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Context : control of flexible structures

> Boundary controlled systems
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Context : control of flexible structures

> Boundary controlled systems

the

Outertute — End-efecor aser
or OCT probe)

EAP sloctodes

> Exploration, imaging, diagnosis.
> Mini invasive surgery.
> Toward miniaturized and smart endoscopes.
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Context : port Hamiltonian systems

> Port Hamiltonian systems:
> The state variables are chosen as the energy variables.
> The links between the energy function and the system dynamics is made
explicit through symmetries.
> The boundary port variables are power conjugated.

> Energy shaping consists in using the physical properties of the system to derive
efficient control laws with guaranteed performances (step further stabilization).

> “Easy” to extend to non linear or systems defined on higher dimensional spaces.
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Infinite dimensional Port Hamiltonian systems (PHS)

Infinite dimensional Port Hamiltonian systems (PHS)

sle)-[o Sfgned [Juco o
wen=p 1[5gaE) e
v =8 L EmED] o= [ednied) o

where z = [zT,2117T € XL?([a,b] ,R™) x L?([a,b],R"), L = diag(L1, L2) and
L£(¢) = £T(¢) and L(¢) > nwithn > 0forall ¢ € [a,b], R € R R =RT >0,
B(-) and C(-) are some boundary input and boundary output mapping operators.

Furthermore
G—,, and G* —-1)'aT =—
G= z 6 =YVl o

with G; € R(mm),

Modeling and Control of Distributed Parameter Systems: The Port Hamiltonian Approach | Yann Le Gorrec | April 12, 2024
6



Infinite dimensional Port Hamiltonian systems (PHS)

For a sake of compactness we shall use the following notation

o= latoer 5] 5o

and the formulation of (1)

Ox 0
2 ZP o (LQ(e.) - Fol@a(c.0) + [ wacn) @)
WGn=[ NeQ=GH @
up = BEQ(G,0).90 =CLQCH) ()

The total energy of the system H(z) is defined by

a@ =1 [ (TG0 n) c
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Boundary controlled port Hamiltonian systems

Mixed in-domain / boundary controlled port Hamiltonian systems (IDBC-PHS)

A mixed in-domain / boundary controlled port Hamiltonian system is an infinite
dimensional system of the form (5-7) where

- L‘,(b).l‘(b, t) B B E(b)x(b, t) T
N Lw) N 1ew)
_ N T = ot
w0 =W5 | Lt |2 ="l Laaa) ©®
N—1 . No1,.
|2 ) (0,1 | e (a,1)
with
Wg = [% (B2 +E1P) \/5(52—5113@)] ) ©)
Wo =75 G+ 5P) 5 (E1-5:P), (10)
famto-st
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Boundary controlled port Hamiltonian systems

where

Py o (=1)NTPy
P. = : (11)
(-)N=IpPy 0

o o

and Z; and 2 in RFXF satisfy

EaE1+E/Ee=0,andE]Ep + 5,5 =1 (12)

The energy balance associated to the system reads

dH
dt

_ b T . b T T T
= [ viuadc — | (23 (G OLT(QRL2(Qaa(C ) dC +yFus  (13)

b
S/ YT uqdC + yEus (14)
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Boundary controlled port Hamiltonian systems

Existence of solution [?]

The operator
N

J = ZPZ

=0

(E(C z(¢,t)) — RoL(Q)z(C, t)

with domain
T L)z(b,t) 7

2 ED (b,1)
D) =13 £eHY (a,bRY) || 957!

L(a)z(a,t) | €KerWs

N-—-1 .
| e (o)
where W is defined by (9) and =, and =5 satisfy (12), generates a contraction
semigroup on X. Furthermore the system (5-7) with (9-10) and (12) defines a
boundary control system.
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Boundary controlled port Hamiltonian systems

The general formulation (1) allows to model a large class of systems.
For example:
» The 1D wave equation wheren =1, N =1, Gp = 0,G; = 1.

> The Euler Bernouilli beam equation. Inthiscasen =1, N = 2,
Gop=0,G1 =0,G2 = 1.
> The Timoshenko beam equation. In this case n = 2, N = 1, and

0 -1 10
GO:[O 0}’G1:[O 1}

In what follows we focus on first order differential operators
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Control by interconnection

The system is interconnected with a dynamic controller in a power preserving way.

u, Y,
System
Controller
Ud=-Yo + Ue=Yd
-yu Y, >0 QIR
System
+ A4\ A\ 4 A 4
T ...... T T T ...... T Controller
Ud=0

Figure: Control by interconnection. Boundary control (left), in domain control (right).

The closed loop energy is equal to the sum of the open loop energy and the controller
energy.
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Energy shaping

Objectives
Modification of the closed loop system’s properties (energy shaping) + stabilization
(damping injection).
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Energy shaping

Objectives

Modification of the closed loop system’s properties (energy shaping) + stabilization
(damping injection).

From the power preserving interconnection

Hcl(zv xC) = H(:B) + HC(xC)
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Energy shaping

Objectives

Modification of the closed loop system’s properties (energy shaping) + stabilization
(damping injection).

From the power preserving interconnection
Hey(w, ) = H(z) + He(zc)
We first look for structural invariants C(z, z.) i.e. ‘fi—f =0
C(z,zc) =xc+ F(z) =k

where F' is a smooth function.
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Energy shaping

Objectives

Modification of the closed loop system’s properties (energy shaping) + stabilization
(damping injection).

From the power preserving interconnection

Hcl(zv :EC) = H(:E) + HC(xC)

We first look for structural invariants C(z, z.) i.e. ‘fi—f =0

C(z,xc) = xc+ F(z) =8
where F' is a smooth function. In this case the closed loop energy function reads
Hcl(x7 xc) = Hcl(x) = H(CC) + ]_IC(’i - F($))

Asymptotic stability of the closed loop system in z* is achieved using damping injection

such that JH
cl
— <0,V .
dt o7
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Energy shaping

e Boundary control case : Asymptotic stabilisation [Macchelli et al., 2017],
Exponential stabilisation [Macchelli et al., 2020] = Control = integrals over the
spatial domain.
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Energy shaping

e Boundary control case : Asymptotic stabilisation [Macchelli et al., 2017],
Exponential stabilisation [Macchelli et al., 2020] = Control = integrals over the
spatial domain.

> In this talk : we consider in domain control

System

Ud=-Yc + Uc =Yd
,,,,,,,, —~ O

4 Yiviy A 4

Controller

and the system is connected to the controller in a power preserving way:

()= &) Geled)+(67).
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Control by interconnection : ideal case

e |deal case : the control acts at each point ¢ of the spatial domain.
The controller is of the form

Jxo -
{at(C7t) = jchxC(Cvt) +Bcuc(<7t) (16)
yc (Cv t) =B." chC(C: t) + SCUC(Q t)
where Q.(¢) = QT (¢) and Q¢ (¢) > ne with n. > 0 for all ¢ € [a,b], Sc and
Sc(¢) = ST (¢) and S.(¢) > ns with ns > 0 for all ¢ € [a, b] and:
Bc:BcO‘i’Bclgy and u7c:Jc0“l’Jc12 (17)

a¢ a¢

with B, Ber € R(eD) | Jog = —JL), Jop = JL € R(Meme),
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Control by interconnection : ideal case
The closed loop system reads :
921 0 G 0 c
Oz _ aaztz — * S, R B* lel 18
at = ot = _g - ( c+ ) —BOc 222 ( )

Oz 0 Be TJe Qcxe
ot

Structural invariants
The closed loop system (18) admits structural invariants of the form

b
ko = Cl(xe) :/ UTg.d¢ (19)
with & = (¢1, 92, ¢3) if and only if
— G2(¢) =0 = —Bcy2(¢) + T ¥3(¢) (20)
(Sc + R)¢2(¢) =0 (21)
G (¢) + Biws(¢) =0 (22)

=0 (23)

a,b

< 0 Gy 0 ) ( $1(¢) )
-GT 0 —Be1 P2(C)
0 BYL  Ja ¥3(¢)
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Energy shaping : ideal case

Energy shaping [Trenchant et al., 2017]

Choosing B. = G and J. = 0 the closed loop system (18) admits as structural
invariants the function C(z.) defined by (19) and

v = (Uq,0,%1)
In this case the hyperbolic system (1) connected to the dynamic controller (29) of the
form
Ozc _
{m(c,w — Guc(¢.) -~
Yyc (C: t) =G"Qcxc (C: t) + SCUC’(Cv t)
is equivalent to the system
(S B g (£1(0)+2Qc(¢)) z1(¢, 1)
a {m(q, t)] = [—g* - (R+Sc)} [ L2(O)aa(C,) } (29)
_ 5 |(£1()+2Qc(Q)) z1 (¢, ) _ o |(£1()+Qc(Q)) z1(C, )
wo =[G ) o= USR] e

'@mtO'St Modeling and Control of Distributed Parameter Systems: The Port Hamiltonian Approach | Yann Le Gorrec | April 12, 2024
18



Control by interconnection

e Non ideal case : the distributed parameter system is actuated through piecewise
constant elements.

— System —

Ud=-Ye 4 Uc =Yd
—>

Controller
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Early lumping approach

The system is first discretized using a structure preserving method (mixed finite
element method [?]) such that the approximation of (1) is again a PHS with n elements:

Z14d Q1214 0
. = (Jn — Rn B s 27
<$2d> (Jn = Bn) (Qﬂzd) + Do+ (BOd) td (27a)
_ pT (Qz1a) | p 27,
Yb b (ng@d + Dpuy, (270)
Vi = (O BT ) Q1714 (27C)
0d/ \ Qawagq )’
where z;q = (z} - OE?)TER””XHOME{L“' ,2p},
0o Ji (0 0
Jn = (_JiT 0) and Ry = (0 Rd) R

The discretized energy reads:

1
Hg(x14,24) = 3 (x{dQll'ld + rrérdeﬂzd) . (28)
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Control by interconnection

—_— System —

Ud=-Yc 4 Uc=Yd

Controller

The controller is designed as finite dimensional PHS of the form:

Te = (Jc - Rc) Qc-'l?c + Bcuc,
. (29)
Ye = Bc Qcxe + Dete,
interconnected in a power preserving way through the relation
Ug \ _ 0 -M Yd _ nxm
(uc> = (MT 0 ) (yc) , where M =L, ® 15,1 € R™X™, (30)

Mto'St Modeling and Control of Distributed Parameter Systems: The Port Hamiltonian Approach | Yann Le Gorrec | April 12, 2024
21



Control by interconnection

The closed loop system is given by
j:cl - (Jcl - Rcl)chxcly (31)
where 7oy = (21, 23, +7)". Qu =diag (@1, Q2 Qo)
O Ji 0 0 0 0
Jo = | —JF 0 —BogMBI |, Ry =0 Rg+ BogMD.-MTBE, 0 |.
0 B.MTBTI, Je 0 0 Re

The Hamiltonian of the controller (29) is:

He(zc) = %szcxo (32)

Therefore, the closed loop Hamiltonian function reads:

Hea(®1d, ®2d, ®e) = Ha(®14, T2q) + He(e). (33)
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Energy shaping

Approximate energy shaping [Liu et al., 2021]
Choosing J. = 0, and R, = 0, the closed loop system (31) admits:

C(xid,zc) = BcMTBngi_lxld — Zc (34)

as structural invariant, i.e. C’(wld, z.) = 0 along the closed loop trajectories. If z1,4(0)
and z.(0) satisfy C'(x14(0),z.(0)) = 0, the controller is a proportional-integral control,
and the control law (30) is equivalent to the state feedback:

ug = —BIQ.B-MTBL 214 — DM BL,Qawaq. (35)
Therefore, the closed loop system yields:

#1q) _( O Ji Q1214 36)
Eag —JI' — (Ra+BoaMD-MTBL)) ) \Qaz24)’

where : Q1 = Q1 + J; T BoaMBY Q.B.MT BT, ! is the new closed loop energy
matrix associated to x14.
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Energy shaping

Problem

The energy related to first n elements of 214 in closed loop is shaped in an optimal way
if and only if X = BT Q.B. sym. sem. def. pos. minimizes

F(X) = ||AXAT — Qu ||, , where A = (J;)~" BogM € R"*™, SR;**™ and

Qm = (Qld - Ql)nxn-

Solution
f(X) is convex and the minimization of f(X) is equivalent to the minimization of
F2(X), which has a unique minimum given by

X =ve v QuuizgtvT (37)
with V', ¢ and U; the matrices of the singular value decomposition (SVD) of the
matrix Ajie. A=USVT = (U1 Us) (200) VT, where U € R"*" and V € R"™*™

are unitary matrices, Uy € R"*™, Uy € R"*9, g =n —m,and Xy = ZOT > 0is the
diagonal matrix of singular values of A.
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Energy shaping

The choice of the controller matrices B. and Q. is not unique. It only has to
satisfy the condition (37). It is done in order to modify the shape of the closed loop
energy function of the system in the z; coordinate.

The choice of the controller matrix D, follows a similar procedure, with the
optimization of the difference between the approximate dissipation and the desired
one.

D, allows to add local dissipation but more interestingly it may be used to add
global dissipative effect equivalent to diffusion.

The quality of the shaping (controller bandwidth) depends on the number of
patches.
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Stability analysis

The controller is now connected to the infinite dimensional system leading to :

. ((J-R-BDB*) —-BBI\ /L o0
Xf( e ; )(0 QC) x, (38)

Act
where X = (T zCT)T € X5 where X = Lo ([0, L],R?P) x R™.
Existence of solution, stability analysis

> The operator A.; defined in (38) generates a contraction semigroup on
Xs =Ly ([0, L], R?P) x R™,

> The operator A.; has a compact resolvent.

> Asymptotic stability: For any X'(0) € Lz ([0, L], R?") x R™, the unique solution of
(38) tends to zero asymptotically, and the closed loop system (38) is globally
asymptotically stable.
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Energy shaping : application

We consider the control of a weakly damped vibratring string using m homogeneously
distributed patches (n discretization elements).

We consider the case with m patches, i.e. m = 10, n = 50 and k = 5. The initial
conditions are set to a spatial distribution z1 (¢, 0) = N(1.5,0.113) for the strain
distribution and to zero for velocity distribution.

Strain Xiq

X44

b S o N

¢

<@
s

string length(m) 0 o time(s)

008
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Control by interconnection

Under-actuated:strain X4 4 x108 Closed loop Hamiltonian
15 2
1 0
0 2 4 6 8
,(E 05 , Endpoint position along time %10
0
0.5
2
8
4 ) 0 .
) 0o o 2 x10°? 0 2 4 6 8
string length(m) time(s) time(s) 103

Figure: Closed loop evolution of the angular strain for m = 10 (a), Hamiltonian function and
endpoint position (b) in the under-actuated case for m = 10, m = 5.
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Control by interconnection

Underactuated: strain X4 of high order, 4 2' dpoint position along time
n=200 with 10 patches - w order system,
%, 1 igh order system, 00
£
5 1.5 o 0.8
S
T T 06
5 8
< 05 @ 04
5 * g
z € 02
x 0 5 0
Q
2 2 o
8 w
4 3 -0.2
00 2 %107 0 2 4 6 8
string length(m) time(s) time(s) %102

Figure: Closed loop evolution of the angular strain of the high order system (a), and comparison of
the endpoint position of the low order and high order systems using the same controller (b).
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Control by interconnection

Achievable performances

Eigenvalues Eigenvalues
8000 o 8000 oer
-
oo [ =] |
. . ot . 9 T ]
cm =0
4000 400
2000 . + 2000 [ -
. * . <5
ofe . . . R IR ] »
. ik ™
2000 1 1 200 —
000 4o
6000 3 o 8000 . -
o000 w00
I T I T T E S TR Y

Figure: Control by interconnection. Full actuation (left), partial actuation (right).
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Observer design

In many cases the power conjugated variable is not (completely) measurable. In this

case one has to use an observer.

SE60) = P (HOn(G, 1) + AH(Qa(C.0),
A ws (29) = ul), (¢,0) =w0(0)

u® =we (0))

ym(t) = me((v t)a

%f(c, t) = Pla%(%(c,t» + Ro(Ha(C, 1)),

alws(fo) =a®, a0 =20
9(t) = Wc(§g§§§),
Im (t) = Cm2(¢, 1),

(40)

Since the system I/ in (40) is virtual, the input 4(¢) is designed with all the available
information, i.e. a(t) = f(u(t), ym(t), £({,t)), where u(t) and yn, (t) are considered

known from (39) and f(-) is a function to be designed.
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Observer design

Defining
j((vt) = ‘Z(Cvt) 75%((715) (41)
Then, from (39) and (40), we obtain the error dynamics equations as follows:

%f(c, £) = P (HE(G, 1) + Po(Ha(G, 1),

_ i ac
U Ws(Lo) = at),  #(¢.0)=#0(C), (42)
g(t) = We ( fa(t) ).

€p(t)

We define the Hamiltonian of the error system as:

b
0 = J1501 = 5 [ 3607 HOE 0. (49)

a

Since Wiz and W are such that WeSWE = I, the time derivative of H (t) satisfies

H(t) = a(t)(t). (44)
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Observer design

Full sensing case
Consider the BC-PHS (39)with ym, (t) = y(t). The state of the observer (40) with

A(t) = u(t) + L(ym(t) — dm (1)), (49)
converges exponentially to the state of the BC-PHS (39) if 0 < L + LT € R™*".

Partial sensing case
Consider the BC-PHS (39) with ym, (t) = Crny(t) and Cpy = (Ip Opxn—p ) € RPX™,
0 < p < n. The states of the observer (40) with

W(t) = u(t) + CL L(ym(t) — gm(t)) and L € RPXP (46)

converges exponentially to the state of the BC-PHS (39) if L is such that
CTLTCp + CL LCyH, > 0, and one of the following conditions is satisfied (y > 0)
[H(b)E(b, D)I[F < v5(t)" O LCm(t) or

(47)
[H(a)Z(a, t)||F < vi(t)T CF LCmi(t),
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Observer design

Position measurement
Consider the BC-PHS (39). Assume that the measurement is on the following form:

t
() = /0 Cony(r)dT + ym (0), With Co = (Opxn—p  Iy). (48)

Assume that the BC-PHS is approximately observable with respect to the output
Cmy(t). The state of the observer (40) with

Z(t; = u(t) + CF L1 (ym (t) — im (1) + 0(2)), )
t) =

(t) = —La(ym(t) — gm (t) + 0(t)), 6(0) = bo.

converges asymptotically to the state of the BC-PHS (39) if L1, L2 € RPXP are both
positive definite matrices.
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Implementation on the elastric string example
We consider now
> The position of the end point i.e. w(b, t), is measured .
> The state is reconstructed using a Luenberger PH finite dimensional observer (the
control uses w(b, t) and (b, t))= the closed loop stability is guaranteed [?].

time ¢ = 0.00 [s]

0.8

/\\ :
06 /

04

02}

02k

04

06 L

08

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

¢[ml
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Irreversible systems

We consider a 1-D isentropic fluid in Lagrangian coordinates, also known as p-system,
with [a,b] 3 z, a, b € R, a < b. We choose as state variables

> the specific volume ¢(t, z),
> the velocity v(¢, z) of the fluid.
System of two conservation laws :

[s20} ov
—(t = —(t
()= 22 (42)
v dp or
—(t,2) = ——(t, 2)— — (1,
5 (62) = =5 (6:2) = (1 2)
where p(¢) is the pressure of the fluid, 7 = —ﬂg—g with [ the viscous damping

coefficient. The total energy of the system is given by the sum of the kinetic energy and

internal energy:
b
H(v, ¢) = / (%UZ’ + u(¢)) dz
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Irreversible systems

HEEE

Or alternatively, splitting

[e=]
[e=]

o aenl(E) =

o [ ov d v
— | a—=— ) = —er, Withe, = iifr, dfr= -
Oz (M Bz) 67;6 with e Afr, and f 0z
One can write
¢ SH
9¢ 01 0] 5 (f5e _ A
dul=1 0 1 o %T , with e, = ifr (51)
fr 0 1 0|9 er
N——— —
Py
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Irreversible systems

El-0 (a2 el (| (50)
L= = + 8 (0. ,
Sl Tloola: \[3)) "o & (ad)] \[$2
Or alternatively, splitting
0 ov 0 ov
- — = —€r, ith 'r:Ary drzi
az(“az) g, ¢ With er = fifr, and fr =
One can write
99
% 0 1 0] 4 5?,[ _ )
K= 1 0 1 2 , with e, = iifr (51)
fr 0 1 0 eT
| ——
Py

> There is still an underlying Dirac structure and we can define from P; some

boundary port variables such that 0 < fEes
> This is a DAE system and the thermal domain is not represented
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The non-isentropic fluid: the irreversible case

We can account for the thermal domain by considering Gibbs’ equation
du = —pdop+Tds

where s denotes the entropy density and T the temperature. The total energy of the
system is still the sum of the kinetic and the internal energy but now depends on s

H 6.5 = [

a

’ (%02 +u(d, s)) dz

From the conservation of the total energy and Gibbs’ equation 2% = T we get

9s
ds o ov\?
—(t = — | = t
=2 (30) ¢

Mto'St Modeling and Control of Distributed Parameter Systems: The Port Hamiltonian Approach | Yann Le Gorrec | April 12, 2024
40



The non-isentropic fluid: the irreversible case

The system of balance equations may be written as the quasi-Hamiltonian system

29 0 8C) 0 SH
gt a() 0 o (i (v 3
g | = | Z(5(3)0) 5
o 0 £ (%) 0 oh
T \ 0z 0z ds
With dH
w v
and .
d
d—f = / odz — yZZ/S
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IPHS : General formulation [?]

We introduce the Boundary Controlled Irreversible Port Hamiltonian System (BC-IPHS)
defined on a 1D spatial domain z € [a, b], a, b € R, a < b. The state variables of the
system are the n + 1 extensive variables. The following partition of the state vector

x € R+ ghall be considered: the first n variables by = = [q1,--.,¢n]" € R™ and the
entropy density by s € R. Gibbs’ equation is equivalent to the existence of an energy
functional b

H(z,s) = / h (2(2), 5(2)) d= (52)

where h(z, s) is the energy density function. The total entropy functional is denoted by

b
S(t):/ s(z,t)dz (53)
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IPHS : General formulation

An infinite dimensional IPHS undergoing m irreversible processes is defined by

O fet,2)| _ [ Po GoRo] [2£(t,2)
ot [5(t7 Z):| o [*RJGJ 0 ] |:(iﬁ(t Z):| +
() 9(G1R1.) (t,2)
{erGlTaa(Z) gora 20 +3(qsrs):| {%h )} (54)

where Py = —P € R**", P = Pl € R"*", Gy € R**™, G e R™*™ withm <n
with R1< 76x> R™*1, 1 = 0,1, defined by

Ro,i = "0.i (2,2 32 ) {S|Go(:, i) | H}

Rii=m, (33,27 %) {S|G1(5vi)a%‘H}

d
o s =Ys <:1: z, ){S|H}

and'y;m-(x z, 5x>>0 k=0,1;ie{1,..m}, 'ys(x z, 5m>>0al‘ldgs( ),
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IPHS : General formulation

For any two functionals H; and H> of the type (52) and for any matrix differential
operator G we define the pseudo-brackets

SHy 0 G [5H2:|
Hq{|G|Hs} = « )
(H(G1H:) [5?} Lo & 1,

(SHlT 0 0Ho
H{|Hy} = — —
{H1lHz} ds (8z ds )

(55)

where G* denotes the formal adjoint operator of G.
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IPHS : General formulation

Definition 1
A Boundary Controlled IPHS (BC-IPHS) is an infinite dimensional IPHS

9 [x(t, z)} _ [ Py GORO] {é(t z):| N

at st 2) -RgGy 0 55 (4 2)
a(.) 9(G1R1.) SH
P 2w SH (4
{ T 2ol () a(gsm} [a‘sﬁ ’Z} (56)
R1TG] &2 gorgO0) 4 2ger 5 (1,2)

Augmented with the boundary port variables

oy =wa [0, o) =we [0 (57)

a
as linear functions of the modified effort variable

_ SH (1 ) . OHY\ T
e(t,z) = |:R( x. %%) SH I, )] , with R (x, E) = [1 Ri(x, %—I:) rs(x, ‘?:(]58)
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IPHS : General formulation

Furthermore
Wp = [% (B2 +E1Pep) Mp 5 (S2 — E1Pep) Mp] :
We = [% (El + E2Pep) My % (El - EQPep) MP] s

where M, = (MT M) ™" M7, Pop = MT P.M and M € R("+m+2)xk is spanning
the columns of P, € R*t™+2 of rank k, defined by

P 0 Gi 0
_10 0 0 9s
Pe = Gl 0 0 o0 (59)

and where 21 and Z in RF¥Fsatisfy 5] 21 + E] E2 = 0and E] S + ] =1 = 1.
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IPHS : General formulation

First law of Thermodynamics
The total energy balance is )
H=y(t) " v(t)
which leads, when the input is set to zero, to H = 0 in accordance with the first law of
Thermodynamics.
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IPHS : General formulation

First law of Thermodynamics
The total energy balance is )
H =y(t) "o(t)

which leads, when the input is set to zero, to H = 0 in accordance with the first law of
Thermodynamics.

Second law of Thermodynamics
The total entropy balance is given by

b
S:/ atdzfygvs
a

where y, and v, are the entropy conjugated input/output and o is the total internal

entropy production. This leads, when the input is set to zero, to S = ff otdz > 0in
accordance with the second law of Thermodynamics.
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Control design : Heat equation

Balance equation on u (z € [0, L])

Ou_ 9 (_,\al)
ot 0z 0z

where X denotes the heat conduction coefficient. From Gibbs’ equation du = T'ds

0L AOLD (B 0 (X013 (60}
ot~ T2 9z 8z \ 8s 9z \T2 9z \ ds
which is equivalent to (56) where Pp =0, P, =0,Go =0,G1 =0,g9s =1 and

rs = vs{S|U} with s % and {S|U} = %_ In this case P. = % {(1) (1)} sn=1

and m = 1. Choosing = % [} 8} Eo = % {8 _11} we have

o) — [ (%%) (t,L) ] | o) — [T((t,L)} 7 -
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Control design : The heat equation

Idea
> Use the Thermodynamic availability function as closed loop Lyapunov function.

L
A:/O (u(s) — ua(s)) dz

J/m a(s) a(f;;ﬁ)
(s 7 )
B s(¢,1)
s"(€)

> Use Entropy Assignment to guarantee the convergence of trajectories.
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Control design

Availability Based Interconnection
The boundary control feedback v = B(y) + v/, with v’ an auxiliary boundary input,
maps (60), (61) into the target system

where H = U and

8t5 :?saz (557'[) + az (FS(SS’H) (62)
a ==v (63)

5.4 0 ) (2:0:4)
S M L =

and 7s = v:{S|.A}, if the following matching conditions are satisfied

s {S8|Ha}0: (5sH) + 02 (vs{S|Ha}dsH) =0 (65)
A az(ésﬂa)
Bly) + [ 5. (5. 7) L} =0 (66)
A ( T ) ‘0
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Control design

Entropy Assignment
Let’s consider the irreversible port-Hamiltonian system (60)-(63) with boundary control

law
a=-Ty (67)
with =Z®=T,and ® = & > 0, then the system is asymptotically stable. If ® is
defined by
$rL 0
o= T ] (68)
0 Ti‘o

where ¢, and ¢ are strictly positive, the target temperature profile
TF = m*z + b*,Vz € [0, L], is achievable from any initial condition Tj. At the end the
control is

u=p3(y) - o=y (69)
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Control design

> |nitial condition Ty = 303.15,Vz € [0, 0.1]
> Target profile T} = 150z + 313.15, =z € [0,0.1]

Figure: Behavior of the absolute error of temperature response with respect to desired equilibrium
profile, using ABI (left) control and ABI-EA (right) control.
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Figure: Available energy.
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Conclusions and future works

Conclusion

> Extension of energy shaping control design technique to in domain controlled DPS
and to a class of boundary controlled IPHS.

» We proposed first ideas on observer design.

> In the in domain case energy shaping is achieved in an optimal way considering
an early lumping approach and closed loop stability was proven.

> In the IPHS case we did not pay attention to existence of solutions.
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Conclusions and future works

Conclusion

> Extension of energy shaping control design technique to in domain controlled DPS
and to a class of boundary controlled IPHS.

» We proposed first ideas on observer design.

> In the in domain case energy shaping is achieved in an optimal way considering
an early lumping approach and closed loop stability was proven.

> In the IPHS case we did not pay attention to existence of solutions.

Future works

> Study of the impact of the distribution of the patches on the achievable
performances.

> Control design for a class of non linear PDE systems.
> Extension to 2D DPS.
> Extension to a larger class of irreversible PHS.
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Thank you for your attention !
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