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Dynamic systems
Modeling and control of (deterministic) dynamic systems
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Two approaches:
Lumped parameters systems, distributed parameters systems.
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Recent technological progresses and physical knowledges allow to go toward the use
of complex systems:

• Highly nonlinear.
• Involving numerous physical domains and possible heterogeneity.
• With distributed parameters or organized in network.

New issue for system control theory
Modeling step is important→ the physical properties can be advantageously used for
analysis, control or simulation purposes
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Example 1: inverted pendulum system

Example: Segway, Gyroskate, Self balancing scooter ...
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Example 1: inverted pendulum system

Non linear mechanical system:
• Two natural equilibria.
• Control: insure Θ = 0
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Example 2: Nanotweezer for DNA manipulation

!! !!!

Introduction
Biocharacterizations on DNA

Control of tweezers
Conclusions

Single molecule techniques
Silicon nanotweezers for DNA experiments

Design of the silicon nanotweezers

[Yamahata2008]

lafitte@iis.u-tokyo.ac.jp PhD defense (Nicolas LAFITTE) 11 / 57
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Example 2: Nanotweezer for DNA manipulation
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Example 3: Active skin for vibro-acoustic control

Enfin la troisième equation est une relation thermodynamique qui relie la pres-
sion à la masse volumique:

dp

dρ
=

1

ρχs
(3)

χs: coefficient de compressibilite adiabatique(Pa−1)

Le coefficient χs est la compressibilite adiabatique, c’est-à-dire que l’on s’interesse
à des variations de pression et de la masse volumique mais sans changement de
température.

2 Energie acoustique
Les paramètres des equations de propagation de l’onde acoustique dans un tube
cf. figure 1, vont nous permettre d’exprimer la densite d’energie acoustique qui
depend à la fois du carre de la pression (energie potentielle) et du carre de la
vitesse (energie cinetique).

Figure 1: Modélisation du système source, tube et membrane.

Equation de propagation faisant intervenir la pression [2, p. 118]:

ρ0χs
d2p

d2t
−∆p = 0 (4)

Equation de propagation faisant intervenir la vitesse vibratoire [3]:

ρ0χs
d2v

d2t
−∆v = 0 (5)

L’équation de propagation (en Pression) en coordonnés cartésiennes (2D):

ρ0χs
d2p

d2t
− d2p

d2x
− d2p

d2y
= 0 (6)

2

d
dt

[
θ
Γ

]
=

 0 −−−→grad

− div 0




1
ρ0

0

0 1
χs


θ

Γ


2-D case:

• 2-D wave equation
• Non linear finite dimensional system

: loudspeakers/microphones
• Power preserving interconnection

Toward a more complex actuation system with elastodynamic components
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Example 4: Adsorption process

Parcours

Activités
d’enseignement

Activités de
recherche
•Motivation
•Développements
théoriques

•Projets -
Encadrements
- Publications

Projets
d’intégration

Candidature au Poste de Professeur des Universités PU 61 - 0843, 2008 ENSMM p. 9/15

Procédé d’adsorption par modulation de pression (A. Baaiu PHD)

Objectif : séparation par adsorption

(coll. IFP)

A

B

A B

B

! Système hétérogène

multi-échelles, régi par

thermodynamique irréversible

! EDP non linéaires

     
Microporous crystal

    Bidisperse
pellet

rp z

rc

L¼25 cm

R    ¼1,24 mm

R   ¼1 µmc

p

Extra granular 
phase

Macropore scale

Micropore scale

R       ¼1 cmint

• Multiscale heterogeneous system.

• Dynamic behavior driven by irreversible thermodynamic laws
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• Multiscale heterogeneous system.

• Considered phenomena:

• Fluid scale: convection, dispersion.
• Pellet scale: diffusion (Stephan-Maxwell).
• Microscopic scale: Knudsen law.
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Example 5: Ionic Polymer Metal Composite
Parcours

Activités
d’enseignement

Activités de
recherche

Projets
d’intégration
•ENSMM
•FEMTO-
ST/AS2M/SAMMI

Candidature au Poste de Professeur des Universités PU 61 - 0843, 2008 ENSMM p. 15/15

! Exemple de projet support: Projet
Franco-Japonais SAKURA

! Mise en oeuvre pratique - Pilote

• Electromechanical system.
• 3 scales : Polymer-electrode interface, diffusion in the polymer, beam bending.
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Toward more complex systems ...

Tokamak nuclear reactor
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Models and Complexity

• A model is always an approximation of reality.
• A model depends on the problem context.
• A model has to be tractable.

Purpose
Derive a mathematical model based on Physics useful for:

• Simulation (model reduction)
• Analysis
• Control design
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Models and Complexity (illustration)
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Remark 3.1 The Hodge star operator ∗ is a linear operator mapping p forms on V to (n− p)
forms i.e. :

∗ : Λp(V ) → Λn−p(V )

In cartesian coordinates, consider the functions g(z) and the 1-form f(z) = g(z)dz then ∗f(z) =
g(z). qL

s and qL being 1-forms, ∗qL
s and ∗qL are 0-forms.

(3) Closure equation associated with the diffusion - We use Knudsen law [19] to present
the diffusion in the adsorbed phase (microporous scale). That is to say we only consider the
friction exerted by the solid on the adsorbed species. So the constitutive relation representing
the diffusion is:

fmic
2 = −Dmic ∗ qL

RT
∗ emic

2 (15)

where Dmic is the diffusion constant.

4 Model reduction based on geometrical properties

4.1 General concept

As previously mentioned, the port based modelling of the adsorption column is based on basic
elements having well defined energetic behavior as already depicted in Figure 3. The dis-
tributed aspect of this port based model is essentially supported by the Dirac structure which
links power exchanges within the spatial domain and through the boundaries. The proposed
discretization method consists in splitting the initial structured infinite dimensional model into
N finite dimensional sub-models (finite elements) with the same energetic behavior (cf Figure 4).
Furthermore, the support functions used for the interpolation of both effort and flow variables
are different to have enough degrees of freedom to guarantee the conservation of the structural
properties.
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Figure 4: Principle of the spatial discretization

The interconnection between these sub-models is done using the power conjugate boundary
port variables. They correspond to the energy flowing across the boundary of one submodel to
the boundary of the next sub-model. To each submodel is associated the same generic structure
(and consequently parts of the global mass and energy balances) as the global structure, the
difference lying in the fact that submodels are finite dimensional i.e. the Dirac structure Dab

on Figure 4 is finite dimensional and the reduced effort and flow variables (eab, fab) are no more
spatially distributed.

For simplicity reasons superscript mic will be omitted in the remaining of the section. Let
us now explain the reduction scheme.
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Finite difference with N=10
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Structural method N=10
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Port Hamiltonian framework
Standard Hamiltonian equations for a mechanical system

Hamiltonian formulation was introduced in 1833 by William Rowan
Hamilton.

Hamiltonian system

(open)

q̇ = +
@H

@p
(q, p)

ṗ = �@H

@q
(q, p)

+ B(q)f

e = B(q)T q̇

H(p, q) = Hamiltonian, total energy of the system
p = vector of generalized momenta
q = generalized configuration coordinates

B(q)f = external generalized forces resulting from the input f .

1833 - W. R. Hamilton

{
q̇ = + ∂H

∂q (q, p)

ṗ = − ∂H
∂p (q, p)

• q vector of generalized coordinates.

• p vector of generalized momenta.

• H(q, p) Hamiltonian function, total energy.

Port Hamiltonian systems
Class of non linear dynamic systems derived from an extension to open physical
systems (1992) of Hamiltonian and Gradient systems. This class has been generalized
(2001) to distributed parameter systems.

x(t) :

{
ẋ = (J(x)− R(x)) ∂H(x)

∂x + B(x)u
y = B(x)T ∂H(x)

∂x

x(t , z) :

 ẋ = (J (x)−R(x)) δH(x)
δx(

f∂
e∂

)
= δH(x)

δx |∂

• Central role of the energy.
• Additional information coming from the geometric structure.
• Multi-physic framework.
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Finite dimensional example ...
Let consider the mass spring damper system:

	

F	 F	System	
y	u	

f	

k	

M	

q	

From the second Newton’s law:

Mq̈ = −kq − f q̇ + F

which is usually treated using the canonical state space representation:(
q̇
q̈

)
=

(
0 1
− k

M −f

)(
q
q̇

)
+

(
0
1

)
F

An alternative representation consist in choosing the energy variables (extensives
variables) as state variables i.e (q, p = Mq̇)(

q̇
ṗ

)
=

(
0 1
−1 −f

)
︸ ︷︷ ︸

J−R

(
kq
q̇

)
︸ ︷︷ ︸
∂qH

+

(
0
1

)
︸ ︷︷ ︸

B

F

with H(q, p) = 1
2

(
kq2 + 1

M p2
)

Defining y s.t.:
(

q̇
ṗ

)
=

(
0 1
−1 −f

) (
∂qH(q, p)
∂pH(q, p)

)
+

(
0
1

)
F

y =
(

0 1
) (

∂qH(q, p)
∂pH(q, p)

)
dH
dt

=
∂H
∂x

T dx
dt

=
∂H
∂x

T
(J − R)

∂H
∂x

+
∂H
∂x

T
Bu ≤ yT u
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Back to the modeling

The previous model can be written from the interconnection of a subset of basic
mechanical elements:

• A moving inertia.
• A spring.
• A damper.
• A source and some interconnection relations.

Structured modeling
Each element is characterized by a set of power conjugated variables, the flow
variables and the effort variables (intensive variables). The state variable is derive from
the time integration of the flow variables (extensive variables). When the component is
purely dissipative there is no associated state variable.
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Moving inertia

Set of power conjugated variables:
• Flow variable: Force

dp
dt

= F

• Effort variable: velocity

vi (p) =
1
m

p

State variable and energy
• Extensive variable: kinetic momentum p
• Energy

E(p) =
1
2

p2

m

!

!
XS1! XS2!

K!

Vd1! Vd2!

M! F!

Xi1!

F! F!
F!F!

f!
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Spring

Set of power conjugated variables:
• Flow variable: Velocity

dq
dt

= vs

• Effort variable: Force

F (q) = kq

State variable and energy
• Extensive variable: position q
• Energy

E(q) =
1
2

kq2

!

!
XS1! XS2!

K!

Vd1! Vd2!

M! F!

Xi1!

F! F!
F!F!

f!
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Damper

Set of power conjugated variables:
• Flow variable: Velocity

vd

• Effort variable: Force

F = fvd

Dissipated (co)energy:

D(vd ) = fv2
d

!

!
XS1! XS2!

K!

Vd1! Vd2!

M! F!

Xi1!

F! F!
F!F!

f!
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Transformers and sources

Power preserving transformations:

• Relation between velocities

v2 = nv1

• Relation between forces

F1 = nF2

!
!

!

!

!
!
!
!

!

!
!

!
!

!
!
!
! !
!
!
!
!

Vd1! Vd2!

M! F!

Xi1!

F! F!f!

Storage!

!
Interconnection!

D 

!

Dissipation!

!

!
fc!

ec!

fr!

er!

ep!fp!

! !

Interactions! Interactions!
Interactions:!Actuation!+!Measurement!

Dynamic!system!
Physical!laws,!data!
Mathematical!Model!

!
XS1! XS2!

K! F!F!

u!

R!i!

C
R!

i!

u!

L
R!

C
R!

i! R!

e! L!

F2,!v2!
F1,!v1!

There exist different kind of sources
• Velocity sources

v(t) = vs(t)

• Forces sources,
F (t) = Fs(t)
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Interconnection

When two or more mechanical subsystems are interconnected one can write at the
interconnection point:

• Equality of the velocities,
vd = vs = vi = v

• Forces balance,
Fi + Fs + Fd = F
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Back to the example

	

F	 F	System	
y	u	

f	

k	

M	

q	

• Equality of the velocities,
vd = vs = vi = v

• Forces balance,
Fi + Fs + Fd = F

States variables: (x p)T

dq
dt = vs = v
dp
dt = F − Fs − Fd = F − kq − fv

(
dq
dt
dp
dt

)
=

(
0 1
−1 −f

)(
kq
v

)
+

(
0
1

)
F
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Port based modeling of physical systems

Port Hamiltonian formulation
The idea is to generalize what has been proposed for mechanical and electrical
systems to other class of systems.

Why ?
• We have pointed out some common properties: storage, dissipation and

transformation.
• Engineering systems are a combination of subsystems related to possible

different physical domains and interconnection has to be consistent. See for
example Adsorption processes.

• Decomposition in basic elements helps in modeling of complex dynamic systems
(coming from different areas).

• Modeling is attached to the notion of graph.
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Port based modeling of physical systems

Much more fundamental reasons:

• Central role of the energy can be used for control purposes. Lyapunov based
approaches.

• More information are taken into account in the model through symmetries.

• The model is a knowledge based model that takes the non linearities and the
distributed aspects into account.
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Generalized Bond Graph

Decomposition in basic elements is linked to Generalized Bond Graph (Paytner,
Breedveld):

• Systems are decomposed in elements with specific energetic behavior: storage,
dissipation and transformation.

• Each element is characterized by a pair of power conjugated variables: the flow
variables f ∈ F and the effort variables e ∈ E . The associated power port is given
by:

P = f T e
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Port based modeling

!

!
XS1! XS2!

K! F!F!

Vd1! Vd2!

M! F!

Xi1!

F! F!f!

Storage!

!
Interconnection!

D 

!

Dissipation!

!

!
fc!

ec!

fr!

er!

ep!fp!

F = Fc ×FR ×Fp and E = Ec × ER × Ep

29 / 102



Dynamic relations : storage element

In case of storage elements:
• The state variable x is the extensive variable of Thermodynamics. It is linked to

the flow variables through the balance equation:

dx
dt

= −fc

• The effort variable is linked to the energy variable through the relation:

ec = ec(x) =
dE
dx

• The Energy balance is given by

dE
dt

=

(
dE
dx

)T (dx
dt

)
= −eT

c fc
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Dissipation

In the case of dissipation:
er = −e(f ); f = fr

or
fr = −f (e); e = er

Such that
eT f (e) ≥ 0, e(f )T f ≥ 0

Examples:
u = Ri, D = uT i = Ri2

F = f ẋ , D = ẋF = f ẋ2

Then

eT
R fR ≤ 0
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Interconnexion

• 1 Junction (flow junction):
• Equality of effort variables
• Balance on the flow variables

Example: Kirchhoff’s voltage law
• 0 Junction (flow junction):

• Equality of flow variables
• Balance on the effort variables

Example: Kirchhoff’s current law
• Ideal transformer ”TF”:(

e1
f2

)
=

(
0 n
n 0

)(
f1
e2

)
, eT

1 f1 = eT
2 f2

• Ideal gyrator ”TF”:(
e1
e2

)
=

(
0 n
n 0

)(
f1
f2

)
, eT

1 f1 = eT
2 f2
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Interconnection structure and power balance

!

!
XS1! XS2!

K! F!F!

Vd1! Vd2!

M! F!

Xi1!

F! F!f!

Storage!

!
Interconnection!

D 

!

Dissipation!

!

!
fc!

ec!

fr!

er!

ep!fp!

The power balance is given by:

eT
c fc + eT

R f T
R + eT

p fp = 0

And
dE
dt

=

(
dE
dx

)T dx
dt

= −eT
c fc = eT

R f T
R + eT

p fp

and then
E(t) = E(0) +

∫
t
eT

R f T
R dt︸ ︷︷ ︸

dissipated energy

+

∫
t
eT

p fpdt︸ ︷︷ ︸
exchanged energy
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Physical domain flow f ∈ F effort e ∈ E state
potential translation velocity force displacement
kinetic translation force velocity momentum
potential rotation angular velocity torque angle
kinetic rotation torque angular velocity angular momentum
electric current voltage charge
magnetic voltage current flux linkage
potential hydraulic volume flow pressure volume
kinetic hydraulic pressure volume flow flow momentum
chemical molar flow chemical potential number of moles
thermal entropy flow temperature entropy
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Exercice

Propose a port Hamiltonian model of the DC motor

J

R

L

f

u

i
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Dirac structures and Port Hamiltonian systems

To summarize, the overall system is defined from pairs of flow variables, effort variables
and state variables x . They are made up with:

• Energy storing elements:

fc = −
dx
dt
, ec =

∂E
∂x

• Power dissipating elements

R(fR , eR) = 0, eT
R fR ≥ 0

• Power preserving transformers, gyrators.
• Power preserving junctions.

⇒ Interconnexion structure = Dirac structure
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Geometric structure

Dirac structure
A constant Dirac structure on a finite dimensional space V is subspace

D ⊂ V × V∗

such that

1. eT f = 0 for all (f , e) ∈ D
2. dimD = dimV

For any skew-symmetric map J : V∗ → V its graph {(f , e) ∈ V × V∗|f = Je} is a Dirac
structure.
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Geometric structure

Dirac structure 2
A constant Dirac structure on a finite dimensional space V is subspace

D ⊂ V × V∗

such that
D = D⊥

where ⊥ denotes orthogonal complement with respect to the bilinear form�,�
defined as:

� (f1, e1) , (f2, e2)�= 〈e1|f2〉+ 〈e2|f1〉

with 〈e|f 〉 = eT f the natural power product.
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Geometric structure

Port Hamiltonian system
The dynamical system defined by DAEs such that:

(fc , ec , fp, eP) ∈ D, t ∈ R

with fc = ∂E
∂

ec = ∂E
∂

is called port Hamiltonian system.
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Infinite dimensional case

In what follows we focus on boundary controlled systems. In the general case, port
Hamiltonian systems have been extended to distributed parameter systems by the use
of differential geometry:

• Energy variables αp and αq are p and q differential forms defined on an
n-dimensional manifold Z (with boundary ∂Z ).

• H :=
∫

Z H ∈ R
• Port Hamiltonian system is defined by:(

− ∂αp
∂t

− ∂αq
∂t

)
=

(
0 (−1)r d
d 0

)( δH
δp
δH
δq

)
(

f∂
e∂

)
=

(
0 1

−(−1)n−q 0

)( δH
δp |∂
δH
δq |∂

)
The main advantage of such formulation is that it is not depending on coordinates,
applicable for nD systems.
In order to apply some functional analysis tools we focus on the 1D linear case.
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Example 1 : the vibrating string

Let consider a string of length [a, b]:

!

!"
#"

u(t,z) 

The classical modelling is based on the wave equation : Newton’s law + Hooke’s law
(restoring force proportional to the deformation)

∂2u(z, t)
∂t2

=
1

µ(z)

∂

∂z

(
T (z)

∂u(z, t)
∂z

)
The structure of the model is not apparent. How to choose the boundary conditions ???
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Example 1 : the vibrating string

Let consider a string of length [a, b]:

!

!"
#"

u(t,z) 

The classical modelling is based on the wave equation : Newton’s law + Hooke’s law
(restoring force proportional to the deformation)

∂2u(z, t)
∂t2

=
1

µ(z)

∂

∂z

(
T (z)

∂u(z, t)
∂z

)
The structure of the model is not apparent. How to choose the boundary conditions ???

Usually: x =

[
u
u̇

]
→
[

u̇
ü

]
=

[
0 1

1
µ(z)

∂
∂z

(
T (z) ∂.

∂z

)
0

][
u
u̇

]
first order diff

equation in time
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Vibrating string

Let choose as state variables the energy variables:

• the strain ε = ∂u(z,t)
∂z

• the elastic momentum p = µ(z)v(z, t)

The total energy is given by : H(ε, p) = U(ε) + K (p)

• U(ε) is the elastic potential energy:

U(ε) =

∫ b

a

1
2

T (z)

(
∂u(z, t)
∂z

)2
=

∫ b

a

1
2

Tε(z, t)2

where T (z) denotes the elastic modulus.
• K (v) is the kinetic energy:

K (p) =

∫ b

a

1
2
µ(z)v (z, t)2 =

∫ b

a

1
2

1
µ(z)

p2(z, t)

where µ(z) denotes the string mass.
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Example 1 : the vibrating string

From the conservation laws:

∂

∂t

(
ε
p

)
+

∂

∂z

(
Nε
Np

)
= 0

The vector of fluxes β may be expressed in term of the generating forces :(
Nε
Np

)
=

(
0 −1
−1 0

)
︸ ︷︷ ︸

(
δH
δε
δH
δp

)
︸ ︷︷ ︸ =

(
0 −1
−1 0

)(
σ(z, t)
v(z, t)

)
canonical generating

interdomain coupling forces

where v(z, t) is the velocity and σ(z, t) = T (z)ε(z, t) the stress. Consequently

∂

∂t

(
ε
p

)
= −

∂

∂z

(
0 −1
−1 0

)( δH
δε
δH
δp

)
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Example 1 : the vibrating string

From the conservation laws:

∂

∂t

(
ε
p

)
+

∂

∂z

(
Nε
Np

)
= 0

The vector of fluxes β may be expressed in term of the generating forces :(
Nε
Np

)
=

(
0 −1
−1 0

)
︸ ︷︷ ︸

(
δH
δε
δH
δp

)
︸ ︷︷ ︸ =

(
0 −1
−1 0

)(
σ(z, t)
v(z, t)

)
canonical generating

interdomain coupling forces

where v(z, t) is the velocity and σ(z, t) = T (z)ε(z, t) the stress.

PDEs:

∂

∂t

(
ε
p

)
=

(
0 ∂

∂z
∂
∂z 0

)( δH
δε
δH
δp

)
⇔

∂2u(z, t)
∂t2

=
1
c2

∂2u(z, t)
∂z2

if c = cte

+BC

44 / 102



Example 1: the vibrating string
Underlying structure:

∂

∂t

(
ε
p

)
︸ ︷︷ ︸ =

(
0 ∂

∂z
∂
∂z 0

)
︸ ︷︷ ︸

(
T (z) 0

0 1
µ(z)

)(
ε
p

)
︸ ︷︷ ︸

f J = matrix e = driving
differential operator force

Hamiltonian operator J is skew-symmetric only for function with compact domain
strictly in Z :∫ b

a

(
e1 e2

)
J
(

e′1
e′2

)
+
(

e′1 e′2
)
J
(

e1
e2

)
=
[
e1e′2 + e2e′1

]b
a

Power balance equation :

d
dt H(ε, p) =

∫ b
a

(
δH
δε

∂ε
∂t + δH

δp
∂p
∂t

)
dz

=
∫ b

a

(
δH
δε

∂
∂z

δH
δp + δH

δp
∂
∂z

δH
δε

)
dz =

[
δH
δε

δH
δp

]b

a

If driving forces are zero at the boundary, the total energy is conserved, else there is a
flow of power at the boundary. Define two port boundary variables as follows :(

f∂
e∂

)
=

(
δH
δε
δH
δp

)
|a,b
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Example 1: the vibrating string

The linear space D 3 (f1, f2, e1, e2, f∂ , e∂)

•
(

f1
f2

)
=

(
0 ∂

∂z
∂
∂z 0

)(
e1
e2

)
•
(

f∂
e∂

)
=

(
e1
e2

)
|a,b

defines a Dirac structure:D = D⊥ with respect to the pairing :∫ b

a
e1f1dz +

∫ b

a
e2f2dz − f T

∂ e∂

Port Hamiltonian system (
∂

∂t
α,
δH
δα

, f∂ , e∂

)
∈ D
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Example 1: the vibrating string

The linear space D 3 (f1, f2, e1, e2, f∂ , e∂)

•
(

f1
f2

)
=

(
0 ∂

∂z
∂
∂z 0

)(
e1
e2

)
•
(

f∂
e∂

)
=

(
e1
e2

)
|a,b

defines a Dirac structure:D = D⊥ with respect to the pairing :∫ b

a
e1f1dz +

∫ b

a
e2f2dz − f T

∂ e∂

Port Hamiltonian system (
∂

∂t
α,
δH
δα

, f∂ , e∂

)
∈ D

dH
dt

= f T
∂ e∂
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The lossless transmission line

!

i(t,z)'

v(t,z)'

q(z,t),'Φ(z,t)'

Consider an ideal lossless transmission line with spatial domain Z = [a, b] ⊂ R. There
are two conserved variables:

• the charge on the interval Z : Q(a,b)(t) =
∫ b

a q(t , z)dz where q(t , z) denotes the
charge density,

• the flux on the interval Z : Φ(a,b)(t) =
∫ b

a φ(t , z)dz where φ(t , z) denotes the flux
density.

Then q(t , z) and φ(t , z) are the two extensive variables that will be used for the
modeling.

47 / 102



The lossless transmission line
Let consider an infinitesimal piece of the transmission line:

!

i(t,z)'

v(t,z)'

q(z,t),'Φ(z,t)'

z'

!
z+dz'

!
One can write the following 2 conservation laws in differential form:

• conservation of charge:
d
dt

q(t , z) = −
∂

∂z
i(t , z) (1)

where i(t , z) denotes the current at z
• conservation of flux:

d
dt
φ(t , z) = −

∂

∂z
v(t , z) (2)

where v(t , z) denotes the voltage at z

48 / 102



The lossless transmission line

The electromagnetic properties gives the two closure equations for the functions i(t , z)
and v(t , z):

• the current is given by:

i(t , z) =
φ(t , z)

L(z)
(3)

where L(z) denotes the distributed inductance of the line
• the voltage is given by:

v(t , z) =
q(t , z)

C(z)
(4)

where C(z) denotes the distributed capacitance of the line

and the total electromagnetic energy of the system can be written:

H =

∫ b

a
H(q, φ)dz =

1
2

∫ b

a

(
q2(t , z)

C(z)
+
φ2(t , z)

L(z)

)
dz (5)
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The lossless transmission line

The preceding closure equations may be written in matrix form:(
i(t , z)
v(t , z)

)
=

(
0 1
1 0

)( δH(q,φ)
δq

δH(q,φ)
δφ

)
(6)

where H(q, φ) =
∫ b

a H(q, φ)dz and H(q, φ) denotes the electromagnetic energy
density:

H(q, φ) =
1
2

(
q2(t , z)

C(z)
+
φ2(t , z)

L(z)

)
(7)
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The lossless transmission line

Combining the conservation laws and the closure equations one obtains the
Hamiltonian system:

∂

∂t

(
q
φ

)
= J

(
δH(q,φ)
δq

δH(q,φ)
δφ

)
(8)

where J is a formally skew symmetric differential operator defined as:

J =

(
0 − ∂

∂z
− ∂
∂z 0

)
(9)
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Take two effort densities e(t , z) and e′(t , z) and compute their bracket with respect to
J :

∫ b

a

(
eq , eφ

)
J
(

e′q
e′φ

)
dz = −

∫ b

a

(
eq

∂

∂z
e′φ + eφ

∂

∂z
e′q

)
dz

=

∫ b

a

(
e′q

∂

∂z
eφ + e′φ

∂

∂z
eq

)
dz −

[
e′q eφ + e′φ eq

]1

0

= −
∫ b

a

(
e′q , e

′
φ

)
J
(

eq
eφ

)
dz −

[
e′q eφ + e′φ eq

]b

a

We can see that it is skew symmetric for densities that vanish at the boundary!
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The lossless transmission line

The resulting port-Hamiltonian system is given by the telegraph equations(
∂Q
∂t
∂ϕ
∂t

)
=

(
0 − ∂

∂z
− ∂
∂z 0

)(
v
i

)
together with the boundary variables

f a
∂ (t) = v(t , 0), f b

∂ (t) = v(t , 1)
ea
∂(t) = i(t , 0), eb

∂(t) = −i(t , 1)

The resulting energy-balance is

dH
dt

= f T
∂ e∂ = −i(t , 1)v(t , 1) + i(t , 0)v(t , 0),
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Considered class of systems

We first consider lossless systems defined on 1-D spatial domain [a, b] by the PDE:

dx
dt

(t , z) = JL(z)x(t , z), x(0, z) = x0(z),

where J is a formally skew symmetric differential operator and L(z) a coercive
operator.

For example

∂

∂t

(
ε
p

)
︸ ︷︷ ︸ =

(
0 ∂

∂z
∂
∂z 0

)
︸ ︷︷ ︸

(
T (z) 0

0 1
µ(z)

)(
ε
p

)
︸ ︷︷ ︸

f J e = L(z)

⇔
f = J e
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Bond space

The system is defined by :
f = J e

and we first consider homogeneous boundary conditions.
• Let the space of flow variables, F , and the space of effort variables,E , be real Hilbert
spaces.
• Define the space of bond variables as B = F × E endowed by the natural inner
product〈

b1, b2
〉

=
〈

f 1, f 2
〉
F

+
〈

e1, e2
〉
E
, b1 =

(
f 1, e1

)
, b2 =

(
f 2, e2

)
∈ B.

In order to define a Dirac structure, let us moreover endow the bond space B with a
canonical symmetric pairing, i.e., a bilinear form defined as follows:〈

b1
, b2
〉

+
=
〈

f 1
, rE,Fe2

〉
F

+
〈

e1
, rF,E f 2

〉
E
, b1 =

(
f 1
, e1
)
, b2 =

(
f 2
, e2
)

∈ B. (10)
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Dirac structure

Denote by D⊥ the orthogonal subspace to D with respect to the symmetric pairing:

D⊥ =
{

b ∈ B|
〈
b, b′

〉
+

= 0 for all b′ ∈ D
}
. (11)

Definition [?] :

A Dirac structure D on the bond space B = F × E is a subspace of B which is
maximally isotropic with respect to the canonical symmetric pairing, i.e.,

D⊥ = D. (12)

(
f
e

)
∈ D ⇐⇒ Power conservation
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Port Hamiltonian Systems

PHS Definition based on Dirac structure and Hamiltonian function (total energy of
the system).

Definition :
Let B = E × F be the bound space defined above and consider the Dirac structure D
and the Hamilonian function H(x) with x the energy variables. Define the flow
variables, f ∈ F as the time variation of the energy variables and the effort variables
e ∈ E as the variational derivative of H(x). The system

(f , e) =

(
∂x
∂t
,
δH
δx

)
∈ D

is a Port Hamiltonian system with total energy H(x)

Let us now see how to include non homogeneous boundary conditions:

dH
dt

=

∫ b

a

δH
δx

T dx
dt

dz =

∫ b

a

δH
δx

T
J
δH
δx

dz =

[
Ξ

(
δH
δx

)]b

a

〈f , e〉 = f T
∂ e∂
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Extension to non homogeneous BC

 We define the symmetric pairing (not depending on J ) and the port variables
associated with J . ([?])
Let F = E = L2((a, b);Rn)× RnN and define B = F × E with the following canonical
symmetric pairing :〈(

f 1, f 1
∂ , e

1, e1
∂

) (
f 2, f 2

∂ , e
2, e2

∂

)〉
+

= 〈e1, f 2〉L2 + 〈e2, f 1〉L2 − 〈e1
∂ , f

2
∂〉 − 〈e

2
∂ , f

1
∂〉,

Definition :
Let B = E × F be the bound space defined above and consider the Dirac structure D
and the Hamilonian function H(x) with x the energy variables. Define the flow
variables, f ∈ F as the time variation of the energy variables and its extension to the
boundary and the effort variables e ∈ E as the variational derivative of H(x) and its
extension to the boundary. The system

((f , f∂) , (e, e∂)) =

((
∂x
∂t
, f∂

)
,

(
δH
δx

, e∂

))
∈ DJ

is a Port Hamiltonian system with total energy H(x)
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Parametrization of 1D differential operators

Parametrization ([?, ?]):

J e =
N∑

i=0

P(i)
d i e
dz i

(z) z ∈ [a, b] ,

where e ∈ HN ((a, b);Rn) and P(i), i = 0, . . . ,N, is a n × n real matrix with PN non
singular and Pi = PT

i (−1)i+1. Let define

Q =


P1 P2 · · · PN
−P2 −P3 · · · 0

... · · ·
. . .

...
(−1)N−1PN 0 · · · 0


Back to the Vibrating string

∂

∂t

(
ε
p

)
︸ ︷︷ ︸ =

(
0 1
1 0

)
︸ ︷︷ ︸ ∂

∂z

(
T (z) 0

0 1
µ(z)

)(
ε
p

)
︸ ︷︷ ︸

f P1 e

,Q = P1
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Port Variables

Definition :
The port variables (e∂ , f∂) ∈ RnN associated with J are defined by :

(
f∂
e∂

)
= Rext



e(b)
...

dN−1e
dzN−1 (b)

e(a)
...

dN−1e
dzN−1 (a)


, Rext =

U
√

2

(
Q −Q
I I

)

where U is a unitary matrix such that:

UT ΣU = Σ with Σ =

(
0 I
I 0

)
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Port Variables

Back to the Vibrating string

∂

∂t

(
ε
p

)
︸ ︷︷ ︸ =

(
0 1
1 0

)
︸ ︷︷ ︸ ∂

∂z

(
T (z)ε

1
µ(z)

p

)
︸ ︷︷ ︸

f P1 e

,Q = P1

The boundary port variables are defined by:

(
f∂
e∂

)
=

1
√

2

(
P1 −P1
I I

)(
e(b)
e(a)

)
=

1
√

2


p(b)
µ(b)
− p(a)
µ(a)

T (b)ε(b)− T (a)ε(a)
T (a)ε(a) + T (b)ε(b)

p(a)
µ(a)

+ p(b)
µ(b)


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Dirac structure

Theorem :
The subspace DJ of B defined as

DJ =




f
f∂
e

e∂

 ∣∣∣ e ∈ HN ((a, b); Rn),J e = f ,
(

f∂
e∂

)
= Rext


e(b)

.

.

.

∂
N−1
z e(a)




is a Dirac structure, that means that D = D⊥.
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Extension to systems with dissipation

Let us extend the previous results to systems defined by:

dx
dt

(t , z) = (J − GRSG∗R)L(z)x(t , z), x(0, z) = x0(z),

m(
f
fp

)
= Je

(
e
ep

)
=

(
J GR
−G∗R 0

)(
e
ep

)
with ep = Sfp where S is a coercive operator(

f
fp

)
∈ F ,

(
e
ep

)
∈ E and E = F = L2((a, b),Rn)× L2((a, b),Rn)

Covers models of: beams, wave, plates, (with or without damping) and also systems of
diffusion/convection, chemical reactors ...
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A simple example: the heat equation

1D Heat conduction is usually known on the following form:

∂T (z, t)
∂t

= D
∂2

∂z2
(T (z, t))

but is in fact derived from balance equation on the energy i.e:

∂ (cv T (z, t))

∂t
= −

∂

∂z

(
−λ

∂T (z, t)
∂z

)
with cv constant and positive. This equation can be written:(

∂
∂t T (z, t)

fp

)
=

(
0 ∂

∂z
∂
∂z 0

)(
T (z, t)

ep

)
with ep =

λ

cv
fp

In this case:
J = 0, GR =

∂

∂z
, S =

λ

cv
> 0
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Parametrization of the extended operator

Je is formally skew symmetric and can be parametrized by:

Jeẽ = ΣN
1 P̃k

∂k

∂zk
ẽ with P̃k = (−1)k+1P̃T

k

In this case P̃N can be not full rank and the bilinear product is defined on quotient
space. The extended boundary port variables are defined by:(

f̃∂
ẽ∂

)
=

1
√

2

(
Q̃1 −Q̃1
I I

)(
MQ 0
0 MQ

)(
ẽ(b)
ẽ(a)

)
M spanning the column of Q̃, Q̃1 = MT Q̃M and MQ = (MT M)−1MT with

Q̃ =


P̃1 P̃2 · · · P̃N

−P̃2 −P̃3 · · · 0
... · · ·

. . .
...

(−1)N−1P̃N 0 · · · 0


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Back to the vibrating string

We consider now the vibrating string with structural damping (dissipation of the form
ks

∂
∂z

(
p
µ

)
is given by a system of 2 conservation laws:

∂

∂t

(
ε
p

)
=

∂

∂z

( p
µ

T ε+ks
∂
∂z

(
p
µ

) ) =

(
0 ∂

∂z
∂
∂z

(
∂
∂z ks

∂
∂z

) ) (
δH0
δε
δH0
δp

)

The extended Hamiltonian operator is:

Je =

(
J GR
−G∗R 0

)
=

 0 ∂
∂z 0

∂
∂z 0 + ∂

∂z
0 + ∂

∂z 0

 =

 0 1 0
1 0 1
0 1 0

 ∂

∂z

and
S = ks > 0
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Boundary port variables

A matrix M spanning the columns of P1 can be chosen as:

P̃1 =

 0 1 0
1 0 1
0 1 0

 , M =
1
2

 1 0
0 2
1 0


then Q̃1 =

(
0 1
1 0

)
, and MQ =

(
1 0 1
0 1 0

)
and ẽ =

(
T ε+ eR
µ−1p

)
It thus follows that the port-variables become:

(
f̃∂
ẽ∂

)
=

1
√

2

(
Q̃1 −Q̃1
I I

)(
ẽ(b)
ẽ(a)

)
=


p
µ

(b)− p
µ

(a)

(T ε+ eR) (b)− (T ε+ eR) (a)
(T ε+ eR) (a) + (T ε+ eR) (b)

p
µ

(a) + p
µ

(b)


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C0 Semi group

In finite dimension, linear systems can be described using first-order differential
equation: {

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

with solutions expressed through:

x(t) = eAt x(0) +

∫ t

0
eA(t−τ)Bu(τ)dτ

The idea of semigroups ([?, ?]) is to generalize the notion of eAt to abstract systems
defined on Hilbert space by:

ẋ(z, t) = Ax(z, t), x(z, t) ∈ D(A), x(z, 0) = x0

In what follows the semigroup associated to the generator A is noted T (t).
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C0 Semigroups

Definition of C0 Semi group

Let X be a Hilbert space. (T (t))t≥0 is called a strongly continuous semigroup (or C0)
semigroup if the following Holds:

1. For all t ≥ 0, T (t) is a bounded linear operator on X , i.e., T (t) ∈ L(X);

2. T (0) = I;

3. T (t + τ) = T (t)T (τ) for all t , τ ≥ 0;

4. For all x0 ∈ X , we have that ‖T (t)x0 − x0‖X converges to zero, when t ↓ 0 i.e.
t 7→ T (t) is strongly continuous at zero.

Even if it has been defined for infinite dimensional systems it can be used in Rn. In this
case T (t) = eAt . Properties can be checked using

T (t)x =
∞∑

n=1

eλn t 〈x , φn〉φn
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C0 Semi group

Properties of C0 Semi group

A strongly continuous semigroup (T (t))t≥0 on X has the following properties:

1. ‖T (t)‖ is bounded on every finite sub-interval of [0,∞);

2. The mapping t 7→ T (t) is strongly continuous on the interval [0,∞);

3. For all x ∈ X we have that 1
t

∫ t
0 T (s)xds → x as t ↓ 0;

4. If ω0 = inf
(

1
t log‖T (t)‖

)
then ω0 = lim

(
1
t log‖T (t)‖

)
<∞

5. For every ω > ω0, ∃ Mω such that for every t ≥ 0 we have ‖T (t)‖ ≤ Mωeωt .

Definition of infinitesimal generator

Let (T (t))t≥0 be a C0-semigroup on the Hilbert space X . If the following limit exists

lim
t↓0

T (t)x0 − x0

t
⇒ x0 ∈ D(A)

we define A the infinitesimal generator of the strongly continuous semigroup by
Ax0 = lim

t↓0
T (t)x0−x0

t
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C0 Semi group

Theorem

Let (T (t))t≥0 be a strongly continuous semigroup on X with infinitesimal generator A.
Then the following results hold:

1. For x0 ∈ D(A) and t ≥ 0 we have T (t)x0 ∈ D(A);

2. d
dt (T (t)x0) = AT (t)x0 = T (t)Ax0 for x0 ∈ D(A), t ≥ 0;

3. A is a closed linear operator;

It means that for x0 ∈ D(A) the function x(t) = T (t)x0 is a solution of the abstract
differential equation:

ẋ(t) = Ax(t), x(0) = x0 (13)

Definition

A differentiable function x : [0,∞)→ X is called classical solution of (13) if ∀t ≥ 0 we
have x(t) ∈ D(A) and equation (13) is satisfied.

Lemma

Let A be the infinitesimal generator of C0 semigroup (T (t))t≥0. Then for every
x0(t) ∈ D(A) the map t 7→ T (t)x0 is the unique classical solution of (13).
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C0 Semi group

Definition

Let (T (t))t≥0 be a C0 semigroup on X . Then (T (t))t≥0 is called a contraction
semigroup if ‖T (t)‖ ≤ 1 and unitary semigroup if ‖T (t)‖ = 1 for every t ≥ 0.

Definition

A linear operator A : D(A) ⊂ X → X is called dissipative if

Re〈Ax , x〉 ≤ 0, x ∈ D(A)

Lumer-Phillips Theorem

Let A be a linear operator with domain D(A) on X . Then A is the infinitesimal generator
of a contraction semigroup (T (t))t≥0 on X if and only if A is dissipative and
ran(I − A) = X

Theorem

Let A be a linear, densely defined and closed operator on X . Then A is the infinitesimal
generator of a contraction semigroup (T (t))t≥0 on X if and only if A and A∗ are
dissipative.
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Port Hamiltonian systems

Port Hamiltonian systems

Let W be a n × 2n real matrix. If W has full rank and satisfies W ΣW> ≥ 0
(W ΣW> = 0), then the operator Ax = P1(∂/∂z)(Lx) + (P0 − G0)Lx with domain

D(A) =

{
Lx ∈ H1(a, b;Rn)

∣∣∣ [ f∂,Lx (t)
e∂,Lx (t)

]
∈ ker W

}
generates a contraction semigroup(unitary semigroup) on X .

Sketch of proof

We use the property

〈e,J e〉+ 〈J e, e〉 =
(

f T
∂ eT

∂

)T
Σ

(
f∂
e∂

)
to prove that with D(A) with rank and positivity condition the operator and its adjoint
are dissipative.
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Boundary control systems

We are interested in abstract control systems of the form:

ẋ = A x(t), x(0) = x0,
Bx(t) = u(t), (14)

Definition

The control system 14 is a boundary control system if the following hold:

1. The operator A : D(A)→ X with D(A) = D(A ) ∩ ker(B) and

A x = Ax for x ∈ D(A)

is the infinitesimal generator of a C0 semigroup.

2. There exists an operator B ∈ L(U,X) such that for all u ∈ U we have Bu ∈ D(A ),
A B ∈ L(U,X) and

BBu = u, u ∈ U
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Boundary controlled port Hamiltonian systems

Boundary controlled port Hamiltonian systems

Let W be a n × 2n real matrix. If W has full rank and satisfies W ΣW> ≥ 0, then the
system ∂x

∂t = Ax with Ax = P1(∂/∂z)(Lx) + (P0 − G0)Lx with domain

D(A) =

{
Lx ∈ H1(a, b;Rn)

∣∣∣ [ f∂,Lx (t)
e∂,Lx (t)

]
∈ ker W

}
and input

u(t) = W
[

f∂,Lx (t)
e∂,Lx (t)

]
is a Boundary Control System on X .

Sketch of proof

The operator Ax = P1(∂/∂z)(Lx) + (P0 − G0)Lx with domain D(A) generates a
contraction semigroup on X . It remains to show that ∃B such that BBu = u, u ∈ U
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Boundary controlled port Hamiltonian systems

Boundary controlled port Hamiltonian systems [?]

Let W̃ be a full rank matrix of size n× 2n with
[

W
W̃

]
invertible and let PW ,W̃ be given by

PW ,W̃ =

([
W
W̃

]
Σ

[
W
W̃

]>)−1

=

[
W ΣW> W ΣW̃>

W̃ ΣW> W̃ ΣW̃>

]−1

.

Define the output of the system as the linear mapping C : L−1H1(a, b;Rn)→ Rn,

y = Cx(t) := W̃
[

f∂,Lx (t)
e∂,Lx (t)

]
.

Then for u ∈ C2(0,∞;Rk ), Lx(0) ∈ H1(a, b;Rn), and u(0) = W
[

f∂,Lx (0)

e∂,Lx (0)

]
the

following balance equation is satisfied:

1
2

d
dt
‖x(t)‖2

L =
1
2

[
u(t)
y(t)

]>
PW ,W̃

[
u(t)
y(t)

]
−〈G0Lx(t),Lx(t)〉 ≤

1
2

[
u(t)
y(t)

]>
PW ,W̃

[
u(t)
y(t)

]
.
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Specific cases

Using
W = S (I + V , I − V )

W̃ = S̃ (I − V ,−I − V )

We obtain for:

V = 0


ẋ(t) = J x(t),
u(t) = 1

2 (f∂(t) + e∂(t))

y(t) = 1
2 (f∂(t)− e∂(t))

=⇒

Scattering system:
Boundary control system with
the associated semigroup
a contraction
1
2

d
dt ‖x(t)‖2 = ‖u(t)‖2 − ‖y(t)‖2.

V = I

 ẋ(t) = J x(t)
u(t) = f∂(t)
y(t) = −e∂(t)

=⇒

Impedance passive system
Boundary control system with
the associated semigroup
unitary
1
2

d
dt ‖x(t)‖2 = u(t)T y(t)
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Back to the vibrating string

The PDE is given by:

∂

∂t

(
ε
p

)
︸ ︷︷ ︸ =

(
0 1
1 0

)
︸ ︷︷ ︸ ∂

∂z

(
T (z)ε

1
µ(z)

p

)
︸ ︷︷ ︸

f P1 e

,Q = P1

The boundary port variables are defined by:

(
f∂
e∂

)
=

1
√

2

(
P1 −P1
I I

)(
e(b)
e(a)

)
=

1
√

2


p(b)
µ(b)
− p(a)
µ(a)

T (b)ε(b)− T (a)ε(a)
T (a)ε(a) + T (b)ε(b)

p(a)
µ(a)

+ p(b)
µ(b)


By using the transformation

U =


0 1 1 0
0 −1 1 0
1 0 0 1
1 0 0 −1

 s.t. UT ΣU = Σ
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Back to the vibrating string

One can also choose:

(
f∂
e∂

)
=

1
√

2
U
(

P1 −P1
I I

)(
e(b)
e(a)

)
=

1
√

2


T (b)ε(b)
T (a)ε(a)

p(b)
µ(b)

− p(a)
µ(a)



Impedance passive case:

V = I ⇒ u =
1
√

2

(
T (b)ε(b)
T (a)ε(a)

)
and y =

1
√

2

(
− p(b)
µ(b)

p(a)
µ(a)

)

dH(t)
dt

= y(t)T u(t)
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Systems with dissipation

Let now consider systems with dissipation:

dx
dt

(t , z) = (J − GRSG∗R)Lx(t , z), x(0, z) = x0(z),

m(
f
fp

)
= Je

(
e
ep

)
=

(
J GR
−G∗R 0

)(
e
ep

)
with ep = Sfp where S is a coercive operator(

f
fp

)
∈ F ,

(
e
ep

)
∈ E and E = F = L2((a, b),Rn)× L2((a, b),Rn)
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Systems with dissipation
From geometrical point of view:

fe = Jeee

Je is formally skew symmetric and can be parametrized by:

Jeẽ = ΣN
1 P̃k

∂k

∂zk
ẽ with P̃k = (−1)k+1P̃T

k

In this case P̃N is not full rank and the bilinear product is defined on quotient space.
The extended boundary port variables are defined by:(

f̃∂
ẽ∂

)
=

1
√

2

(
Q̃1 −Q̃1
I I

)(
MQ 0
0 MQ

)(
ẽ(b)
ẽ(a)

)
M spanning the column of Q̃, Q̃1 = MT Q̃M and MQ = (MT M)−1MT with

Q̃ =


P̃1 P̃2 · · · P̃N

−P̃2 −P̃3 · · · 0
... · · ·

. . .
...

(−1)N−1P̃N 0 · · · 0


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BCS

Let W be full rank such that W ΣW T ≥ 0,

dx
dt

(t) = Jex(t)

with input

u(t) = W
(

f̃∂
ẽ∂

)
is a boundary control system. The operator Aext = Je with domain

D(Aext) =

{(
ẽ
ẽr

)
∈
(

HN ((a, b),Rn)
HN ((a, b),Rn)

) ∣∣∣( f̃∂
ẽ∂

)
∈ ker W

}
, (15)

generates a contraction semigroup.
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Balance equation

Let W̃ be full rank such that
(

W
W̃

)
invertible. Let define C : HN ((a, b),R2n)→ R2nN

ast,

Cx(t) := W̃
(

fe,∂(t)
ee,∂(t)

)
(16)

and the output as
y(t) = Cx(t), (17)

then for u ∈ C2((0,∞);R2nN ), x(0) ∈ HN ((a, b),R2n), and Bx(0) = u(0) :

1
2

d
dt
‖x(t)‖2 =

1
2

(
uT (t) yT (t)

)
PW ,W̃

(
u(t)
y(t)

)
, (18)

where

P−1
W ,W̃

=

(
W ΣW T W ΣW̃ T

W̃ ΣW T W̃ ΣW̃ T

)
. (19)
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Dissipative operator

Now the feedback is closed i.e.

f = J e − GRSG∗Re,

The port variables become :

(
gf ,∂
ge,∂

)
= Rext



e(b)
(−SG∗Re)(b)

...
dN−1e
dzN−1 (b)

dN−1(−SG∗R e)

dzN−1 (b)

e(a)
(−SG∗Re)(a)

...
dN−1(−SG∗R e)

dzN−1 (a)



, (20)
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Dissipative operator

Consider the operator
A = (J − GRSG∗R)

with domain

D(A) =
{

e ∈ HN ((a, b);Rn)
∣∣∣ SG∗Re ∈ HN ((a, b);Rn), (21)(

gf ,∂
ge,∂

)
∈ ker W

}
. (22)

If W has full rank and satisfies W ΣW T ≥ 0, then A generates a contraction semigroup.
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BCS

Let W be full rank and satisfies W ΣW T ≥ 0, then

dx
dt

(t) = (J − GRSG∗R)x(t) (23)

with input

u(t) = Bx(t) = W
(

gf ,∂(t)
ge,∂(t)

)
(24)

is a boundary control system. Furthermore, the operator A = (J − GRSG∗R) with
domain

D(A) =
{

e ∈ HN ((a, b);Rn)
∣∣∣ SG∗Re ∈ HN ((a, b);Rn), (25)(

gf ,∂
ge,∂

)
∈ ker W

}
. (26)

generates a contraction semigroup.
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Dissipative operator

Let W̃ be full rank such that
(

W
W̃

)
invertible. Define the linear mapping

C : HN ((a, b),R2n)→ R2nN as,

Cx(t) := W̃
(

gf ,∂(t)
ge,∂(t)

)
(27)

and the output as
y(t) = Cx(t), (28)

then for u ∈ C2((0,∞);R2nN ), x(0) ∈ HN ((a, b),R2n), and Bx(0) = u(0) the following
balance equation is satisfied:

1
2

d
dt
‖x(t)‖2 ≤

1
2

(
uT (t) yT (t)

)
PW ,W̃

(
u(t)
y(t)

)
, (29)

where

P−1
W ,W̃

=

(
W ΣW T W ΣW̃ T

W̃ ΣW T W̃ ΣW̃ T

)
. (30)
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Chemical reactor

A

B

A B

B

Let consider a chemical tubular reactor z ∈ [a, b] with reaction A→ B

∂C
∂t

= −
∂

∂z

(
−Da

∂C
∂z

+ vC
)
− k0C + Boundary conditions

where Da > 0 and v is a positive constant.
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Chemical reactor

Let consider a chemical tubular reactor z ∈ [a, b] with reaction A→ B

∂C
∂t

= −
∂

∂z

(
−Da

∂C
∂z

+ vC
)
− kC + Boundary conditions

where Da > 0 and v is a positive constant. By choosing

J = −
∂

∂z
, G =

∂

∂z
+

√
k

Da
, G∗ = −

∂

∂z
+

√
k

Da
, S =

Da

v

(
∂C
∂t
f

)
=

 − ∂
∂z

∂
∂z +

√
k

Da
∂
∂z −

√
k

Da
0

( vC
e

)
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Boundary port variables

(
gf ,∂
ge,∂

)
=

1
√

2


−1 1 1 −1
1 0 −1 0
1 0 1 0
0 1 0 1




vC(b)

Da
∂
∂z C(b)−

√
DakC(b)

vC(a)

Da
∂
∂z C(a)−

√
DakC(a)


Then

(
gf ,∂
ge,∂

)
=

1
√

2


vC(a)− vC(b) + Da

(
∂
∂z C(b)− ∂

∂z C(a)
)
−
√

Dak (C(b)− C(a))

v (C(b)− C(a))
v (C(b) + C(a))

Da

(
∂
∂z C(b) + ∂

∂z C(a)
)
−
√

Dak (C(b) + C(a))


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Dankwert conditions

Usually the boundary conditions for tubular reactors are chosen as Dankwert Boundary
Conditions:

• input total flow is imposed,
• output dispersive flow is equal to zero.

Dankwert conditions can be written as :

vC(t , a)− Da
∂C
∂z

(t , a) = vCin(t), and Da
∂C
∂z

(t , b) = 0, (31)

⇔

(
vCin

0

)
= W

(
gf ,∂
ge,∂

)

W =

√
2

2

 1
√

k0Da
v 1−

√
k0Da

v −1

1 1 +
√

k0Da
v

√
k0Da

v 1

 ,
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Conclusion

One can check that
W ΣW T ≥ 0

iif √
kDa

v
≤

1
2

It means that he system is a Boundary Control System with associated C0 semigroup
unitary or a contraction if and only if the condition is satisfied.

Otherwise it is not a contraction semigroup.
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Conclusion

In this first part we have:

• shown that PDEs are obtained from balances equation on extensives variables
and can be related to power exchanges within the system through geometric
considerations,

• in the 1D case defined:
• the boundary port variables associated to the differential operator J
• Dirac structures on real Hilbert spaces

• parametrized all the boundary port variables for a large class of differential
operators.

• provided some simple conditions (matrix ones) to prove existence of solutions.
• defined BCS.

In what follows we discuss stability and stabilization of boundary controlled port
Halmiltonian systems.
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Thank you for your attention !
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