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Context : control of flexible structures

> Boundary controlled systems
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Context : control of flexible structures

> Boundary controlled systems

the

Outertute — End-efecor aser
or OCT probe)

EAP sloctodes

> Exploration, imaging, diagnosis.
> Mini invasive surgery.
> Toward miniaturized and smart endoscopes.
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Context : port Hamiltonian systems

> Port Hamiltonian systems:
> The state variables are chosen as the energy variables.
> The links between the energy function and the system dynamics is made
explicit through symmetries.
> The boundary port variables are power conjugated.

> Energy shaping consists in using the physical properties of the system to derive
efficient control laws with guaranteed performances (step further stabilization).

> “Easy” to extend to non linear or systems defined on higher dimensional spaces.
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Port-Hamiltonian partial differential equations

Our model class are p.d.e.’s of the form

or 0
=) = (Pi—+Py) [Ha(¢,t
26t = (P r) e
with
> 2(¢,t) € R™, (€ [a,b],t >0
P is an invertible, symmetric real n x n-matrix,
Py is a skew-symmetric real n x n-matrix,

H(¢) is a symmetric, invertible n x n-matrix with m7 < H(¢) < M for some
m, M > 0.

vYyy
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Port-Hamiltonian partial differential equations

Our model class are p.d.e.’s of the form

or 0
=) = (Pi—+Py) [Ha(¢,t
26t = (P r) e
with
> 2(¢,t) € R™, (€ [a,b],t >0
> Py is an invertible, symmetric real n x n-matrix,
> Py is a skew-symmetric real n x n-matrix,

> 7 (¢) is a symmetric, invertible n x n-matrix with mI < #H({) < M1 for some
m, M > 0.

The energy/Hamiltonian is defined as

1 b
H(O) = Ha(,0) = 5 [ 2l HOs(6, 0.

a
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Boundary port variables

Boundary port variables
Let Hx € H'(a,b;R™). Then the boundary port variables are the vectors
€9, Hx> fa,’Hz € R™,

{fa,v—tz} UL {P1 *Pli| {(Hff)(b)] - R {(Hm)(b)}

cona| 2T T ] [(Hz)(a) (Hz)(a)
1d
& §£||93||% = f3 HuCO Ha

Where

UTsU =3, 2:[? é} S € Man(R)
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Input and output

Boundary controlled port Hamiltonian systems
Let W be a n x 2n real matrix. If 1% has full rank and satisfies WXW T > 0, then the
system §% = P1 & (H(Q)z)(t,¢)) + (Po — Go)H(¢)a(t, ¢)with input

u(t) =W |:f6,7-£z(t):|

€9, Hx (t)

is a BCS on X. The operator Az = P;(9/9¢)(Hx) + (Py — Go)Hax with domain

D(A) = {H:c € H'(a,bR") | [ggzzgg] € kerW}

generates a contraction semigroup on X.
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Input and output

Let W be a full rank matrix of size n x 2n with m] invertible and let Py, 3 be given

by
™ ! < 141
P _[wswT wswT
ww = W] 7w T lwEwT o wEWT|
Define the output of the system as the linear mapping C : H~' H!(a, b;R™) — R™,

vmcs = L))

fB,’Hw(O)] the

Then for u € C2(0,00;R¥), Ha(0) € H'(a,b;R™), and u(0) = W [em ©

following balance equation is satisfied:
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Input and output

Let W be a full rank matrix of size n x 2n with m] invertible and let Py, 13, be given
by
T\ ! = Tq-1
P _[wEwT wezw T
ww = W] 7w T lwEwT o wEWT|
Define the output of the system as the linear mapping C : H~' H!(a, b;R™) — R™,

vmcs = L))

We choose W and W such that <3~//) s(wT wT)=x.

In this particular case:

5= lle@®lF < y" Ou(®). M
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Static feedback control

Impedance passive case
If the matrices W and W are selected such that Py, 3, = [ §] = %, then the BCS
fulfills

Sl @lE < T @),
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Static feedback control

Impedance passive case
If the matrices W and W are selected such that P, 5, = [? /] = %, then the BCS
fulfills

Sl @lE < T @),

’ U= y .
—>O— uzw( fa )J:ﬁ( fa) Static controller
’ h > Asymptotic stability:

) a > 0+(compacness condition)

> Exponential stability: o st

(dE/dt) < —k[|(Lz)(t,b) |1}

o where k£ > 0.
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Dynamic control

r U\ i=g. y
— (O ()i (2)
+ -

{*c = (Jo — Ac) Qcxc + (Gc — Pe) U
Yo = (Ge + Pe)” Qexe + (Mc + Sc) uc

Ye Uc

» Can we use passivity properties to design dynamic controllers ?
> What about closed loop trajectories ?

> Can we extend the energy shaping ideas to boundary controlled port Hamiltonian
systems ?
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Energy shaping

We consider a dynamic controller of the form

{fbc = (Jo — Rc) Qcze + (Go — Po) uc

2
yo = (Ge + Po)T Qoze + (Mo + Sc) uc @

where zo € R"C and ug, yo € R™, while Jo = —Jg, Mec = —Mg, Ro = Rg, and
Sc = Sg, with this further condition satisfied:
Rc  Pc

(5 )=

Interconnected to the boundary of the system

CD - (? _0]) (Zg) - (%) » )

where v’ € R is an additional control input.
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Existence of solutions

Theorem

Let the open-loop BCS satisfy 1 4 llz(t)||2 = u(t)y(t) and consider the previous passive finite
dimensional port Hamiltonian system. Then the power preserving feedback interconnection
U=T—Ye,Y = Ue B

with » € R™ the new input of the system is a BCS on the extended state space 7 € X = X x V
with inner product (Z1, Z2) ¢ = (x1, z2)c + (v1, Qcv2)v. Furthermore, the operator A, defined

by
as=[3% L)L)
D(A.) = { [i] € [5} ‘Ez S HN(a,b;]R"), |:Jecgiij| € kerWD}
v

where Wp = [(W+D.W C.)]
generates a contraction semigroup on X.
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Energy shaping

r Ul =
—= O (@) (1) [

{5‘0 = (Jo — Rc) Qexc + (G — Pe) ue
ye = (Ge + Pc)" Qexc + (Mg + Sc) uc

yc Uc
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Immersion/reduction approach

Energy shaping

> Use of the structural invariants C' (such that C' = 0) of the form

b
Cla(t), ze(t)) = TTae(t) + / W7 (Ot O)dz = &

to link the controller states to the system states.

> Choice of the controller energy function to "shape” the closed loop energy function
8 Hu(a(t),ze(t) = H(x(t) + He(we(t)) = H(x(t)) + He(F(2(t)))

> Well known and very efficient for finite dimensional non linear systems.

> What about the linear boundary controlled infinite dimensional case ?
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Structural invariants

Casimir functions

Consider the closed loop boundary control system with v/ = 0 then,

b
C@@@dmzfﬁuﬂ+/wWQW£Mz

is a Casimir function for this system if and only if ¢» € H'(a, b; R"™),

Q)=

)

)
)
0)=°

PEL(Q) + (o + ol
(Je + Re)L + (Ge + Po)WR (Zﬁ((
(G — Po)TT + [WJr (Mg — Sc)W (:f((

(%)
(6)

@)
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Energy shaping

Sketch of the proof
C(ze(t)) is a Casimir function if and only if % = 0 independently to the energy

function,
§:<507de> @
dt dxe dt L2
= <£,A6’Hexe> 9)
0Te L2
oC
_ <A;7,Heme> + BC (10)
0xe L2
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Energy shaping

Proposition
Under the hypothesis that the Casimir functions exist, the closed-loop dynamics (when
u =y + u’) is given by :

oz 3 6Hcl 6Hcl

Gt 60 = Pz 228 @O + (Fo = Go) 2 @(0)()

s-wen(0) &

(%t (@)) (@)

in which § denotes the variational derivative, while T
1 1 N
Ha(2(t) = S ll2@)lI + 5 ( / H(Q=(t,0) dz) x

a

b

xf”Q(,f*T/ V() Ta(t,¢)dz  (13)

a

and W' is a n x 2n full rank, real matrix s.t. W/sWw’7 > o.
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Extension to systems with dissipation

Proposition
The feedback law v = 8(z) + v/, with v’ an auxiliary boundary input, maps the original
system into the target dynamical system

50 = PigE @00 + (Po = Go) L (0)(0)
(2 (w(t))) (o) (14)
w(H) =WR| by
(% (1) (a)
with Hy(z) = H(x) + Hq(z), provided that
0 6H, 6Hg
5 5o @)+ (o= Go) "2 () = 0 (15)
(e @) ()
B(z)+WR| 3.°% = (16)
" ((% (@) (a)
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Energy shaping

With the dynamic extension or state feedback we have been able to shape a part of the
closed loop energy function. It remains to prove that the closed loop system is
asymptotically stable.

> We have to consider additional damping injection.

> Exponential stabilisation is not possible as "exponential stability of the controller +
direct feedforward term” are necessary — no Casimir function.
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Example: longitudinal (axial) vibration of a beam
S(z)

(] Pl2) L
State variables : deformation and linear momentum density

e(t, Q) = BC(C) p(t,¢) = pS(Q)v(t, ¢) (17

Material’s deformation is considered linear (Hooke’s law) :

ps() 2%

S (1.0 = - |BS©52.0] - D92 a

The energy is given by (kinetic+potential):

L 2
Hp(e. 0. e(.0) = 5 [ [ B8 + BS©20.0] ac
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Example: longitudinal (axial) vibration of a beam

From:

ETp%(¢,¢)

0.0,2.0) = 5 [ 208 + Bs©.0) a

We define the co-energy variables:

75(1,6) = S ((1,0) = BS©O=(1,0) = 5o, 0)
p(t, C) 8419

o0 = 5o (o(t.0)) = D) = 2210
Then: P By 9 dp aw
2 (r50%0) = 2 s % w0)] - Z (1.0
with El (a¢(t C)) _ 90 (&p(t C))
aC ac
[
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Example: longitudinal (axial) vibration of a beam

The port-Hamiltonian formulation of the system is then

D (e, 0\ _ [0 Z\(ESQ 0O e(t,¢)
ot (p(t C)) B <§c —D> ( 0 ﬁ) (p(b C))
which is in the form :
5 (0.0 = Pu 2 (H(Qa(6.0)) + (B — GoyH(Oa(t. 0 (18)

with Py = 0 and

() @@y we-(9 1)
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Input and output

The boundary port variables are

v(L) —v(0)
(fa) _ 1 los(L)—05(0)
V2 | os(L) +0os(0)

v(L) + v(0)

€o

The boundary input and output are selected as

_( v(t,0) _ [—os(t,0)
u) = (i) w0 = (7' (19)
which can be derived choosing W and W such that:
1 -1 0 0 1 = 1 /0 1 -1 0
W:ﬁ(o 11 o) W*ﬁ(l 0 0 1)

The energy balance is then :

dH

L
GO =— [ DR dc T Ou) < Outr),
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Lossless case : Approach based on structural invariants

We consider a dynamic controller with nc =2, Rc = Poc = Mc =Sc =0,Go =1

and

0 I
which implies that the closed-loop system is characterized by the following Casimir
functions:

L
Cr(&n(t), e(t, ) = €a(t) — /O <(t,¢)d¢

L
Caealt).p(t.) = €26 = [ ot dc.
The controller Hamiltonian is chosen such that

Ao(61,62) = 55163 + £ 5283 (20)
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Approach based on structural invariants

The closed loop energy function is:

B 1 L p2
Hale.p) =3 /0 [pS(o * ES(C)ﬂ det

and the control is of the form

—_ L
vmonmcoan=— (3 2) ({73)
= 3
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System with dissipation

Due to the dissipation D # 0, the energy-Casimir method cannot be applied. The
closed loop energy function cannot be shaped in the p coordinate.

Admissible H,, : 1 L
Hq(61,62) = 551§f + 55253
with L
ae(t) = [ a0

€1(e(t, ), p(t, ) = /[D(H) (t,0) + p(t, O] d¢

Leadingto  ,, _ (uz _0) Jo© [D(L = 2)e(t, Q) + p(t, Q)] d¢
= fo ed¢

(22)
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Achievable performances

We consider now that D = 0, all parameters equal 1 (simulations are provided
considering a finite volume approximation)

0= (o) = ) 0= (") - ()

and we plot the position at the end point of the system.

Amplitude
s o
5 & -

°

°
S

o 20 40 80 100 120 140 160 180 200
time (seconds)

Figure: Open loop step response.
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Simulation
We first consider the static feedback case i.e. when pure dissipation is added at the
boundary:
uz = —kqy2
12 /
/
Sosl i}
1
1
os} i
|
7)
osl 4
l‘
% time (seconds)
Figure: Step response of the closed loop system with pure dissipation term.
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Simulation
In a second instance we consider the control law devoted to energy shaping in addition

to a pure dissipation term:
u = —kc (x22 — x01) — kqd22

Amplitude

0.08

004 005
time (seconds)

Figure: Step response of the closed loop system with state feedback.
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Conclusion and future work

> A large class of boundary control systems are asymptotically (exponentially)
stable if they are interconnected in a power preserving manner with an (input
strictly passive and) exponentially stable finite dimensional linear controller.

> Stability established for static control of BCS has been extended to the case of
dynamic boundary control.

> These results can be used for control design.
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Conclusion and future work

> A large class of boundary control systems are asymptotically (exponentially)
stable if they are interconnected in a power preserving manner with an (input
strictly passive and) exponentially stable finite dimensional linear controller.

> Stability established for static control of BCS has been extended to the case of
dynamic boundary control.

> These results can be used for control design.

Ongoing and future work

> Generalization to 2D and 3D systems.
> Extension to non-linear PDEs
> Constructive methods for control design.
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Thank you for your attention !
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