load (other capacity of HP/ORC)
 - ✓ Investigate what kind of service can be provided to the electrical grid (using calibrated and validated transient models)
 - ✓ Optimize integration with other systems: utilization of thermal "by-products" (lowtemp heat at ORC condenser) and mutualization of thermal storages for covering H/C demands on-site
 - ✓ Optimal control strategies
 - ✓ Life cycle analysis (LCA)
 - ✓ Techno-economic optimization

Merci pour votre attention! Merci aux contributeurs à cette présentation

Vincent Lemort Vincent.Lemort@uliege.be Thermodynamics Laboratory University of Liège Belgium

Integration of low-grade heat CB round trip efficiency

