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Context : control of flexible structures

I Boundary controlled systems
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I In-domain control of distributed parameter systems

I Exploration, imaging, diagnosis.
I Mini invasive surgery.
I Toward miniaturized and smart endoscopes.
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Context : port Hamiltonian systems

I Port Hamiltonian systems:
I The state variables are chosen as the energy variables.
I The links between the energy function and the system dynamics is made

explicit through symmetries.
I The boundary port variables are power conjugated.

I Energy shaping consists in using the physical properties of the system to derive
efficient control laws with guaranteed performances (step further stabilization).

I ”Easy” to extend to non linear or systems defined on higher dimensional spaces.
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Infinite dimensional Port Hamiltonian systems (PHS)

Infinite dimensional Port Hamiltonian systems (PHS)

∂

∂t

[
x1(ζ, t)
x2(ζ, t)

]
=

[
0 G
−G∗ −R

] [
L1(ζ)x1(ζ, t)
L2(ζ)x2(ζ, t)

]
+

[
0
I

]
ud(ζ, t) (1)

yd(ζ, t) =
[
0 I

] [L1(ζ)x1(ζ, t)
L2(ζ)x2(ζ, t)

]
(2)

u∂ = B
[
L1(ζ)x1(ζ, t)
L2(ζ)x2(ζ, t)

]
, y∂ = C

[
L1(ζ)x1(ζ, t)
L2(ζ)x2(ζ, t)

]
(3)

where x = [xT1 , x
T
2 ]T ∈ XL2([a, b] ,Rn)× L2([a, b] ,Rn), L = diag(L1,L2) and

L(ζ) = LT (ζ) and L(ζ) ≥ η with η > 0 for all ζ ∈ [a, b], R ∈ R(n,n), R = RT > 0,
B(·) and C(·) are some boundary input and boundary output mapping operators.
Furthermore

G =
N∑
i=0

Gi
∂i

∂ζi
, and G∗ =

N∑
i=0

(−1)iGTi
∂i

∂ζi

with Gi ∈ R(n,n).
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Infinite dimensional Port Hamiltonian systems (PHS)

For a sake of compactness we shall use the following notation

Pi =

[
0 Gi

(−1)i+1GTi 0

]
, R0 =

[
0 0
0 R

]
(4)

and the formulation of (1)

∂x

∂t
(ζ, t) =

N∑
i=0

Pi
∂i

∂ζi
(L(ζ)x(ζ, t))−R0L(ζ)x(ζ, t) +

[
0
I

]
ud(ζ, t) (5)

yd(ζ, t) =
[
0 I

]
L(ζ)x(ζ, t) (6)

u∂ = B (L(ζ)x(ζ, t)) , y∂ = C (L(ζ)x(ζ, t)) (7)

The total energy of the system H(x) is defined by

H(x) =
1

2

∫ b

a

(
xT (ζ, t)L(ζ)x(ζ, t)

)
dζ
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Boundary controlled port Hamiltonian systems

Mixed in-domain / boundary controlled port Hamiltonian systems (IDBC-PHS)
A mixed in-domain / boundary controlled port Hamiltonian system is an infinite
dimensional system of the form (5-7) where

u∂ = WB



L(b)x(b, t)
...

∂N−1(Lx)
∂ζN−1 (b, t)

L(a)x(a, t)
...

∂N−1(Lx)
∂ζN−1 (a, t)


, and y∂ = WC



L(b)x(b, t)
...

∂N−1(Lx)
∂ζN−1 (b, t)

L(a)x(a, t)
...

∂N−1(Lx)
∂ζN−1 (a, t)


(8)

with

WB =
[

1√
2

(Ξ2 + Ξ1Pe)
1√
2

(Ξ2 − Ξ1Pe)
]
, (9)

WC =
[

1√
2

(Ξ1 + Ξ2Pe)
1√
2

(Ξ1 − Ξ2Pe)
]
, (10)
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Boundary controlled port Hamiltonian systems

where

Pe =

 P1 · · · (−1)N−1PN
...

. . . 0
(−1)N−1PN 0 0

 (11)

and Ξ1 and Ξ2 in Rk×k satisfy

Ξ>2 Ξ1 + Ξ>1 Ξ2 = 0, and Ξ>2 Ξ2 + Ξ>1 Ξ1 = I (12)

The energy balance associated to the system reads

dH

dt
=

∫ b

a
yTd uddζ −

∫ b

a

(
xT2 (ζ, t)LT2 (ζ)RL2(ζ)x2(ζ, t)

)
dζ + yT∂ u∂ (13)

≤
∫ b

a
yTd uddζ + yT∂ u∂ (14)
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Boundary controlled port Hamiltonian systems

Existence of solution [?]
The operator

J =
N∑
i=0

Pi
∂i

∂ζi
(L(ζ)x(ζ, t))−R0L(ζ)x(ζ, t)

with domain

D(J ) =


L ∈ HN

(
a, b;Rn

)
|



L(b)x(b, t)
...

∂N−1(Lx)
∂ζN−1 (b, t)

L(a)x(a, t)
...

∂N−1(Lx)
∂ζN−1 (a, t)


∈ KerWB


where WB is defined by (9) and Ξ1 and Ξ2 satisfy (12), generates a contraction

semigroup on X. Furthermore the system (5-7) with (9-10) and (12) defines a
boundary control system.
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Boundary controlled port Hamiltonian systems

The general formulation (1) allows to model a large class of systems.
For example:
I The 1D wave equation where n = 1, N = 1, G0 = 0, G1 = 1.
I The Euler Bernouilli beam equation. In this case n = 1, N = 2,
G0 = 0, G1 = 0, G2 = 1.

I The Timoshenko beam equation. In this case n = 2, N = 1, and

G0 =

[
0 −1
0 0

]
, G1 =

[
1 0
0 1

]

In what follows we focus on first order differential operators
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Control by interconnection

The system is interconnected with a dynamic controller in a power preserving way.
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           Controller
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System

Controller

Ud = -Yc
 Uc = Yd


U Y

Figure: Control by interconnection. Boundary control (left), in domain control (right).

The closed loop energy is equal to the sum of the open loop energy and the controller
energy.

Modeling and Control of Distributed Parameter Systems: The Port Hamiltonian Approach | Yann Le Gorrec | April 12, 2024
13



Energy shaping

Objectives
Modification of the closed loop system’s properties (energy shaping) + stabilization
(damping injection).

From the power preserving interconnection

Hcl(x, xc) = H(x) +Hc(xc)

We first look for structural invariants C(x, xc) i.e. dC
dt

= 0

C(x, xc) = xc + F (x) = κ

where F is a smooth function. In this case the closed loop energy function reads

Hcl(x, xc) = Hcl(x) = H(x) +Hc(κ− F (x))

Asymptotic stability of the closed loop system in x∗ is achieved using damping injection
such that

dHcl

dt
< 0, ∀x 6= x∗.
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Energy shaping

• Boundary control case : Asymptotic stabilisation [Macchelli et al., 2017],
Exponential stabilisation [Macchelli et al., 2020]⇒ Control = integrals over the
spatial domain.

I In this talk : we consider in domain control











R






















System

Controller

Ud = -Yc
 Uc = Yd


and the system is connected to the controller in a power preserving way:(
ud(ζ, t)
yd(ζ, t)

)
=

(
0 −I
I 0

)(
uC(ζ, t)
yC(ζ, t)

)
+

(
u′(ζ, t)

0

)
, (15)
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Control by interconnection : ideal case

• Ideal case : the control acts at each point ζ of the spatial domain.
The controller is of the form

∂xC

∂t
(ζ, t) = JcQcxC(ζ, t) + BcuC(ζ, t)

yC(ζ, t) = Bc∗QcxC(ζ, t) + ScuC(ζ, t)

(16)

where Qc(ζ) = QTc (ζ) and Qc(ζ) ≥ ηc with ηc > 0 for all ζ ∈ [a, b], Sc and
Sc(ζ) = STc (ζ) and Sc(ζ) ≥ ηs with ηs > 0 for all ζ ∈ [a, b] and:

Bc = Bc0 +Bc1
∂

∂ζ
, and Jc = Jc0 + Jc1

∂

∂ζ
(17)

with Bc0, Bc1 ∈ R(nc,1), Jc0 = −JTc0, Jc1 = JTc1 ∈ R(nc,nc).
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Control by interconnection : ideal case

The closed loop system reads :

∂xe

∂t
=


∂x1
∂t
∂x2
∂t
∂xc
∂t

 =

 0 G 0
−G∗ − (Sc +R) −B∗c

0 Bc Jc

 L1x1
L2x2
Qcxc

 (18)

Structural invariants
The closed loop system (18) admits structural invariants of the form

κ0 = C(xe) =

∫ b

a
ΨT xedζ (19)

with Ψ = (ψ1, ψ2, ψ3) if and only if

− Gψ2(ζ) = 0 = −Bcψ2(ζ) + J ∗c ψ3(ζ) (20)

(Sc + R)ψ2(ζ) = 0 (21)

Gψ1(ζ) + B∗cψ3(ζ) = 0 (22) 0 G1 0

−GT1 0 −Bc1
0 BTc1 Jc1

 ψ1(ζ)
ψ2(ζ)
ψ3(ζ)

∣∣∣∣∣∣
a,b

= 0 (23)
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Energy shaping : ideal case

Energy shaping [Trenchant et al., 2017]
Choosing Bc = G and Jc = 0 the closed loop system (18) admits as structural
invariants the function C(xe) defined by (19) and

Ψ = (Ψ1, 0,Ψ1)

In this case the hyperbolic system (1) connected to the dynamic controller (29) of the
form 

∂xC

∂t
(ζ, t) = GuC(ζ, t)

yC(ζ, t) = G∗QcxC(ζ, t) + ScuC(ζ, t)

(24)

is equivalent to the system

∂

∂t

[
x1(ζ, t)
x2(ζ, t)

]
=

[
0 G
−G∗ − (R+Sc)

] [
(L1(ζ)+Qc(ζ))x1(ζ, t)

L2(ζ)x2(ζ, t)

]
(25)

u∂ = B
[
(L1(ζ)+Qc(ζ))x1(ζ, t)

L2(ζ)x2(ζ, t)

]
, y∂ = C

[
(L1(ζ)+Qc(ζ))x1(ζ, t)

L2(ζ)x2(ζ, t)

]
(26)
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Control by interconnection

• Non ideal case : the distributed parameter system is actuated through piecewise
constant elements.
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Early lumping approach

The system is first discretized using a structure preserving method (mixed finite
element method [?]) such that the approximation of (1) is again a PHS with n elements:

(
ẋ1d
ẋ2d

)
= (Jn −Rn)

(
Q1x1d
Q2x2d

)
+Bbub +

(
0
B0d

)
ud, (27a)

yb = BTb

(
Q1x1d
Q2x2d

)
+Dbub, (27b)

yd =
(
0 BT0d

)(Q1x1d
Q2x2d

)
, (27c)

where xid =
(
x1i · · · xni

)T ∈ Rnp×1 for i ∈ {1, · · · , 2p},

Jn =

(
0 Ji
−JTi 0

)
and Rn =

(
0 0
0 Rd

)
,

The discretized energy reads:

Hd(x1d, x2d) =
1

2

(
xT1dQ1x1d + xT2dQ2x2d

)
. (28)
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Control by interconnection


































System

Controller
    

Ud = -Yc
 Uc = Yd


The controller is designed as finite dimensional PHS of the form:{
ẋc = (Jc −Rc)Qcxc +Bcuc,

yc = BTc Qcxc +Dcuc,
(29)

interconnected in a power preserving way through the relation(
ud
uc

)
=

(
0 −M
MT 0

)(
yd
yc

)
, where M = Im ⊗ 1k×1 ∈ Rn×m, (30)
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Control by interconnection

The closed loop system is given by

ẋcl = (Jcl −Rcl)Qclxcl, (31)

where xcl =
(
xT1d, xT2d, xTc

)T , Qcl = diag
(
Q1, Q2, Qc

)
,

Jcl =

 O Ji 0
−JTi 0 −B0dMBTc

0 BcMTBT0d Jc

 , Rcl =

0 0 0
0 Rd +B0dMDcMTBT0d 0
0 0 Rc

 .

The Hamiltonian of the controller (29) is:

Hc(xc) =
1

2
xTc Qcxc. (32)

Therefore, the closed loop Hamiltonian function reads:

Hcld(x1d, x2d, xc) = Hd(x1d, x2d) +Hc(xc). (33)
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Energy shaping

Approximate energy shaping [Liu et al., 2021]
Choosing Jc = 0, and Rc = 0, the closed loop system (31) admits:

C(x1d, xc) = BcM
TBT0dJ

−1
i x1d − xc (34)

as structural invariant, i.e. Ċ(x1d, xc) = 0 along the closed loop trajectories. If x1d(0)
and xc(0) satisfy C(x1d(0), xc(0)) = 0, the controller is a proportional-integral control,
and the control law (30) is equivalent to the state feedback:

ud = −BTc QcBcMTBT0dJ
−1
i x1d −DcMTBT0dQ2x2d. (35)

Therefore, the closed loop system yields:(
ẋ1d
ẋ2d

)
=

(
0 Ji
−JTi −

(
Rd+B0dMDcMTBT0d

))(Q̃1x1d
Q2x2d

)
, (36)

where : Q̃1 = Q1 + J−Ti B0dMBTc QcBcM
TBT0dJ

−1
i is the new closed loop energy

matrix associated to x1d.
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Energy shaping

Problem
The energy related to first n elements of x1d in closed loop is shaped in an optimal way
if and only if X = BTc QcBc sym. sem. def. pos. minimizes
f(X) =

∥∥AXAT −Qm∥∥F , where A = (Ji)
−T B0dM ∈ Rn×m, SRm×m0 and

Qm = (Q̃1d −Q1)n×n.

Solution
f(X) is convex and the minimization of f(X) is equivalent to the minimization of
f2(X), which has a unique minimum given by

X̂ = V Σ−1
0 UT1 QmU1Σ−1

0 V T (37)

with V , Σ0 and U1 the matrices of the singular value decomposition (SVD) of the

matrix A i.e. A = UΣV T =
(
U1 U2

)(Σ0

0

)
V T , where U ∈ Rn×n and V ∈ Rm×m

are unitary matrices, U1 ∈ Rn×m, U2 ∈ Rn×q , q = n−m, and Σ0 = ΣT0 ≥ 0 is the
diagonal matrix of singular values of A.
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Energy shaping

I The choice of the controller matrices Bc and Qc is not unique. It only has to
satisfy the condition (37). It is done in order to modify the shape of the closed loop
energy function of the system in the x1 coordinate.

I The choice of the controller matrix Dc follows a similar procedure, with the
optimization of the difference between the approximate dissipation and the desired
one.

I Dc allows to add local dissipation but more interestingly it may be used to add
global dissipative effect equivalent to diffusion.

I The quality of the shaping (controller bandwidth) depends on the number of
patches.
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Stability analysis

The controller is now connected to the infinite dimensional system leading to :

Ẋ =

(
(J −R− BDcB∗) −BBTc

BcB∗ 0

)(
L 0
0 Qc

)
︸ ︷︷ ︸

Acl

X , (38)

where X =
(
xT xTc

)T ∈ Xs where Xs = L2

(
[0, L],R2p

)
× Rm.

Existence of solution, stability analysis

I The operator Acl defined in (38) generates a contraction semigroup on
Xs = L2

(
[0, L],R2p

)
× Rm.

I The operator Acl has a compact resolvent.
I Asymptotic stability: For any X (0) ∈ L2

(
[0, L],R2n

)
× Rm, the unique solution of

(38) tends to zero asymptotically, and the closed loop system (38) is globally
asymptotically stable.
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Energy shaping : application

We consider the control of a weakly damped vibratring string using m homogeneously
distributed patches (n discretization elements).

We consider the case with m patches, i.e. m = 10, n = 50 and k = 5. The initial
conditions are set to a spatial distribution x1(ζ, 0) = N (1.5, 0.113) for the strain
distribution and to zero for velocity distribution.
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Control by interconnection

0 2 4 6 8
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0
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4
106 Closed loop Hamiltonian

10 patches
5 patches
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0
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1

Endpoint position along time

Figure: Closed loop evolution of the angular strain for m = 10 (a), Hamiltonian function and
endpoint position (b) in the under-actuated case for m = 10, m = 5.
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Control by interconnection
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Figure: Closed loop evolution of the angular strain of the high order system (a), and comparison of
the endpoint position of the low order and high order systems using the same controller (b).
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Control by interconnection

Achievable performances

Figure: Control by interconnection. Full actuation (left), partial actuation (right).
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Observer design

In many cases the power conjugated variable is not (completely) measurable. In this
case one has to use an observer.

U



∂x

∂t
(ζ, t) = P1

∂

∂ζ
(H(ζ)x(ζ, t)) + P0H(ζ)x(ζ, t),

WB
(

f∂(t)
e∂(t)

)
= u(t), x(ζ, 0) = x0(ζ),

y(t) = WC
(

f∂(t)
e∂(t)

)
,

ym(t) = Cmx(ζ, t),

(39)

Û



∂x̂

∂t
(ζ, t) = P1

∂

∂ζ
(Hx̂(ζ, t)) + P0(Hx̂(ζ, t)),

WB
( f̂∂(t)
ê∂(t)

)
= û(t), x̂(ζ, 0) = x̂0(ζ)

ŷ(t) = WC
( f̂∂(t)
ê∂(t)

)
,

ŷm(t) = Cmx̂(ζ, t),

(40)

Since the system Û in (40) is virtual, the input û(t) is designed with all the available
information, i.e. û(t) = f(u(t), ym(t), x̂(ζ, t)), where u(t) and ym(t) are considered
known from (39) and f(·) is a function to be designed.
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Observer design

Defining
x̃(ζ, t) := x(ζ, t)− x̂(ζ, t). (41)

Then, from (39) and (40), we obtain the error dynamics equations as follows:

Ũ


∂x̃

∂t
(ζ, t) = P1

∂

∂ζ
(Hx̃(ζ, t)) + P0(Hx̃(ζ, t)),

WB
( f̃∂(t)
ẽ∂(t)

)
= ũ(t), x̃(ζ, 0) = x̃0(ζ),

ỹ(t) = WC
( f̃∂(t)
ẽ∂(t)

)
.

(42)

We define the Hamiltonian of the error system as:

H̃(t) =
1

2
‖x̃(t)‖2H =

1

2

∫ b

a
x̃(ζ, t)TH(ζ)x̃(ζ, t)dζ. (43)

Since WB and WC are such that WCΣWT
B = I, the time derivative of H̃(t) satisfies

˙̃H(t) = ũ(t)T ỹ(t). (44)
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Observer design

Full sensing case
Consider the BC-PHS (39)with ym(t) = y(t). The state of the observer (40) with

û(t) = u(t) + L(ym(t)− ŷm(t)), (45)

converges exponentially to the state of the BC-PHS (39) if 0 < L+ LT ∈ Rn×n.

Partial sensing case
Consider the BC-PHS (39) with ym(t) = Cmy(t) and Cm = ( Ip 0p×n−p ) ∈ Rp×n,
0 < p < n. The states of the observer (40) with

û(t) = u(t) + CTmL(ym(t)− ŷm(t)) and L ∈ Rp×p (46)

converges exponentially to the state of the BC-PHS (39) if L is such that
CTmL

TCm + CTmLCm ≥ 0, and one of the following conditions is satisfied (γ > 0)

‖H(b)x̃(b, t)‖2R ≤ γỹ(t)TCTmLCmỹ(t) or

‖H(a)x̃(a, t)‖2R ≤ γỹ(t)TCTmLCmỹ(t),
(47)
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Observer design

Position measurement
Consider the BC-PHS (39). Assume that the measurement is on the following form:

ym(t) =

∫ t

0
Cmy(τ)dτ + ym(0), with Cm =

(
0p×n−p Ip

)
. (48)

Assume that the BC-PHS is approximately observable with respect to the output
Cmy(t). The state of the observer (40) with

û(t) = u(t) + CTmL1(ym(t)− ŷm(t) + θ(t)),

θ̇(t) = −L2(ym(t)− ŷm(t) + θ(t)), θ(0) = θ0.
(49)

converges asymptotically to the state of the BC-PHS (39) if L1, L2 ∈ Rp×p are both
positive definite matrices.
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Implementation on the elastric string example
We consider now
I The position of the end point i.e. ω(b, t), is measured .
I The state is reconstructed using a Luenberger PH finite dimensional observer (the

control uses ω̂(b, t) and v̂(b, t))⇒ the closed loop stability is guaranteed [?].
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Irreversible systems

We consider a 1-D isentropic fluid in Lagrangian coordinates, also known as p-system,
with [a, b] 3 z, a, b ∈ R, a < b. We choose as state variables
I the specific volume φ(t, z),
I the velocity υ(t, z) of the fluid.

System of two conservation laws :

∂φ

∂t
(t, z) =

∂υ

∂z
(t, z)

∂υ

∂t
(t, z) = −∂p

∂z
(t, z)−∂τ

∂z
(t, z)

where p(φ) is the pressure of the fluid, τ = −µ̂ ∂υ
∂z

with µ̂ the viscous damping
coefficient. The total energy of the system is given by the sum of the kinetic energy and
internal energy:

H (υ, φ) =

∫ b

a

(
1

2
υ2 + u(φ)

)
dz
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Irreversible systems

[
∂φ
∂t
∂υ
∂t

]
=

[
0 1
1 0

]
∂

∂z

([
δH
δφ
δH
δυ

])
+

[
0 0

0 ∂
∂z

(
µ̂ ∂.
∂z

)]([ δHδφ
δH
δυ

])
, (50)

Or alternatively, splitting

∂

∂z

(
µ̂
∂υ

∂z

)
=

∂

∂z
er, with er = µ̂fr, and fr =

∂υ

∂z

One can write  ∂φ∂t∂υ
∂t
fr

 =

0 1 0
1 0 1
0 1 0


︸ ︷︷ ︸

P̃1

∂

∂z

 δHδφδH
δυ
er

 , with er = µ̂fr (51)

I There is still an underlying Dirac structure and we can define from P̃1 some
boundary port variables such that dH

dt
≤ fT∂ e∂

I This is a DAE system and the thermal domain is not represented.
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Irreversible systems

[
∂φ
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∂υ
∂t
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∂z
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µ̂ ∂.
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∂z
er, with er = µ̂fr, and fr =

∂υ

∂z

One can write  ∂φ∂t∂υ
∂t
fr

 =

0 1 0
1 0 1
0 1 0


︸ ︷︷ ︸

P̃1

∂

∂z

 δHδφδH
δυ
er

 , with er = µ̂fr (51)

I There is still an underlying Dirac structure and we can define from P̃1 some
boundary port variables such that dH

dt
≤ fT∂ e∂

I This is a DAE system and the thermal domain is not represented.

Modeling and Control of Distributed Parameter Systems: The Port Hamiltonian Approach | Yann Le Gorrec | April 12, 2024
39



The non-isentropic fluid: the irreversible case

We can account for the thermal domain by considering Gibbs’ equation

du = −pdφ+Tds

where s denotes the entropy density and T the temperature. The total energy of the
system is still the sum of the kinetic and the internal energy but now depends on s

H (υ, φ, s) =

∫ b

a

(
1

2
υ2 + u (φ, s)

)
dz

From the conservation of the total energy and Gibbs’ equation ∂u
∂s

= T we get

∂s

∂t
(t, z) =

µ̂

T

(
∂υ

∂z

)2

(t, z)
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The non-isentropic fluid: the irreversible case

The system of balance equations may be written as the quasi-Hamiltonian system ∂φ∂t∂υ∂t
∂s
∂t

 =


0

∂(·)
∂z

0
∂(·)
∂z

0 ∂
∂z

(
µ̂
T

(
∂υ
∂z

)
(·)
)

0 µ̂
T

(
∂υ
∂z

)
∂(·)
∂z

0




δH
δφ
δH
δυ
δH
δs




With
dH

dt
= yT ν

and
dS

dt
=

∫ b

a
σdz − yTs νs
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IPHS : General formulation [?]

We introduce the Boundary Controlled Irreversible Port Hamiltonian System (BC-IPHS)
defined on a 1D spatial domain z ∈ [a, b], a, b ∈ R, a < b. The state variables of the
system are the n+ 1 extensive variables. The following partition of the state vector
x ∈ Rn+1 shall be considered: the first n variables by x = [q1, . . . , qn]> ∈ Rn and the
entropy density by s ∈ R. Gibbs’ equation is equivalent to the existence of an energy
functional

H(x, s) =

∫ b

a
h (x(z), s(z)) dz (52)

where h(x, s) is the energy density function. The total entropy functional is denoted by

S(t) =

∫ b

a
s(z, t)dz (53)
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IPHS : General formulation

An infinite dimensional IPHS undergoing m irreversible processes is defined by

∂

∂t

[
x(t, z)
s(t, z)

]
=

[
P0 G0R0

−R>0 G>0 0

] [ δH
δx

(t, z)
δH
δs

(t, z)

]
+[

P1
∂(.)
∂z

∂(G1R1.)
∂z

R1
>G>1

∂(.)
∂z

gsrs
∂(.)
∂z

+
∂(gsrs.)
∂z

][ δH
δx

(t, z)
δH
δs

(t, z)

]
(54)

where P0 = −P>0 ∈ Rn×n, P1 = P>1 ∈ Rn×n, G0 ∈ Rn×m, G1 ∈ Rn×m with m ≤ n
with Rl

(
x, δH

δx

)
∈ Rm×1, l = 0, 1, defined by

R0,i = γ0,i

(
x, z, δH

δx

)
{S|G0(:, i)|H}

R1,i = γ1,i

(
x, z, δH

δx

){
S|G1(:, i) ∂

∂z
|H
}

and
rs = γs

(
x, z, δH

δx

)
{S|H}

and γk,i
(
x, z, δH

δx

)
> 0, k = 0, 1; i ∈ {1, ...m}, γs

(
x, z, δH

δx

)
> 0 and gs(x),
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IPHS : General formulation

For any two functionals H1 and H2 of the type (52) and for any matrix differential
operator G we define the pseudo-brackets

{H1|G|H2} =

[
δH1
δx
δH1
δs

][
0 G
−G∗ 0

][ δH2
δx
δH2
δs

]
,

{H1|H2} =
δH1

δs

> ( ∂

∂z

δH2

δs

) (55)

where G∗ denotes the formal adjoint operator of G.
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IPHS : General formulation

Definition 1
A Boundary Controlled IPHS (BC-IPHS) is an infinite dimensional IPHS

∂

∂t

[
x(t, z)
s(t, z)

]
=

[
P0 G0R0

−R>0 G>0 0

] [ δH
δx

(t, z)
δH
δs

(t, z)

]
+[

P1
∂(.)
∂z

∂(G1R1.)
∂z

R1
>G>1

∂(.)
∂z

gsrs
∂(.)
∂z

+
∂(gsrs.)
∂z

][ δH
δx

(t, z)
δH
δs

(t, z)

]
(56)

Augmented with the boundary port variables

v(t) = WB

[
e(t, b)
e(t, a)

]
, y(t) = WC

[
e(t, b)
e(t, a)

]
(57)

as linear functions of the modified effort variable

e(t, z) =

[ δH
δx

(t, z)

R(x, δH
δx

) δH
δs

(t, z)

]
, with R

(
x,
δH

δx

)
=
[
1 R1(x, δH

δx
) rs(x, δH

δx
)
]>
(58)
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IPHS : General formulation

Furthermore

WB =
[

1√
2

(Ξ2 + Ξ1Pep)Mp
1√
2

(Ξ2 − Ξ1Pep)Mp

]
,

WC =
[

1√
2

(Ξ1 + Ξ2Pep)Mp
1√
2

(Ξ1 − Ξ2Pep)Mp

]
,

where Mp =
(
M>M

)−1
M>, Pep = M>PeM and M ∈ R(n+m+2)×k is spanning

the columns of Pe ∈ Rn+m+2 of rank k, defined by

Pe =


P1 0 G1 0
0 0 0 gs
G>1 0 0 0
0 gs 0 0

 (59)

and where Ξ1 and Ξ2 in Rk×ksatisfy Ξ>2 Ξ1 + Ξ>1 Ξ2 = 0 and Ξ>2 Ξ2 + Ξ>1 Ξ1 = I.
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IPHS : General formulation

First law of Thermodynamics
The total energy balance is

Ḣ = y(t)>v(t)

which leads, when the input is set to zero, to Ḣ = 0 in accordance with the first law of
Thermodynamics.

Second law of Thermodynamics
The total entropy balance is given by

Ṡ =

∫ b

a
σtdz − y>S vs

where ys and vs are the entropy conjugated input/output and σt is the total internal
entropy production. This leads, when the input is set to zero, to Ṡ =

∫ b
a σtdz ≥ 0 in

accordance with the second law of Thermodynamics.
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∫ b
a σtdz ≥ 0 in

accordance with the second law of Thermodynamics.

Modeling and Control of Distributed Parameter Systems: The Port Hamiltonian Approach | Yann Le Gorrec | April 12, 2024
47



Control design : Heat equation

Balance equation on u (z ∈ [0, L])

∂u

∂t
= − ∂

∂z

(
−λ∂T

∂z

)
where λ denotes the heat conduction coefficient. From Gibbs’ equation du = Tds

∂s

∂t
=

λ

T 2

∂T

∂z

∂

∂z

(
δU

δs

)
+

∂

∂z

(
λ

T 2

∂T

∂z

(
δU

δs

))
(60)

which is equivalent to (56) where P0 = 0, P1 = 0, G0 = 0, G1 = 0, gs = 1 and

rs = γs{S|U} with γs = λ
T2 and {S|U} = ∂T

∂z
. In this case Pe = 1

2

[
0 1
1 0

]
, n = 1

and m = 1. Choosing Ξ1 = 1√
2

[
1 0
1 0

]
, Ξ2 = 1√

2

[
0 1
0 −1

]
we have

v(t) =

 (λsT ∂T
∂z

)
(t, L)

−
(
λs
T
∂T
∂z

)
(t, 0)

 , y(t) =

[
T (t, L)
T (t, 0)

]
, (61)

respectively the entropy flux and the temperature at each boundary.
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Control design : The heat equation

Idea
I Use the Thermodynamic availability function as closed loop Lyapunov function.

A =

∫ L

0
(u(s)− ua(s)) dz

s∗(ζ)

u(s∗)

a(ζ, t)
u(s)

ua(s, s
∗)

s(ζ, t)

J/m

I Use Entropy Assignment to guarantee the convergence of trajectories.
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Control design

Availability Based Interconnection
The boundary control feedback v = β(y) + v′, with v′ an auxiliary boundary input,
maps (60), (61) into the target system

∂ts =rs∂z (δsH) + ∂z (rsδsH) (62)

ũ =Ξv′ (63)

where H = U and

Ξ =

 δsA
T

∣∣∣
L

0

0 δsA
T

∣∣∣
0

 and v′ =

λ( ∂z(δsA)
T

)∣∣∣
L

λ
(
∂z(δsA)

T

)∣∣∣
0

 (64)

and rs = γs{S|A}, if the following matching conditions are satisfied

γs{S|Ha}∂z (δsH) + ∂z (γs{S|Ha}δsH) =0 (65)

β(y) +

λ( ∂z(δsHa)T

)∣∣∣
L

λ
(
∂z(δsHa)

T

)∣∣∣
0

 =0 (66)
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Control design

Entropy Assignment
Let’s consider the irreversible port-Hamiltonian system (60)-(63) with boundary control
law

ũ = −Γy (67)

with Γ = ΞΦΞ>, and Φ = Φ> > 0, then the system is asymptotically stable. If Φ is
defined by

Φ =

[
φL
T |L 0

0 φ0
T |0

]
(68)

where φL and φ0 are strictly positive, the target temperature profile
T ∗e = m∗z + b∗, ∀z ∈ [0, L], is achievable from any initial condition T0. At the end the
control is

u = β(y)− ΦΞ>y (69)
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Control design

I Initial condition T0 = 303.15, ∀z ∈ [0, 0.1]

I Target profile T ∗e = 150z + 313.15, z ∈ [0, 0.1]

0
20

40
60

80

0
0.02

0.04
0.06

0.08

10

15

20

25

time (sec)ζ (m)

|T
(ζ
,t
)
−
T

∗ e
(ζ
)|

(◦
K
)

0

10
20

30
40 0

0.02
0.04

0.06
0.08

0.1

0

10

20

time (sec) ζ (m)

|T
(ζ
,t
)
−
T

∗ e
(ζ
)|

(◦
K
)

0
10

20
30

40

0
0.02

0.04
0.06

0.08
0.1

310

320

330

time (sec)ζ (m)

T
(ζ
,t
)
(◦
K
)

Figure: Behavior of the absolute error of temperature response with respect to desired equilibrium
profile, using ABI (left) control and ABI-EA (right) control.
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Conclusions and future works

Conclusion
I Extension of energy shaping control design technique to in domain controlled DPS

and to a class of boundary controlled IPHS.
I We proposed first ideas on observer design.
I In the in domain case energy shaping is achieved in an optimal way considering

an early lumping approach and closed loop stability was proven.
I In the IPHS case we did not pay attention to existence of solutions.

Future works
I Study of the impact of the distribution of the patches on the achievable

performances.
I Control design for a class of non linear PDE systems.
I Extension to 2D DPS.
I Extension to a larger class of irreversible PHS.
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I Extension to a larger class of irreversible PHS.
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Thank you for your attention !
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