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Context : control of flexible structures

I Boundary controlled systems
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I In-domain control of distributed parameter systems

I Exploration, imaging, diagnosis.
I Mini invasive surgery.
I Toward miniaturized and smart endoscopes.
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Context : port Hamiltonian systems

I Port Hamiltonian systems:
I The state variables are chosen as the energy variables.
I The links between the energy function and the system dynamics is made

explicit through symmetries.
I The boundary port variables are power conjugated.

I Energy shaping consists in using the physical properties of the system to derive
efficient control laws with guaranteed performances (step further stabilization).

I ”Easy” to extend to non linear or systems defined on higher dimensional spaces.
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Port-Hamiltonian partial differential equations

Our model class are p.d.e.’s of the form

∂x

∂t
(ζ, t) =

(
P1

∂

∂ζ
+ P0

)
[Hx(ζ, t)]

with
I x(ζ, t) ∈ Rn, ζ ∈ [a, b], t ≥ 0

I P1 is an invertible, symmetric real n× n-matrix,
I P0 is a skew-symmetric real n× n-matrix,
I H(ζ) is a symmetric, invertible n× n-matrix with mI ≤ H(ζ) ≤MI for some
m,M > 0.

The energy/Hamiltonian is defined as

H(t) = H(x(·, t)) =
1

2

∫ b

a
x(ζ, t)TH(ζ)x(ζ, t)dζ.
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Boundary port variables

Boundary port variables
Let Hx ∈ H1(a, b;Rn). Then the boundary port variables are the vectors
e∂,Hx, f∂,Hx ∈ Rn,[

f∂,Hx
e∂,Hx

]
= U

1
√

2

[
P1 −P1

I I

] [
(Hx)(b)
(Hx)(a)

]
= R

[
(Hx)(b)
(Hx)(a)

]

⇔
1

2

d

dt
‖x‖2H = fT∂,Hxe∂,Hx,

Where

UTΣU = Σ, Σ =

[
0 I
I 0

]
, Σ ∈M2n(R)
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Input and output

Boundary controlled port Hamiltonian systems
Let W be a n× 2n real matrix. If W has full rank and satisfies WΣW> ≥ 0, then the
system ∂x

∂t
= P1

∂
∂ζ

(H(ζ)x)(t, ζ)) + (P0 −G0)H(ζ)x(t, ζ)with input

u(t) = W

[
f∂,Hx(t)
e∂,Hx(t)

]
is a BCS on X. The operator Ax = P1(∂/∂ζ)(Hx) + (P0 −G0)Hx with domain

D(A) =

{
Hx ∈ H1(a, b;Rn)

∣∣∣ [f∂,Hx(t)
e∂,Hx(t)

]
∈ kerW

}
generates a contraction semigroup on X.
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Input and output

Let W̃ be a full rank matrix of size n× 2n with
[
W
W̃

]
invertible and let PW,W̃ be given

by

PW,W̃ =

([
W

W̃

]
Σ

[
W

W̃

]>)−1

=

[
WΣW> WΣW̃>

W̃ΣW> W̃ΣW̃>

]−1

.

Define the output of the system as the linear mapping C : H−1H1(a, b;Rn)→ Rn,

y = Cx(t) := W̃

[
f∂,Hx(t)
e∂,Hx(t)

]
.

Then for u ∈ C2(0,∞;Rk), Hx(0) ∈ H1(a, b;Rn), and u(0) = W
[
f∂,Hx(0)

e∂,Hx(0)

]
the

following balance equation is satisfied:

1

2

d

dt
‖x(t)‖2H ≤

1

2

[
u(t)
y(t)

]>
PW,W̃

[
u(t)
y(t)

]
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[
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.

We choose W and W̃ such that
(
W

W̃

)
Σ
(
WT W̃T

)
= Σ.

In this particular case:

1

2

d

dt
‖x(t)‖2H ≤ y

T (t)u(t). (1)
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Static feedback control

Impedance passive case
If the matrices W and W̃ are selected such that PW,W̃ =

[
0 I
I 0

]
= Σ, then the BCS

fulfills
1

2

d

dt
‖x(t)‖2L ≤ u

>(t)y(t).
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ABOUT TWEEZERS

Y. LE GORREC

DNA is first approximated by a spring+damper system. The tweezer is approx-
imated by a linear second order system. The parametric identification of the open
tweezers (without trapped DNA) leads to:

• Mass: M = 360 . 10−9Kg
• Stiffness: k = 24.9 n/m
• Friction coefficient: ν = 10−4 N.s/m

The resonance frequency and the damping factor of the open tweezers are given by:

fR =
1

2π

�
k

M
− ν2

4M2
, Q =

√
kM

ν

After DNA bundle trapping

fR−DNA =
1

2π

�
k + kDNA

M
− (ν + νDNA)2

4M2
, QDNA =

�
(k + kDNA)M

(ν + νDNA)

From experiments we have:

fR = 2477, 75Hz , Q = 59.75 , fR−DNA = 2479, 5Hz , QDNA = 56, 80

Then
4π2f2

R−DNA =
k + kDNA

M
− (k + kDNA)

4MQ2
DNA

Then

kDNA = 4Mπ2f2
R−DNA

�
1 − 1

4Q2
DNA

�−1

− k

and

νDNA =

�
(k + kDNA)M

QDNA
− ν

ẋ = JLx

u = W

�
f∂
e∂

�
, y = �W

�
f∂
e∂

�

1


ẋ = JLx

r =
(
W + αW̃

)(
f∂
e∂

)
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)
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Static controller
I Asymptotic stability:
α > 0+(compacness condition)

I Exponential stability: α st

(dE/dt) ≤ −k‖(Lx)(t, b)‖2R

where k > 0.
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Dynamic control	

r	 u	 y	

uc	yc	

-	+	
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The resonance frequency and the damping factor of the open tweezers are given by:

fR =
1

2⇥

r
k

M
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⇥
kM

�

After DNA bundle trapping
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1

2⇥

r
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From experiments we have:

fR = 2477, 75Hz , Q = 59.75 , fR�DNA = 2479, 5Hz , QDNA = 56, 80

Then
4⇥2f2
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k + kDNA

M
� (k + kDNA)

4MQ2
DNA

Then

kDNA = 4M⇥2f2
R�DNA

✓
1 � 1

4Q2
DNA

◆�1

� k

and

�DNA =

p
(k + kDNA)M

QDNA
� �

ẋ = JLx

u = W

✓
f�
e�

◆
, y = fW

✓
f�
e�

◆

1

I Can we use passivity properties to design dynamic controllers ?
I What about closed loop trajectories ?
I Can we extend the energy shaping ideas to boundary controlled port Hamiltonian

systems ?
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Energy shaping

We consider a dynamic controller of the form{
ẋC = (JC −RC)QCxC + (GC − PC)uC

yC = (GC + PC)T QCxC + (MC + SC)uC
(2)

where xC ∈ RnC and uC , yC ∈ Rn, while JC = −JTC , MC = −MT
C , RC = RTC , and

SC = STC , with this further condition satisfied:(
RC PC
PTC SC

)
≥ 0 . (3)

Interconnected to the boundary of the system(
u
y

)
=

(
0 −I
I 0

)(
uC
yC

)
+

(
u′

0

)
, (4)

where u′ ∈ Rn is an additional control input.
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Existence of solutions

Theorem
Let the open-loop BCS satisfy 1

2
d
dt‖x(t)‖2L = u(t)y(t) and consider the previous passive finite

dimensional port Hamiltonian system. Then the power preserving feedback interconnection
u = r − yc, y = uc

with r ∈ Rn the new input of the system is a BCS on the extended state space x̃ ∈ X̃ = X × V
with inner product 〈x̃1, x̃2〉X̃ = 〈x1, x2〉L + 〈v1, Qcv2〉V . Furthermore, the operatorAe defined
by

Aex̃ =

[
JL 0
BcC Ac

] [
x
v

]
,

D(Ae) =

{[
x
v

]
∈
[
X
V

] ∣∣∣Lx ∈ HN
(a, b;Rn

),

f∂,Lx

e∂,Lx

v

 ∈ ker W̃D

}

where W̃D =
[
(W +DcW̃ Cc)

]
generates a contraction semigroup on X̃.
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Energy shaping
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Immersion/reduction approach

Energy shaping
I Use of the structural invariants C (such that Ċ = 0) of the form

C(x(t), xc(t)) = ΓT xc(t) +

∫ b

a
ψT (ζ)x(t, ζ)dz = κ

to link the controller states to the system states.
I Choice of the controller energy function to ”shape” the closed loop energy function

as Hcl(x(t), xc(t)) = H(x(t)) +Hc(xc(t)) = H(x(t)) +Hc(F (x(t)))
I Well known and very efficient for finite dimensional non linear systems.
I What about the linear boundary controlled infinite dimensional case ?
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Structural invariants

Casimir functions
Consider the closed loop boundary control system with u′ = 0 then,

C(x(t), xc(t)) = ΓT xc(t) +

∫ b

a
ψT (ζ)x(t, ζ)dz

is a Casimir function for this system if and only if ψ ∈ H1(a, b;Rn),

P1
dψ

dz
(ζ) + (P0 +G0)ψ(ζ) = 0 (5)

(JC +RC)Γ + (GC + PC)W̃R

(
ψ(b)
ψ(a)

)
= 0 (6)

(GC − PC)TΓ +
[
W + (MC − SC) W̃

]
R

(
ψ(b)
ψ(a)

)
= 0 (7)
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Energy shaping

Sketch of the proof
C(xe(t)) is a Casimir function if and only if dC

dt
= 0 independently to the energy

function,

dC

dt
=

〈
δC

δxe
,
dxe

dt

〉
L2

(8)

=

〈
δC

δxe
,AeHexe

〉
L2

(9)

=

〈
A∗e

δC

δxe
,Hexe

〉
L2

+BC (10)

(11)
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Energy shaping

Proposition
Under the hypothesis that the Casimir functions exist, the closed-loop dynamics (when
u = yc + u′) is given by :

∂x

∂t
(t, ζ) = P1

∂

∂ζ

δHcl

δx
(x(t))(ζ) + (P0 −G0)

δHcl

δx
(x(t))(ζ)

u′ = W ′R

( δHcl
δx

(x)
)

(b)(
δHcl
δx

(x)
)

(a)

 (12)

in which δ denotes the variational derivative, while

Hcl(x(t)) =
1

2
‖x(t)‖2cl +

1

2

(∫ b

a
Ψ̂T (ζ)x(t, ζ) dz

)T
×

× Γ̂−1QC Γ̂−T
∫ b

a
Ψ̂(ζ)T x(t, ζ) dz (13)

and W ′ is a n× 2n full rank, real matrix s.t. W ′ΣW ′T ≥ 0.
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Extension to systems with dissipation

Proposition
The feedback law u = β(x) + u′, with u′ an auxiliary boundary input, maps the original
system into the target dynamical system

∂x

∂t
(t, ζ) = P1

∂

∂ζ

δHd

δx
(x(t))(ζ) + (P0 −G0)

δHd

δx
(x(t))(ζ)

u′(t) = WR

( δHd
δx

(x(t))
)

(b)(
δHd
δx

(x(t))
)

(a)

 (14)

with Hd(x) = H(x) +Ha(x), provided that

P1
∂

∂ζ

δHa

δx
(x) + (P0 −G0)

δHa

δx
(x) = 0 (15)

β(x) +WR

( δHa
δx

(x)
)

(b)(
δHa
δx

(x)
)

(a)

 = 0. (16)
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Energy shaping

With the dynamic extension or state feedback we have been able to shape a part of the
closed loop energy function. It remains to prove that the closed loop system is
asymptotically stable.

I We have to consider additional damping injection.
I Exponential stabilisation is not possible as ”exponential stability of the controller +

direct feedforward term” are necessary→ no Casimir function.
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Example: longitudinal (axial) vibration of a beam

	

0	 L	ϕ(z) 

S(z)	

State variables : deformation and linear momentum density

ε(t, ζ) =
∂ϕ

∂ζ
(t, ζ), p(t, ζ) = ρS(ζ)v(t, ζ) (17)

Material’s deformation is considered linear (Hooke’s law) :

ρS(ζ)
∂2ϕ

∂t2
(t, ζ) =

∂

∂ζ

[
ES(ζ)

∂ϕ

∂ζ
(t, ζ)

]
−D

∂ϕ

∂t
(t, ζ)dζ

The energy is given by (kinetic+potential):

H(p(t, ζ), ε(t, ζ)) =
1

2

∫ L

0

[
p2(t, ζ)

ρS(ζ)
+ ES(ζ)ε2(t, ζ)

]
dζ
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Example: longitudinal (axial) vibration of a beam

From:

H(p(t, ζ), ε(t, ζ)) =
1

2

∫ L

0

[
p2(t, ζ)

ρS(ζ)
+ ES(ζ)ε2(t, ζ)

]
dζ

We define the co-energy variables:

σS(t, ζ) =
δH

δε
(ε(t, ζ)) = ES(ζ)ε(t, ζ) = S(ζ)σ(t, ζ)

v(t, ζ) =
δH

δp
(p(t, ζ)) =

p(t, ζ)

ρS(ζ)
=
∂ϕ

∂t
(t, ζ)

Then:
∂

∂t

(
ρS(ζ)

∂ϕ

∂t
(t, ζ)

)
=

∂

∂ζ

[
ES(ζ)

∂ϕ

∂ζ
(t, ζ)

]
−D

∂ϕ

∂t
(t, ζ)

with
∂

∂t

(
∂ϕ

∂ζ
(t, ζ)

)
=

∂

∂ζ

(
∂ϕ

∂t
(t, ζ)

)
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Example: longitudinal (axial) vibration of a beam

The port-Hamiltonian formulation of the system is then

∂

∂t

(
ε(t, ζ)
p(t, ζ)

)
=

(
0 ∂

∂ζ
∂
∂ζ

−D

)(
ES(ζ) 0

0 1
ρS(ζ)

)(
ε(t, ζ)
p(t, ζ)

)
which is in the form :

∂x

∂t
(t, ζ) = P1

∂

∂ζ

(
H(ζ)x(t, ζ)

)
+ (P0 −G0)H(ζ)x(t, ζ) (18)

with P0 = 0 and

P1 =

(
0 1
1 0

)
G0 =

(
0 0
0 D

)
H(ζ) =

(
ES(ζ) 0

0 1
ρS(ζ)

)
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Input and output

The boundary port variables are

(
f∂
e∂

)
=

1
√

2


v(L)− v(0)

σS(L)− σS(0)
σS(L) + σS(0)
v(L) + v(0)


The boundary input and output are selected as

u(t) =

(
v(t, 0)
σS(t, L)

)
y(t) =

(
−σS(t, 0)
v(t, L)

)
(19)

which can be derived choosing W and W̃ such that:

W =
1
√

2

(
−1 0 0 1
0 1 1 0

)
W̃ =

1
√

2

(
0 1 −1 0
1 0 0 1

)
The energy balance is then :

dH

dt
(t) = −

∫ L

0
Dv2(t, ζ) dζ + yT(t)u(t) ≤ yT(t)u(t).
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Lossless case : Approach based on structural invariants

We consider a dynamic controller with nC = 2, RC = PC = MC = SC = 0, GC = I
and

JC =

(
0 I
−I 0

)
,

which implies that the closed-loop system is characterized by the following Casimir
functions:

C1(ξ1(t), ε(t, ·)) = ξ1(t)−
∫ L

0
ε(t, ζ) dζ

C2(ξ2(t), p(t, ·)) = ξ2(t)−
∫ L

0
p(t, ζ) dζ.

The controller Hamiltonian is chosen such that

Ĥc(ξ1, ξ2) =
1

2
Ξ1ξ

2
1 +

1

2
Ξ2ξ

2
2 (20)
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Approach based on structural invariants

The closed loop energy function is:

Hcl(ε, p) =
1

2

∫ L

0

[
p2

ρS(ζ)
+ ES(ζ)ε2

]
dζ+

+
1

2
Ξ1

(∫ L

0
ε dζ

)2

+
1

2
Ξ2

(∫ L

0
p dζ

)2

(21)

and the control is of the form

u = −yc = −GcδHc = −
(

Ξ2 0
0 Ξ1

)(∫ L
0 p dζ∫ L
0 ε dζ

)
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System with dissipation

Due to the dissipation D 6= 0, the energy-Casimir method cannot be applied. The
closed loop energy function cannot be shaped in the p coordinate.

Admissible Ha :

Ĥa(ξ1, ξ2) =
1

2
Ξ1ξ

2
1 +

1

2
Ξ2ξ

2
2

with

ξ1(ε(t, ·)) =

∫ L

0
ε(t, ζ) dζ

ξ1(ε(t, ·), p(t, ·)) =

∫ L

0
[D(L− z)ε(t, ζ) + p(t, ζ)] dζ

(22)

Leading to u = −
(

Ξ2 0
0 Ξ1

)(∫ L
0 [D(L− z)ε(t, ζ) + p(t, ζ)] dζ∫ L

0 ε dζ

)
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Achievable performances
We consider now that D = 0, all parameters equal 1 (simulations are provided
considering a finite volume approximation)

u(t) =

(
v(t, 0)
σS(t, L)

)
=

(
0
ū(t)

)
y(t) =

(
−σS(t, 0)
v(t, L)

)
=

(
ỹ(t)
ȳ(t)

)
and we plot the position at the end point of the system.
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Figure: Open loop step response.
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Simulation

We first consider the static feedback case i.e. when pure dissipation is added at the
boundary:

u2 = −kdy2
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Figure: Step response of the closed loop system with pure dissipation term.
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Simulation

In a second instance we consider the control law devoted to energy shaping in addition
to a pure dissipation term:

u = −kc (x22 − x01)− kdẋ22
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Figure: Step response of the closed loop system with state feedback.
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Conclusion and future work

I A large class of boundary control systems are asymptotically (exponentially)
stable if they are interconnected in a power preserving manner with an (input
strictly passive and) exponentially stable finite dimensional linear controller.

I Stability established for static control of BCS has been extended to the case of
dynamic boundary control.

I These results can be used for control design.

Ongoing and future work
I Generalization to 2D and 3D systems.
I Extension to non-linear PDEs
I Constructive methods for control design.
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Thank you for your attention !
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