

Modeling and Control of Distributed Parameter Systems: The Port Hamiltonian Approach

Yann Le Gorrec¹

¹SupMicroTech Besançon FEMTO-ST

Outline

1. Context

- 2. Boundary controlled port Hamiltonian systems
- 3. Stabilization of BC PHS
- 4. Energy shaping for BC PHS
- 5. Application example

Context : control of flexible structures

Boundary controlled systems

3

Context : control of flexible structures

Boundary controlled systems

In-domain control of distributed parameter systems

- Exploration, imaging, diagnosis.
- Mini invasive surgery.
- Toward miniaturized and smart endoscopes.

Context : port Hamiltonian systems

Port Hamiltonian systems:

- The state variables are chosen as the energy variables.
- The links between the energy function and the system dynamics is made explicit through symmetries.
- The boundary port variables are power conjugated.
- Energy shaping consists in using the physical properties of the system to derive efficient control laws with guaranteed performances (step further stabilization).
- "Easy" to extend to non linear or systems defined on higher dimensional spaces.

Outline

Context

Boundary controlled port Hamiltonian systems

Stabilization of BC PHS

Energy shaping for BC PHS

Application example

Modeling and Control of Distributed Parameter Systems: The Port Hamiltonian Approach | Yann Le Gorrec | April 10, 2024

Port-Hamiltonian partial differential equations

Our model class are p.d.e.'s of the form

$$\frac{\partial x}{\partial t}(\zeta,t) = \left(P_1 \frac{\partial}{\partial \zeta} + P_0\right) \left[\mathcal{H}x(\zeta,t)\right]$$

with

- $\blacktriangleright \ x(\zeta,t) \in \mathbb{R}^n, \, \zeta \in [a,b], \, t \ge 0$
- ▶ P_1 is an invertible, symmetric real $n \times n$ -matrix,
- ▶ P_0 is a skew-symmetric real $n \times n$ -matrix,
- $\mathcal{H}(\zeta)$ is a symmetric, invertible $n \times n$ -matrix with $mI \leq \mathcal{H}(\zeta) \leq MI$ for some m, M > 0.

Port-Hamiltonian partial differential equations

Our model class are p.d.e.'s of the form

$$\frac{\partial x}{\partial t}(\zeta,t) = \left(P_1 \frac{\partial}{\partial \zeta} + P_0\right) \left[\mathcal{H}x(\zeta,t)\right]$$

with

- $\blacktriangleright \ x(\zeta,t) \in \mathbb{R}^n, \, \zeta \in [a,b], \, t \ge 0$
- ▶ P_1 is an invertible, symmetric real $n \times n$ -matrix,
- ▶ P_0 is a skew-symmetric real $n \times n$ -matrix,
- $\mathcal{H}(\zeta)$ is a symmetric, invertible $n \times n$ -matrix with $mI \leq \mathcal{H}(\zeta) \leq MI$ for some m, M > 0.

The energy/Hamiltonian is defined as

$$H(t) = H(x(\cdot, t)) = \frac{1}{2} \int_{a}^{b} x(\zeta, t)^{T} \mathcal{H}(\zeta) x(\zeta, t) d\zeta.$$

Boundary port variables

Boundary port variables

Let $\mathcal{H}x \in H^1(a, b; \mathbb{R}^n)$. Then the boundary port variables are the vectors $e_{\partial,\mathcal{H}x}, f_{\partial,\mathcal{H}x} \in \mathbb{R}^n$,

$$\begin{bmatrix} f_{\partial,\mathcal{H}x} \\ e_{\partial,\mathcal{H}x} \end{bmatrix} = U \frac{1}{\sqrt{2}} \begin{bmatrix} P_1 & -P_1 \\ I & I \end{bmatrix} \begin{bmatrix} (\mathcal{H}x)(b) \\ (\mathcal{H}x)(a) \end{bmatrix} = R \begin{bmatrix} (\mathcal{H}x)(b) \\ (\mathcal{H}x)(a) \end{bmatrix}$$
$$\Leftrightarrow \ \frac{1}{2} \frac{d}{dt} \|x\|_{\mathcal{H}}^2 = f_{\partial,\mathcal{H}x}^T e_{\partial,\mathcal{H}x},$$

Where

$$U^T \Sigma U = \Sigma, \quad \Sigma = \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix}, \qquad \Sigma \in M_{2n}(\mathbb{R})$$

Boundary controlled port Hamiltonian systems

Let *W* be a $n \times 2n$ real matrix. If *W* has full rank and satisfies $W\Sigma W^{\top} \ge 0$, then the system $\frac{\partial x}{\partial t} = P_1 \frac{\partial}{\partial \zeta} (\mathcal{H}(\zeta)x)(t,\zeta)) + (P_0 - G_0)\mathcal{H}(\zeta)x(t,\zeta)$ with input

$$u(t) = W \begin{bmatrix} f_{\partial, \mathcal{H}x}(t) \\ e_{\partial, \mathcal{H}x}(t) \end{bmatrix}$$

is a BCS on X. The operator $\mathcal{A}x = P_1(\partial/\partial\zeta)(\mathcal{H}x) + (P_0 - G_0)\mathcal{H}x$ with domain

$$D(\mathcal{A}) = \left\{ \mathcal{H}x \in H^1(a,b;\mathbb{R}^n) \mid \begin{bmatrix} f_{\partial,\mathcal{H}x}(t) \\ e_{\partial,\mathcal{H}x}(t) \end{bmatrix} \in \ker W \right\}$$

generates a contraction semigroup on X.

Let \tilde{W} be a full rank matrix of size $n\times 2n$ with $\begin{bmatrix} W\\ W \end{bmatrix}$ invertible and let $P_{W,\tilde{W}}$ be given by

$$P_{W,\tilde{W}} = \left(\begin{bmatrix} W \\ \tilde{W} \end{bmatrix} \Sigma \begin{bmatrix} W \\ \tilde{W} \end{bmatrix}^\top \right)^{-1} = \begin{bmatrix} W \Sigma W^\top & W \Sigma \tilde{W}^\top \\ \tilde{W} \Sigma W^\top & \tilde{W} \Sigma \tilde{W}^\top \end{bmatrix}^{-1}$$

Define the output of the system as the linear mapping $\mathcal{C}: \mathcal{H}^{-1}H^1(a,b;\mathbb{R}^n) \to \mathbb{R}^n$,

$$y = \mathcal{C}x(t) := \tilde{W} \begin{bmatrix} f_{\partial,\mathcal{H}x}(t) \\ e_{\partial,\mathcal{H}x}(t) \end{bmatrix}.$$

Then for $u \in C^2(0,\infty;\mathbb{R}^k)$, $\mathcal{H}x(0) \in H^1(a,b;\mathbb{R}^n)$, and $u(0) = W\begin{bmatrix} f_{\partial,\mathcal{H}x}(0)\\ e_{\partial,\mathcal{H}x}(0) \end{bmatrix}$ the following balance equation is satisfied:

$$\frac{1}{2}\frac{d}{dt}\|\boldsymbol{x}(t)\|_{\mathcal{H}}^{2} \leq \frac{1}{2}\begin{bmatrix}\boldsymbol{u}(t)\\\boldsymbol{y}(t)\end{bmatrix}^{\top} P_{\boldsymbol{W},\tilde{\boldsymbol{W}}}\begin{bmatrix}\boldsymbol{u}(t)\\\boldsymbol{y}(t)\end{bmatrix}$$

Let \tilde{W} be a full rank matrix of size $n\times 2n$ with $\begin{bmatrix} W\\ W \end{bmatrix}$ invertible and let $P_{W,\tilde{W}}$ be given by

$$P_{W,\tilde{W}} = \left(\begin{bmatrix} W \\ \tilde{W} \end{bmatrix} \Sigma \begin{bmatrix} W \\ \tilde{W} \end{bmatrix}^\top \right)^{-1} = \begin{bmatrix} W \Sigma W^\top & W \Sigma \tilde{W}^\top \\ \tilde{W} \Sigma W^\top & \tilde{W} \Sigma \tilde{W}^\top \end{bmatrix}^{-1}$$

Define the output of the system as the linear mapping $\mathcal{C}: \mathcal{H}^{-1}H^1(a,b;\mathbb{R}^n) \to \mathbb{R}^n$,

$$y = \mathcal{C}x(t) := \tilde{W} \begin{bmatrix} f_{\partial,\mathcal{H}x}(t) \\ e_{\partial,\mathcal{H}x}(t) \end{bmatrix}.$$

We choose W and \tilde{W} such that $\begin{pmatrix} W \\ \tilde{W} \end{pmatrix} \Sigma \begin{pmatrix} W^T & \tilde{W}^T \end{pmatrix} = \Sigma$. In this particular case:

$$\frac{1}{2}\frac{d}{dt}\|x(t)\|_{\mathcal{H}}^{2} \le y^{T}(t)u(t).$$
(1)

Static feedback control

Impedance passive case

If the matrices W and \tilde{W} are selected such that $P_{W,\tilde{W}} = \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} = \Sigma$, then the BCS fulfills

$$\frac{1}{2}\frac{d}{dt}\|x(t)\|_{\mathcal{L}}^2 \le u^{\top}(t)y(t).$$

1

Static feedback control

Impedance passive case

If the matrices W and \tilde{W} are selected such that $P_{W,\tilde{W}} = \begin{bmatrix} 0 & I \\ I & 0 \end{bmatrix} = \Sigma$, then the BCS fulfills

$$\frac{1}{2}\frac{d}{dt}\|x(t)\|_{\mathcal{L}}^2 \le u^{\top}(t)y(t).$$

Static controller

- Asymptotic stability:
 α > 0+(compacess condition)
- Exponential stability: α st

 $(dE/dt) \le -k \| (\mathcal{L}x)(t,b) \|_{\mathbb{R}}^2$

where k > 0.

Dynamic control

- Can we use passivity properties to design dynamic controllers ?
- What about closed loop trajectories ?
- Can we extend the energy shaping ideas to boundary controlled port Hamiltonian systems ?

Energy shaping

We consider a dynamic controller of the form

$$\begin{cases} \dot{x}_C = (J_C - R_C) Q_C x_C + (G_C - P_C) u_C \\ y_C = (G_C + P_C)^T Q_C x_C + (M_C + S_C) u_C \end{cases}$$
(2)

where $x_C \in \mathbb{R}^{n_C}$ and $u_C, y_C \in \mathbb{R}^n$, while $J_C = -J_C^T, M_C = -M_C^T, R_C = R_C^T$, and $S_C = S_C^T$, with this further condition satisfied:

$$\begin{pmatrix} R_C & P_C \\ P_C^T & S_C \end{pmatrix} \ge 0.$$
(3)

Interconnected to the boundary of the system

$$\begin{pmatrix} u \\ y \end{pmatrix} = \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix} \begin{pmatrix} u_C \\ y_C \end{pmatrix} + \begin{pmatrix} u' \\ 0 \end{pmatrix}, \tag{4}$$

where $u' \in \mathbb{R}^n$ is an additional control input.

Existence of solutions

Theorem

Let the open-loop BCS satisfy $\frac{1}{2} \frac{d}{dt} ||x(t)||_{\mathcal{L}}^2 = u(t)y(t)$ and consider the previous passive finite dimensional port Hamiltonian system. Then the power preserving feedback interconnection $u = r - y_c, y = u_c$ with $r \in \mathbb{R}^n$ the new input of the system is a BCS on the extended state space $\tilde{x} \in \tilde{X} = X \times V$ with inner product $\langle \tilde{x}_1, \tilde{x}_2 \rangle_{\tilde{X}} = \langle x_1, x_2 \rangle_{\mathcal{L}} + \langle v_1, Q_c v_2 \rangle_V$. Furthermore, the operator \mathcal{A}_e defined by

$$\mathcal{A}_{e}\tilde{x} = \begin{bmatrix} \mathcal{JL} & 0\\ B_{c}\mathcal{C} & A_{c} \end{bmatrix} \begin{bmatrix} x\\ v \end{bmatrix},$$
$$D(\mathcal{A}_{e}) = \left\{ \begin{bmatrix} x\\ v \end{bmatrix} \in \begin{bmatrix} X\\ V \end{bmatrix} \middle| \mathcal{L}x \in H^{N}(a,b;\mathbb{R}^{n}), \begin{bmatrix} f_{\partial,\mathcal{L}x}\\ e_{\partial,\mathcal{L}x}\\ v \end{bmatrix} \in \ker \tilde{W}_{D} \right\}$$

where

 $\tilde{W}_D = \begin{bmatrix} (W + D_c \tilde{W} & C_c) \end{bmatrix}$

generates a contraction semigroup on \tilde{X} .

Energy shaping

14

Immersion/reduction approach

Energy shaping

▶ Use of the structural invariants C (such that $\dot{C} = 0$) of the form

$$C(x(t), x_c(t)) = \Gamma^T x_c(t) + \int_a^b \psi^T(\zeta) x(t, \zeta) dz = \kappa$$

to link the controller states to the system states.

- Choice of the controller energy function to "shape" the closed loop energy function as $H_{cl}(x(t), x_c(t)) = H(x(t)) + H_c(x_c(t)) = H(x(t)) + \frac{H_c(F(x(t)))}{H_c(F(x(t)))}$
- > Well known and very efficient for finite dimensional non linear systems.
- What about the linear boundary controlled infinite dimensional case ?

Structural invariants

Casimir functions

Consider the closed loop boundary control system with u' = 0 then,

$$C(x(t), x_c(t)) = \Gamma^T x_c(t) + \int_a^b \psi^T(\zeta) x(t, \zeta) dz$$

is a Casimir function for this system if and only if $\psi \in H^1(a,b;\mathbb{R}^n)$,

$$P_1 \frac{d\psi}{dz}(\zeta) + (P_0 + G_0)\psi(\zeta) = 0$$
 (5)

$$(J_C + \mathbf{R}_C)\Gamma + (G_C + P_C)\tilde{W}R\begin{pmatrix}\psi(b)\\\psi(a)\end{pmatrix} = 0$$
(6)

$$(G_C - P_C)^T \Gamma + \left[W + (M_C - \mathbf{S}_C) \,\tilde{W} \right] R \begin{pmatrix} \psi(b) \\ \psi(a) \end{pmatrix} = 0 \tag{7}$$

1

Energy shaping

Sketch of the proof

 $C(x_e(t))$ is a Casimir function if and only if $\frac{dC}{dt}=0$ independently to the energy function,

$$\frac{dC}{dt} = \left\langle \frac{\delta C}{\delta x_e}, \frac{dx_e}{dt} \right\rangle_{L^2} \tag{8}$$

$$= \left\langle \frac{\delta C}{\delta x_e}, \mathcal{A}_e \mathcal{H}_e x_e \right\rangle_{L^2} \tag{9}$$

$$= \left\langle \mathcal{A}_{e}^{*} \frac{\delta C}{\delta x_{e}}, \mathcal{H}_{e} x_{e} \right\rangle_{L^{2}} + BC \tag{10}$$

(11)

Energy shaping

Proposition

Under the hypothesis that the Casimir functions exist, the closed-loop dynamics (when $u = y_c + u'$) is given by :

$$\frac{\partial x}{\partial t}(t,\zeta) = P_1 \frac{\partial}{\partial \zeta} \frac{\delta H_{cl}}{\delta x}(x(t))(\zeta) + (P_0 - G_0) \frac{\delta H_{cl}}{\delta x}(x(t))(\zeta)$$

$$u' = W' R \left(\begin{pmatrix} \frac{\delta H_{cl}}{\delta x}(x) \end{pmatrix} \begin{pmatrix} b \\ \frac{\delta H_{cl}}{\delta x}(x) \end{pmatrix} \begin{pmatrix} a \end{pmatrix} \right)$$
(12)

in which
$$\delta$$
 denotes the variational derivative, while

$$H_{cl}(x(t)) = \frac{1}{2} \|x(t)\|_{cl}^{2} + \frac{1}{2} \left(\int_{a}^{b} \hat{\Psi}^{T}(\boldsymbol{\zeta}) x(t,\boldsymbol{\zeta}) \, dz \right)^{T} \times \hat{\Gamma}^{-1} Q_{C} \hat{\Gamma}^{-T} \int_{a}^{b} \hat{\Psi}(\boldsymbol{\zeta})^{T} x(t,\boldsymbol{\zeta}) \, dz \quad (13)$$

and W' is a $n \times 2n$ full rank, real matrix s.t. $W' \Sigma W'^T \ge 0$.

Extension to systems with dissipation

Proposition

The feedback law $u = \beta(x) + u'$, with u' an auxiliary boundary input, maps the original system into the target dynamical system

$$\frac{\partial x}{\partial t}(t,\zeta) = P_1 \frac{\partial}{\partial \zeta} \frac{\delta H_d}{\delta x}(x(t))(\zeta) + (P_0 - G_0) \frac{\delta H_d}{\delta x}(x(t))(\zeta)$$

$$u'(t) = WR \left(\begin{pmatrix} \frac{\delta H_d}{\delta x}(x(t)) \end{pmatrix}(b) \\ \begin{pmatrix} \frac{\delta H_d}{\delta x}(x(t)) \end{pmatrix}(a) \end{pmatrix}$$
(14)

with $H_d(x) = H(x) + H_a(x)$, provided that

$$P_1 \frac{\partial}{\partial \zeta} \frac{\delta H_a}{\delta x}(x) + (P_0 - G_0) \frac{\delta H_a}{\delta x}(x) = 0$$
(15)

$$\beta(x) + WR\left(\begin{pmatrix} \left(\frac{\delta H_a}{\delta x}(x)\right)(b)\\ \left(\frac{\delta H_a}{\delta x}(x)\right)(a) \end{pmatrix} = 0.$$
 (16)

Energy shaping

With the dynamic extension or state feedback we have been able to shape a part of the closed loop energy function. It remains to prove that the closed loop system is asymptotically stable.

- We have to consider additional damping injection.
- ► Exponential stabilisation is not possible as "exponential stability of the controller + direct feedforward term" are necessary → no Casimir function.

Example: longitudinal (axial) vibration of a beam S(z)

State variables : deformation and linear momentum density

$$\varepsilon(t,\zeta) = \frac{\partial\varphi}{\partial\zeta}(t,\zeta), \quad p(t,\zeta) = \rho S(\zeta)v(t,\zeta)$$
(17)

Material's deformation is considered linear (Hooke's law) :

$$\rho S(\zeta) \frac{\partial^2 \varphi}{\partial t^2}(t,\zeta) = \frac{\partial}{\partial \zeta} \left[ES(\zeta) \frac{\partial \varphi}{\partial \zeta}(t,\zeta) \right] - D \frac{\partial \varphi}{\partial t}(t,\zeta) \mathrm{d}\zeta$$

The energy is given by (kinetic+potential):

$$H(p(t,\zeta),\varepsilon(t,\zeta)) = \frac{1}{2} \int_0^L \left[\frac{p^2(t,\zeta)}{\rho S(\zeta)} + ES(\zeta)\varepsilon^2(t,\zeta) \right] \mathrm{d}\zeta$$

Example: longitudinal (axial) vibration of a beam

From:

$$H(p(t,\zeta),\varepsilon(t,\zeta)) = \frac{1}{2} \int_0^L \left[\frac{p^2(t,\zeta)}{\rho S(\zeta)} + ES(\zeta)\varepsilon^2(t,\zeta) \right] \mathrm{d}\zeta$$

We define the co-energy variables:

$$\begin{split} \sigma_{S}(t,\zeta) &= \frac{\delta H}{\delta\varepsilon}(\varepsilon(t,\zeta)) = ES(\zeta)\varepsilon(t,\zeta) = S(\zeta)\sigma(t,\zeta) \\ v(t,\zeta) &= \frac{\delta H}{\delta p}(p(t,\zeta)) = \frac{p(t,\zeta)}{\rho S(\zeta)} = \frac{\partial\varphi}{\partial t}(t,\zeta) \end{split}$$

Then:

$$\frac{\partial}{\partial t} \left(\rho S(\zeta) \frac{\partial \varphi}{\partial t}(t,\zeta) \right) = \frac{\partial}{\partial \zeta} \left[ES(\zeta) \frac{\partial \varphi}{\partial \zeta}(t,\zeta) \right] - D \frac{\partial \varphi}{\partial t}(t,\zeta)$$

with

$$\frac{\partial}{\partial t} \left(\frac{\partial \varphi}{\partial \zeta}(t,\zeta) \right) = \frac{\partial}{\partial \zeta} \left(\frac{\partial \varphi}{\partial t}(t,\zeta) \right)$$

Example: longitudinal (axial) vibration of a beam

The port-Hamiltonian formulation of the system is then

$$\frac{\partial}{\partial t} \begin{pmatrix} \varepsilon(t,\zeta) \\ p(t,\zeta) \end{pmatrix} = \begin{pmatrix} 0 & \frac{\partial}{\partial \zeta} \\ \frac{\partial}{\partial \zeta} & -D \end{pmatrix} \begin{pmatrix} ES(\zeta) & 0 \\ 0 & \frac{1}{\rho S(\zeta)} \end{pmatrix} \begin{pmatrix} \varepsilon(t,\zeta) \\ p(t,\zeta) \end{pmatrix}$$

which is in the form :

$$\frac{\partial x}{\partial t}(t,\zeta) = P_1 \frac{\partial}{\partial \zeta} \left(\mathcal{H}(\zeta) x(t,\zeta) \right) + (P_0 - G_0) \mathcal{H}(\zeta) x(t,\zeta)$$
(18)

with $P_0 = 0$ and

$$P_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad G_0 = \begin{pmatrix} 0 & 0 \\ 0 & D \end{pmatrix} \qquad \mathcal{H}(\zeta) = \begin{pmatrix} ES(\zeta) & 0 \\ 0 & \frac{1}{\rho S(\zeta)} \end{pmatrix}$$

The boundary port variables are

$$\begin{pmatrix} f_{\partial} \\ e_{\partial} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} v(L) - v(0) \\ \sigma_S(L) - \sigma_S(0) \\ \sigma_S(L) + \sigma_S(0) \\ v(L) + v(0) \end{pmatrix}$$

The boundary input and output are selected as

$$u(t) = \begin{pmatrix} v(t,0) \\ \sigma_S(t,L) \end{pmatrix} \qquad \qquad y(t) = \begin{pmatrix} -\sigma_S(t,0) \\ v(t,L) \end{pmatrix}$$
(19)

which can be derived choosing W and \tilde{W} such that:

$$W = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 & 0 & 0 & 1\\ 0 & 1 & 1 & 0 \end{pmatrix} \qquad \qquad \tilde{W} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & -1 & 0\\ 1 & 0 & 0 & 1 \end{pmatrix}$$

The energy balance is then :

$$\frac{\mathrm{d}H}{\mathrm{d}t}(t) = -\int_0^L Dv^2(t,\zeta)\,\mathrm{d}\zeta + y^{\mathrm{T}}(t)u(t) \le y^{\mathrm{T}}(t)u(t).$$

Lossless case : Approach based on structural invariants

We consider a dynamic controller with $n_C = 2$, $R_C = P_C = M_C = S_C = 0$, $G_C = I$ and

$$J_C = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix},$$

which implies that the closed-loop system is characterized by the following Casimir functions:

$$C_1(\xi_1(t),\varepsilon(t,\cdot)) = \xi_1(t) - \int_0^L \varepsilon(t,\zeta) \,\mathrm{d}\zeta$$
$$C_2(\xi_2(t),p(t,\cdot)) = \xi_2(t) - \int_0^L p(t,\zeta) \,\mathrm{d}\zeta.$$

The controller Hamiltonian is chosen such that

$$\hat{H}_c(\xi_1,\xi_2) = \frac{1}{2}\Xi_1\xi_1^2 + \frac{1}{2}\Xi_2\xi_2^2$$
(20)

Approach based on structural invariants

The closed loop energy function is:

$$\begin{aligned} H_{cl}(\varepsilon,p) &= \frac{1}{2} \int_0^L \left[\frac{p^2}{\rho S(\zeta)} + ES(\zeta)\varepsilon^2 \right] \mathrm{d}\zeta + \\ &+ \frac{1}{2} \Xi_1 \left(\int_0^L \varepsilon \,\mathrm{d}\zeta \right)^2 + \frac{1}{2} \Xi_2 \left(\int_0^L p \,\mathrm{d}\zeta \right)^2 \end{aligned} \tag{21}$$

and the control is of the form

$$u = -y_c = -G_c \delta H_c = -\begin{pmatrix} \Xi_2 & 0\\ 0 & \Xi_1 \end{pmatrix} \begin{pmatrix} \int_0^L p \, \mathrm{d}\zeta \\ \int_0^L \varepsilon \, \mathrm{d}\zeta \end{pmatrix}$$

Modeling and Control of Distributed Parameter Systems: The Port Hamiltonian Approach | Yann Le Gorrec | April 10, 2024 26

System with dissipation

Due to the dissipation $D \neq 0$, the energy-Casimir method cannot be applied. The closed loop energy function cannot be shaped in the p coordinate.

Admissible H_a :

$$\hat{H}_a(\xi_1,\xi_2) = \frac{1}{2}\Xi_1\xi_1^2 + \frac{1}{2}\Xi_2\xi_2^2$$

with

$$\begin{aligned} \xi_1(\varepsilon(t,\cdot)) &= \int_0^L \varepsilon(t,\zeta) \,\mathrm{d}\zeta \\ \xi_1(\varepsilon(t,\cdot),p(t,\cdot)) &= \int_0^L \left[D(L-z)\varepsilon(t,\zeta) + p(t,\zeta) \right] \,\mathrm{d}\zeta \\ \mathsf{to} \qquad u &= -\begin{pmatrix} \Xi_2 & 0\\ 0 & \Xi_1 \end{pmatrix} \begin{pmatrix} \int_0^L \left[D(L-z)\varepsilon(t,\zeta) + p(t,\zeta) \right] \,\mathrm{d}\zeta \\ &\int_0^L \varepsilon \,\mathrm{d}\zeta \end{pmatrix} \end{aligned}$$

(22)

Leading to

Achievable performances

We consider now that D = 0, all parameters equal 1 (simulations are provided considering a finite volume approximation)

$$u(t) = \begin{pmatrix} v(t,0) \\ \sigma_S(t,L) \end{pmatrix} = \begin{pmatrix} 0 \\ \bar{u}(t) \end{pmatrix} \qquad \qquad y(t) = \begin{pmatrix} -\sigma_S(t,0) \\ v(t,L) \end{pmatrix} = \begin{pmatrix} \tilde{y}(t) \\ \bar{y}(t) \end{pmatrix}$$

and we plot the position at the end point of the system.

Simulation

We first consider the static feedback case *i.e.* when pure dissipation is added at the boundary:

$$u_2 = -k_d y_2$$

Figure: Step response of the closed loop system with pure dissipation term.

Modeling and Control of Distributed Parameter Systems: The Port Hamiltonian Approach | Yann Le Gorrec | April 10, 2024

Simulation

In a second instance we consider the control law devoted to energy shaping in addition to a pure dissipation term:

$$u = -k_c \left(x_{22} - x_{01} \right) - k_d \dot{x}_{22}$$

Figure: Step response of the closed loop system with state feedback.

Conclusion and future work

- A large class of boundary control systems are asymptotically (exponentially) stable if they are interconnected in a power preserving manner with an (input strictly passive and) exponentially stable finite dimensional linear controller.
- Stability established for static control of BCS has been extended to the case of dynamic boundary control.
- These results can be used for control design.

Conclusion and future work

- A large class of boundary control systems are asymptotically (exponentially) stable if they are interconnected in a power preserving manner with an (input strictly passive and) exponentially stable finite dimensional linear controller.
- Stability established for static control of BCS has been extended to the case of dynamic boundary control.
- These results can be used for control design.

Ongoing and future work

- Generalization to 2D and 3D systems.
- Extension to non-linear PDEs
- Constructive methods for control design.

Thank you for your attention !

33