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Dynamic systems

Modeling and control of (deterministic) dynamic systems

Dynamic system

—
Physical laws, data
/y Mathematical Model \
Interactions Interactions

Interactions: Actuation + Measurement

Two approaches:

Lumped parameters systems, distributed parameters systems.

femtost
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Recent technological progresses and physical knowledges allow to go toward the use
of complex systems:

* Highly nonlinear.
* Involving numerous physical domains and possible heterogeneity.
+ With distributed parameters or organized in network.
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Recent technological progresses and physical knowledges allow to go toward the use
of complex systems:

+ Highly nonlinear.
* Involving numerous physical domains and possible heterogeneity.
+ With distributed parameters or organized in network.

New issue for system control theory

Modeling step is important — the physical properties can be advantageously used for
analysis, control or simulation purposes
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Example 1: inverted pendulum system

Example: Segway, Gyroskate, Self balancing scooter ...
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®
Example 1: inverted pendulum system
Non linear mechanical system:
+ Two natural equilibria.
+ Control: insure © =0
'-é!ntosE 6/102



Example 2: Nanotweezer for DNA manipulation
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Example 2: Nanotweezer for DNA manipulation
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®
Example 3: Active skin for vibro-acoustic control
o - Ji‘ “'?W - ] Anechoic Termination
i'i.‘ I»:Id!h‘b' ';‘"_“’-’;C-"’_“”T'é: ’ //c:;«:;:::_:? D“‘W‘M'”"iz“ -
2-D case:
0 i i 9 o + 2-D wave equation
d [9] _ & ro - Non linear finite dimensional system
dt [ _div 0 0 t r : loudspeakers/microphones

+ Power preserving interconnection

Toward a more complex actuation system with elastodynamic components

8/102
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Example 4: Adsorption process

Extra granular

©00 09,00 O O [eJe]
phase JOQQO OOOOOQ OOOOOC)&OO\;
L%25 cm O

L8082 8558 éJ 5808%000
Rint %41 cm Clo 5300 Po60 f
o Z
Macropore scale Bidisperse
Rp %124 mm pellet
Ic

Micropore scale
R %1 pum

Microporous crystal

* Multiscale heterogeneous system.
* Dynamic behavior driven by irreversible thermodynamic laws
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Example 4: Adsorption process

Extra granular 5 s 0
phase / 08800 Oocoogoggoogépo\;

L1425 cm OOO

02
050 OO

Rint 41 cm %O §0800 O§080§O
—_—

o ) Z
Macropore scale Bidisperse
Rp %124 mm pellet
Ic

Micropore scale
R %1 pum

Microporous crystal

* Multiscale heterogeneous system.
 Considered phenomena:

- Fluid scale: convection, dispersion.
- Pellet scale: diffusion (Stephan-Maxwell).
* Microscopic scale: Knudsen law.

femto-st
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Example 5: lonic Polymer Metal Composite

MmN e )W moE oW W W_m oW

Figure 3. Beam-shapad IPMC actuator

"
Voluge fpply

Crold mlecTode= |

Tamie comdsegve

pobymergel |

O Cascm
G Waser mokeae

+ Electromechanical system.
+ 3 scales : Polymer-electrode interface, diffusion in the polymer, beam bending.
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Toward more complex systems ...

Tokamak nuclear reactor

et pocidel
magneic ield cols outer poloids]
magnetic field coils
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Models and Complexity

» A model is always an approximation of reality.
» A model depends on the problem context.
» A model has to be tractable.

Derive a mathematical model based on Physics useful for:
+ Simulation (model reduction)
» Analysis
+ Control design

-_é:nto-st 12/102

SCIENCES &
TECHNOLOGIES



Models and Complexity (illustration)

Extra granular ®
phase [ ©29950050%,°, 98588 750\
ieen gﬁifﬁ%éﬁﬁg@ﬁ’gg
o] Of
Rptiam (P 96885208 0060
o 2

Macropore scale
R pY41.24mm

b
6% a
Bidisperse
pellet
Ie
0
Microporous crystal

Finite difference with N=10

Micropore scale
R V4T pm

Power flow exchanged with
the following volume

Power flow exchanged with
the previous volume

atial discretization

Figure 4: Principle of the s

Structural method N=10

‘Concentration of component Q: molVolume

0 E:
Time: sec
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40 60
Time: sec
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Port Hamiltonian framework

g = +5(@p
p= -%(a.p

1833 - W. R. Hamilton

* q vector of generalized coordinates.
* p vector of generalized momenta.
* H(q, p) Hamiltonian function, total energy.

SCIENCES &
TECHNOLOGIES

15/102



Port Hamiltonian framework

R * q vector of generalized coordinates.
g = +%a.np) ,
p = (q p) * p vector of generalized momenta.
’ * H(q, p) Hamiltonian function, total energy.

1833 - W. R. Hamilton

Port Hamiltonian systems

Class of non linear dynamic systems derived from an extension to open physical
systems (1992) of Hamiltonian and Gradient systems. This class has been generalized

(2001) to distributed parameter systems.

. aHx) X = (J(x) — R(x))
x(t):{x_(() R(x)) + B(x)u x(t,z):{ ( f5 ) 57{()8

SH(x)
[}

T BH(X

y=B(x) o ) =5

+ Central role of the energy.
+ Additional information coming from the geometric structure.

* Multi-physic framework.
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Finite dimensional example ...
Let consider the mass spring damper system:

—»| System [—P

\4

From the second Newton’s law:

Mg =—-kq—fg+F
which is usually treated using the canonical state space representation:

(5)=(% )(8)-(3)r
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Finite dimensional example ...
Let consider the mass spring damper system:

—»| System [—P

\4

From the second Newton’s law:
Mg=—kq—fg+F

An alternative representation consist in choosing the energy variables (extensives
variables) as state variables i.e (g,p = MQ)

g\ _( 0 1 kg 0
(8)-(5 2)(F)+(%)r
—— e N —
J-R dgH B
with H(q, p) = } (qu + ,%,,pz)
.léznt?.gtv 17 /102




Finite dimensional example ...
Let consider the mass spring damper system:

f
Ly system —p m‘ oM F
k

v

q
From the second Newton’s law:

Mg = —kq— fg+F

Defining y s.t.:

q _ 0o 1 dqH(q, p) 0
(£) = (5 5) () (3)r

dqH(q,p

= 0 1 q
Y ( ) 9pH(q,p)
dH oHTdx o6HT oH oHT
— =" Z="" (U-R)— + — Bu<
G ax d - ox P gty Busyu
17 /102
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Back to the modeling

The previous model can be written from the interconnection of a subset of basic
mechanical elements:

» A moving inertia.

+ A spring.

+ A damper.

+ A source and some interconnection relations.

Structured modeling

Each element is characterized by a set of power conjugated variables, the flow
variables and the effort variables (intensive variables). The state variable is derive from
the time integration of the flow variables (extensive variables). When the component is
purely dissipative there is no associated state variable.

femto-st 19/102
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Moving inertia

Set of power conjugated variables:
+ Flow variable: Force

dp
> _F
dt
- Effort variable: velocity M F
1 o
vi(p) = mP : —-’
State variable and energy o

-+ Extensive variable: kinetic momentum p
+ Energy Xil

(R -:na 20/102




®
Spring
Set of power conjugated variables:

+ Flow variable: Velocity

dg

at =
- Effort variable: Force

F K F

State variable and energy

- Extensive variable: position g Xs1 Xs2
+ Energy
E(q) = ko
q) = ;kq
famto-st
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@
Damper
Set of power conjugated variables:
+ Flow variable: Velocity
Va
. F f : F
- Effort variable: Force : |:E :
F = fuy
Dissipated (co)energy: Va1 Vaz
D(vy) = A3

mm -:na 22/102




[
Transformers and sources
Power preserving transformations:
+ Relation between velocities
F2,v2

Vo = N4 F
1,V1

- Relation between forces l//
Fi = nF,

There exist different kind of sources
+ Velocity sources
v(t) = vs(1)

* Forces sources,
F(t) = Fs(1)

23/102




Interconnection

When two or more mechanical subsystems are interconnected one can write at the
interconnection point:

-+ Equality of the velocities,
Vg =Vs =V =V

+ Forces balance,

I
N

Fi+Fs+Fg=

mm CES & 24/102
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Back to the example

—» System [—»

+ Equality of the velocities,
- Forces balance,

States variables: (x p)”

?:vs:v
P FFo—Fy=F—kq—1v

v

Vg=Vs=Vi=V

Fi+Fs+Fq=F

femto.st
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Port based modeling of physical systems

Port Hamiltonian formulation

The idea is to generalize what has been proposed for mechanical and electrical
systems to other class of systems.

Why ?

» We have pointed out some common properties: storage, dissipation and
transformation.

» Engineering systems are a combination of subsystems related to possible
different physical domains and interconnection has to be consistent. See for
example Adsorption processes.

- Decomposition in basic elements helps in modeling of complex dynamic systems
(coming from different areas).

* Modeling is attached to the notion of graph.

(R CEs & 26/102
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Port based modeling of physical systems

Much more fundamental reasons:

- Central role of the energy can be used for control purposes. Lyapunov based
approaches.

» More information are taken into account in the model through symmetries.

+ The model is a knowledge based model that takes the non linearities and the
distributed aspects into account.
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Generalized Bond Graph

Decomposition in basic elements is linked to Generalized Bond Graph (Paytner,
Breedveld):

- Systems are decomposed in elements with specific energetic behavior: storage,
dissipation and transformation.

- Each element is characterized by a pair of power conjugated variables: the flow
variables f € F and the effort variables e € £. The associated power port is given
by:

P=fTe

(R CEs & 28/102




Port based modeling

fc
Storage _ Interconnection Dissipation
D
€c

fp €p

F=FcxFpxFpand & =E x Ep x &
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Dynamic relations : storage element

In case of storage elements:

+ The state variable x is the extensive variable of Thermodynamics. It is linked to
the flow variables through the balance equation:

ax
X f
dt ¢

-+ The effort variable is linked to the energy variable through the relation:

_dE

e = ec(x) = o

* The Energy balance is given by

- (5) (5) -
dt — \ dx at) ¢
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Dissipation

In the case of dissipation:
er=—e(f); f=1

or
fr=—f(e); e=er

Such that

eTf(e)>0, e()Tf>0
Examples:

u=Ri, D=u"i= RP

F=fx, D= xF = fx®
Then

e;f,q <0

31/102




Interconnexion

+ 1 Junction (flow junction):

+ Equality of effort variables
+ Balance on the flow variables

Example: Kirchhoff’s voltage law
+ 0 Junction (flow junction):

+ Equality of flow variables
- Balance on the effort variables

Example: Kirchhoff’s current law
* |deal transformer "TF”:

et \_ (0 n fi Te _ T
(2)-(2)(4) et

+ Ideal gyrator "TF”:

es \_(0 n fi Te _ T
(3)-(3 §)(1). -
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Interconnection structure and power balance

Storage i Dissipation

The power balance is given by:

elfo +elfl +epfp—0

And
dE (dEN\T dx - e
— = —e, fe = egf, e,
dt (dx) o = Cele=¢rlnt &l
and then
E(t) ) + / mat + / ep foolt
dlsstpated energy  exchanged energy
femto-st
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®
[ Physical domain flowfe 7 efforte e £ state ]

potential translation  velocity force displacement
kinetic translation force velocity momentum
potential rotation angular velocity ~ torque angle
kinetic rotation torque angular velocity angular momentum
electric current voltage charge
magnetic voltage current flux linkage
potential hydraulic volume flow pressure volume
kinetic hydraulic pressure volume flow flow momentum
chemical molar flow chemical potential  number of moles
thermal entropy flow temperature entropy

34/102



Exercice

Propose a port Hamiltonian model of the DC motor

-

(R CEs & 35/102
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Dirac structures and Port Hamiltonian systems

To summarize, the overall system is defined from pairs of flow variables, effort variables
and state variables x. They are made up with:

+ Energy storing elements:
ax OE

fr=——— - =
¢ at’ %= ox

 Power dissipating elements
R(fg,eq) =0, effa >0

» Power preserving transformers, gyrators.
+ Power preserving junctions.

= Interconnexion structure = Dirac structure
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Geometric structure

Dirac structure
A constant Dirac structure on a finite dimensional space V is subspace

DCVxV*

such that

1. eTf =0forall (f,e) € D

2. dimD = dimy
For any skew-symmetric map J : V* — Vits graph {(f,e) € V x V*|f = Je} is a Dirac
structure.

femto-st 37/102
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Geometric structure

Dirac structure 2
A constant Dirac structure on a finite dimensional space V is subspace

DCVxV*

such that
D =Dt

where L denotes orthogonal complement with respect to the bilinear form <, >
defined as:
<L (f1,€1),(f2, €2) >= (e1|) + (€2|f1)

with (e|f) = e f the natural power product.

femto-st 38/102
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Geometric structure

Port Hamiltonian system

The dynamical system defined by DAEs such that:
(fe, €c,fo,ep) €D, tER

_ 9E

with fo = %fec = <5 is called port Hamiltonian system.

ﬁnto'St 39/102
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Infinite dimensional case

In what follows we focus on boundary controlled systems. In the general case, port

Hamiltonian systems have been extended to distributed parameter systems by the use
of differential geometry:

* Energy variables ap and aq are p and q differential forms defined on an
n-dimensional manifold Z (with boundary 9.2).

*H:=[,HeR
+ Port Hamiltonian system is defined by:

(7&)-(5 ¥ (§)
(8)-Cde )(B2)

The main advantage of such formulation is that it is not depending on coordinates,
applicable for nD systems.

In order to apply some functional analysis tools we focus on the 1D linear case.
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Example 1 : the vibrating string

Let consider a string of length [a, b]:

u(t,z)

The classical modelling is based on the wave equation : Newton’s law + Hooke’s law
(restoring force proportional to the deformation)

QPu(z,ty 1 9 (T(Z)Bu(z,t)>

or u(z) oz 0z

The structure of the model is not apparent. How to choose the boundary conditions ???

42/102




Example 1 : the vibrating string

Let consider a string of length [a, b]:

u(t,z)

The classical modelling is based on the wave equation : Newton’s law + Hooke’s law
(restoring force proportional to the deformation)

Qu(z,ty 10 (T(Z)Bu(z,t))

or u(z)oz oz

The structure of the model is not apparent. How to choose the boundary conditions ???

Usually: x = [ u } — [ u } = ? 1 [ u } first order diff
X = . ol = 1.0 . ;

u u ) oz (T(z)g) 0 u
equation in time

42/102
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Vibrating string

Let choose as state variables the energy variables:

. in e — ou(z:t)
the strain e = 57

+ the elastic momentum p = p(2)v(z, t)
The total energy is given by : H(e, p) = U(e) + K(p)
+ U(e) is the elastic potential energy:

b 2 b
UGe) = /a %T(z)(auézz’t)) -/ STe(z 1

where T(z) denotes the elastic modulus.
* K(v) is the kinetic energy:

b b
K(p) = / Ju(2)v (2,07 = / %ﬁpz(z, f)

where p(z) denotes the string mass.
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Example 1 : the vibrating string

From the conservation laws:

0 € 0 Ne \
a(p>+$(m)‘°

The vector of fluxes 3 may be expressed in term of the generating forces :

(%)= (55 (B) (& )
canonical generating

interdomain coupling forces

where v(z, t) is the velocity and o(z,t) = T(z2)e(z, t) the stress. Consequently

s()=-2(5 ) E)

44/102



®
Example 1 : the vibrating string
From the conservation laws:
9 ( ¢ 9 [ N
— i £ =0
at(ﬁ)*f)z(l\fp)
The vector of fluxes 3 may be expressed in term of the generating forces :
()= (5 ) (B) (% )(Es)
Np -1 0 % -1 0 v(z,t)
N e —_—l

canonical generating
interdomain coupling forces

where v(z, t) is the velocity and o(z, t) = T(z)e(z, t) the stress.

O 2 ald Pu(z,t) 1 d2u(z,t) .
)-(3 §)(B)- e oz,

op
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Example 1: the vibrating string
Underlying structure:

2] € 0 % T(z) 0 €
a\p )"~ 2 9 0 5 p
oz I
f J = matrix e = driving
differential operator force

Hamiltonian operator 7 is skew-symmetric only for function with compact domain
strictly in Z :

b e; / / €4 _ ’ 71b
(e e )T e +( e e)Jg o )= [ere; + ez6]],
a
Power balance equation :
d - b (61 8e 4 oH 9P
aHEp) = <6a ot T op 01)dz
_ qb(smosr  sH b sH) gy [omsn]®
- a b 0z 6p Sp 9z be T Loe dp ],

If driving forces are zero at the boundary, the total energy is conserved, else there is a
flow of power at the boundary. Define two port boundary variables as follows :

(é%)—<%g>a,b
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Example 1: the vibrating string

The linear space D 3 (fy, b, &1, €2, f, €)
(1)=(2 §)(2)
fg - % 0 €2
(8)-(2)

(5] €2 ’

defines a Dirac structure:D = D with respect to the pairing

b b
/ e1fidz + / ecfhdz — faTea
a a

(—8 —6 fs,e9 | € D
a
ot sa’ 9 =9

Port Hamiltonian system
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Example 1: the vibrating string

The linear space D > (fy, o, €1, €2, fy, €5)
. fq _ 0 % e
fa 20 €
. fa — €4 |
ey & a,b

defines a Dirac structure:D = D with respect to the pairing

b b
/ eifidz + / exfodz — fgea
a a

Port Hamiltonian system
0., fa,ep9 | € D
Za, 1y,
8t K 6& K 8 8

dH _ s

gt~ 0%
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The lossless transmission line by

q(zt), @(zt)

i(tz)
e
v(tz)

Consider an ideal lossless transmission line with spatial domain Z = [a, b] C R. There
are two conserved variables:
- the charge on the interval Z: Q(, 5)() = f: q(t, z)dz where q(t, z) denotes the
charge density,
+ the flux on the interval Z : &, (1) = f: ¢(t, z)dz where ¢(t, z) denotes the flux
density.
Then q(t, z) and ¢(t, z) are the two extensive variables that will be used for the
modeling.

femto-st 47/102
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®
The lossless transmission line
Let consider an infinitesimal piece of the transmission line:
q(zt), @ (zt)
i(tz)
1
v(t,z)
2 ;+dz
One can write the following 2 conservation laws in differential form:
+ conservation of charge:
d 0
—q(t,z) = ——i(t 1
0(t2) = —i(t,2) ™)
where i(t, z) denotes the current at z
« conservation of flux:
9 sit2) =~ v(t,2) @
a ™t ez Y
where v(t, z) denotes the voltage at z
femto-st
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The lossless transmission line

The electromagnetic properties gives the two closure equations for the functions i(t, z)
and v(t, z):
- the current is given by:
#(t, 2)
L(z)
where L(z) denotes the distributed inductance of the line
- the voltage is given by:

i(t,z) =

®)

q(t, 2)
C(2)

where C(z) denotes the distributed capacitance of the line
and the total electromagnetic energy of the system can be written:

H= /H(q,¢)dz_2/( tz) ¢2L((tz’)z))dz (5)

v(t,z) =

4)

(R CEs & 49/102




The lossless transmission line

The preceding closure equations may be written in matrix form:

ittz)\ (o 1) [2Hed 6
v(t,z)) — \1 0) \ 8H4,9) ©)
3¢
where H(q, ¢) = fab H(q, ¢)dz and H(q, ¢) denotes the electromagnetic energy
density:

2 2
uae) - 1 (E02 , £0)

2\ C(2) L(z)
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The lossless transmission line

Combining the conservation laws and the closure equations one obtains the

Hamiltonian system:
5H(q,9)
2 (q “eq
5o ()

¢
where J is a formally skew symmetric differential operator defined as:
0 _9
7=("% ) ©)
T oz

(R CEs & 51/102
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Take two effort densities e(t, z) and €'(t, z) and compute their bracket with respect to
J:

b e
/ (eq,€4) T (e/q> dz
a ¢

—/b ege/ﬁ-e ge’ dz
a oz 00 9z
b J 7] 1
/; (e{7 §e¢+eg> Eeq) dz — [e{] ey + € eq}o
b b
e
—/a (eg,eQ,)J(e;) dz — [e{, ey + € eq]a

We can see that it is skew symmetric for densities that vanish at the boundary!

'émmSt 52/102




The lossless transmission line

The resulting port-Hamiltonian system is given by the telegraph equations

o)
(1)-(% )0
— %57 0 |
together with the boundary variables

fa() = v(t,0), f§(1)
ea() = i(t0). €5

The resulting energy-balance is

o)
[8}

[

Q|

t

v(t,1)
—i(t, 1)

S = fTeg = ~i(t V(L 1) +i(1,0)v(1,0),
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Considered class of systems

We first consider lossless systems defined on 1-D spatial domain [a, b] by the PDE:

dx

E(t’ z) = JL(2)x(t, z), x(0,2) = x0(2),
where 7 is a formally skew symmetric differential operator and £(z) a coercive
operator.
For example

a(a)= (2 %) (0 2)0)

55/102
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Bond space

The system is defined by :
f=Je

and we first consider homogeneous boundary conditions.

e Let the space of flow variables, F, and the space of effort variables,&, be real Hilbert
spaces.

o Define the space of bond variables as B = F x £ endowed by the natural inner
product

bt Y = (1, 2Y (e e , b'=(f,e"),p?=(f¢e?)eB.
F £

In order to define a Dirac structure, let us moreover endow the bond space B with a
canonical symmetric pairing, i.e., a bilinear form defined as follows:

<b‘,b2>+ - <f1,rg,Fe2>f + <e‘,rf,gf2>£, b = (ﬂ,e‘) b= (fz,ez) €B.  (10)
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Dirac structure

Denote by D+ the orthogonal subspace to D with respect to the symmetric pairing:

DL:{beB\(b,b’>+=0foranb'ep}. (1)

Definition [?] :

A Dirac structure D on the bond space B = F x & is a subspace of B which is
maximally isotropic with respect to the canonical symmetric pairing, i.e.,

DL =D. (12)

( ; ) € D <= Power conservation
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Port Hamiltonian Systems

PHS ~~ Definition based on Dirac structure and Hamiltonian function (total energy of
the system).

Definition :

Let B = £ x F be the bound space defined above and consider the Dirac structure D
and the Hamilonian function #(x) with x the energy variables. Define the flow
variables, f € F as the time variation of the energy variables and the effort variables
e € & as the variational derivative of H(x). The system

ox oH
fey= (X 7Y cp
(f.e) (6t’6x>€

is a Port Hamiltonian system with total energy #(x)

Let us now see how to include non homogeneous boundary conditions:

d bsuTd bsuT s 5 b
[P gy [P ey [ ()]
at a O0x dt a OX ox oX

a

(f,e) =T ey
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Extension to non homogeneous BC

~ We define the symmetric pairing (not depending on 7) and the port variables
associated with 7. ([?])

Let F = £ = [?((a, b); R") x R™ and define B = F x & with the following canonical
symmetric pairing :

(115,68} (2,75, €%, €5))
= <e17f2>L2 + <62, f1>L2 - <e137 f§> - (ega fg>’

Definition :

Let B = £ x F be the bound space defined above and consider the Dirac structure D
and the Hamilonian function #(x) with x the energy variables. Define the flow
variables, f € F as the time variation of the energy variables and its extension to the
boundary and the effort variables e € £ as the variational derivative of H(x) and its
extension to the boundary. The system

((1,15), (e, €9)) = ((%fa) , (%ea)) €Dy

is a Port Hamiltonian system with total energy #(x)
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Parametrization of 1D differential operators

Parametrization ([?, ?]):

N d,
:Z N5 zelab],
=0

where e € HN((a, b); R") and P(i), i =

_ 0,...,N,is an x nreal matrix with Py non
singular and P; = P/ (—1)*+1. Let define
Py P, -+ Py
—Ps —-P; -+ 0
Q= .
(—1N-1py 0 -0
Back to the Vibrating string

SG)- (1) (1)
8- (12)

f Py
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Port Variables

The port variables (ey, f5) € R™N associated with 7 are defined by :

e(b)

de{
( fa ) = Mext Wj(b) ’ Rext = i (Q 70)
€9 e(a) NN

N—1-
%(a)

where U is a unitary matrix such that:

UTZU:Zwich:( (,’ (’) )
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Port Variables

Back to the Vibrating string

g(e): (01)@ ng)e
at\ p 1.0 0z P ) ,a="p

f P; e

The boundary port variables are defined by:

( fo ):L( P, —P )( e(b) ):L T(b)e(b) — T(a)e(a)
e N A e(a) /2 T(a);((g))+£((£)e(b)
a@ + ()
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Dirac structure

The subspace D of B defined as

f
f, f,

D= [ ‘eeHN((a,b);lR"),Je:f,( e‘?, ):Rm
L%

is a Dirac structure, that means that D = D-+.
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Extension to systems with dissipation

Let us extend the previous results to systems defined by:

%(t, z) = (J — GrSGR)L(2)x(t, 2), x(0,2) = xo(2),

i

(2)=2(s)=(5 ¥)(a)

with ep = Sfp where S is a coercive operator
( ff ) €F, ( : ) € fand & = F = Lx((a,b),R") x La((a, b),R")
P P

Covers models of: beams, wave, plates, (with or without damping) and also systems of
diffusion/convection, chemical reactors ...
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A simple example: the heat equation

1D Heat conduction is usually known on the following form:

2
aT((;t’ 0 _ D (T(z,1)

but is in fact derived from balance equation on the energy i.e:

a(evT(z,1) 9 _/\BT(z, t)
ot 0z 0z
with ¢y constant and positive. This equation can be written:

(F0)-(5 $)(08

A
with ep = —f,
9z €p ) P Cv P
In this case:
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Parametrization of the extended operator

Je is formally skew symmetric and can be parametrized by:
Je€ = z?’ﬁk‘ik‘é with P = (—1)'P]
ozk
In this case I~’N can be not full rank and the bilinear product is defined on quotient
space. The extended boundary port variables are defined by:

()-5(3 )% &)()

M spanning the column of @, @; = MTQM and Mq = (M™M)~"MT with

D

Py P, - Py

_ —Py —P; -~ 0
Q= , ,
(-N-1Py 0 - 0
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Back to the vibrating string

We consider now the vibrating string with structural damping (dissipation of the form
ks% (ﬁ) is given by a system of 2 conservation laws:

P B m 0 % s
()= (o) )=( 8 (2in) ) (%)

,u
The extended Hamiltonian operator is:
o 2 0
To = J  Gr \ _ P %z P _
e = —G* 0 = a7z +35z =
A 0 +Z 0
and
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Boundary port variables

A matrix M spanning the columns of P; can be chosen as:

~ 0 1 0 v
Pp=( 1 0 1|, Mm=-1{o0
01 0 2\ 4

then 61:(? 8),andMQ:(g) ? 2)>and5:(Tij:H)

It thus follows that the port-variables become:

oo
SN——

i ) HOERAC)
( f ):L( e >( é(b) ): (Te+er)(b)—(Te+er)(a)
&y V2 / / é(a) (Te+ e;qB) Ez; + (BT(eb)+ er) (b)
H iz
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Co Semi group

In finite dimension, linear systems can be described using first-order differential
equation:
x(t) = Ax(t) + Bu(t)
{ y(t) = Cx(t) + Du(t)

with solutions expressed through:

t
x(t) = e*'x(0) + / A" Bu(r)dr
0

The idea of semigroups ([?, ?]) is to generalize the notion of e to abstract systems
defined on Hilbert space by:

x(z,t) = Ax(z,t), x(z,t) € D(A), x(z,0) = xo

In what follows the semigroup associated to the generator A is noted T ().
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Co Semigroups

Definition of Cy Semi group

Let X be a Hilbert space. (T(t)):>o is called a strongly continuous semigroup (or Cp)
semigroup if the following Holds:

1. Forallt > 0, T(t)is a bounded linear operator on X, i.e., T(t) € L(X);
2. T(0) = I;

3. T(t+71)=T(t)T(7) forall t, 7 > 0;

4

. Forall xo € X, we have that || T(f)xo — Xo||x converges to zero, when t | 0 i.e.
t — T(t) is strongly continuous at zero.

Even if it has been defined for infinite dimensional systems it can be used in R". In this
case T(t) = e”!. Properties can be checked using

T(tx =Y e (x,én)én
n=1
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Co Semi group
Properties of Cy Semi group

A strongly continuous semigroup (T (t))¢>0 on X has the following properties:
1. || T(¢)|| is bounded on every finite sub-interval of [0, co);
2. The mapping t — T(t) is strongly continuous on the interval [0, co);
3. Forall x € X we have that I [ T(s)xds — x as t | 0;
4. Ifwo = inf (1log|| T(D)]l) then wo = fim (}log| T(1)]) < o0
5

. For every w > wg, 3 M,, such that for every t > 0 we have || T(t)|| < M,e“!.

Definition of infinitesimal generator

Let (T(t))¢>0 be a Cy-semigroup on the Hilbert space X. If the following limit exists

. T(t)XO — X0
Ir'f?) — = Xo € D(A)

we define A the infinitesimal generator of the strongly continuous semigroup by
Axg = lim 10X =X
t10 i
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Co Semi group

Theorem

Let (T(t))¢>0 be a strongly continuous semigroup on X with infinitesimal generator A.
Then the following results hold:

1. For xo € D(A) and t > 0 we have T(t)xo € D(A);
2. S (T(t)xo) = AT(t)xo = T(t)Axo for xo € D(A), t > 0;
3. Ais a closed linear operator;
It means that for x; € D(A) the function x(t) = T(t)xp is a solution of the abstract

differential equation:
x(t) = Ax(t), x(0) = xo (13)

Definition

A differentiable function x : [0,00) — X is called classical solution of (13) if V¢ > 0 we
have x(t) € D(A) and equation (13) is satisfied.

Lemma

Let A be the infinitesimal generator of Cy semigroup (T(t)):>o. Then for every
Xo(t) € D(A) the map t — T(t)xp is the unique classical solution of (13).

femto.st
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Co Semi group

Definition

Let (T(t))¢>0 be a Cy semigroup on X. Then (T(t))¢>o is called a contraction
semigroup if || T(¢)|| < 1 and unitary semigroup if || T(t)|| = 1 for every t > 0.

Definition

A linear operator A : D(A) C X — X is called dissipative if

Re(Ax, x) < 0, x € D(A)

Lumer-Phillips Theorem

Let A be a linear operator with domain D(A) on X. Then A is the infinitesimal generator
of a contraction semigroup (T(t)):>o on X if and only if A is dissipative and
ran(l — A) = X

Theorem

Let A be a linear, densely defined and closed operator on X. Then A is the infinitesimal
generator of a contraction semigroup (T(t));>o on X if and only if A and A* are
dissipative.

ey

TE
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Port Hamiltonian systems

Port Hamiltonian systems

Let W be a n x 2n real matrix. If W has full rank and satisfies WX WT > 0
(WZWT = 0), then the operator Ax = Py(8/8z)(Lx) + (Py — Gp)Lx with domain

{fa’“(t)} € ker W}

D(A) = {Lx € H'(a, b;R™) o ()

generates a contraction semigroup(unitary semigroup) on X.

Sketch of proof
We use the property

(e,T€) + (Te,e)= (I &} )TZ( ;‘Z )

to prove that with D(.4) with rank and positivity condition the operator and its adjoint
are dissipative.
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Boundary control systems

We are interested in abstract control systems of the form:

x = a/x(t), x(0) = xo,
Bx(t) = u(t),

The control system 14 is a boundary control system if the following hold:
1. The operator A : D(A) — X with D(A) = D(</') N ker(#) and

(14)

o/ x = Ax for x € D(A)

is the infinitesimal generator of a Cy semigroup.
2. There exists an operator B € £(U, X) such that for all u € U we have Bu € D(«),
/B e L(U, X) and
PBBu=u, ue U
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Boundary controlled port Hamiltonian systems

Boundary controlled port Hamiltonian systems

Let W be a n x 2n real matrix. If W has full rank and satisfies WX W T > 0, then the
system 2X = Ax with Ax = Py(8/0z)(Lx) + (Po — Go)Lx with domain

{fa’“(t)} € ker W}

D(A) = {Lx € H'(a, b;R™) o ()

and input

) = w | 2ex Q]

is a Boundary Control System on X.

Sketch of proof

The operator Ax = P1(9/0z)(Lx) + (Po — Go)Lx with domain D(.A) generates a
contraction semigroup on X. It remains to show that 3% such that ZBu = u, u € U
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Boundary controlled port Hamiltonian systems

Boundary controlled port Hamiltonian systems [?]

Let W be a full rank matrix of size n x 2n with [%] invertible and let P,,, , be given by

1 .
b _ (W) _[wswT wswT]™
ww =\ W W T \WwwT  WswT| -
Define the output of the system as the linear mapping C : £~ "H(a, b;R") — R”",
fB,U(t)] )

€a,cx(t)

y =Cx(t) := W[

Then for u € C2(0, 00; RK), £x(0) € H'(a, b; R"), and u(0) = W [;zvixx‘(%))] the

Bl mae]
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Specific cases

Using

We obtain for:

(1) =Ix(),
V:O{ u(t) =1 (io(t) + ea(D)
1 (fo(t) — ea(t))

y(t)

{)’((t) — Ix(t)
V=1{ ult) =t
y(t) =—ea(t)

-

Scattering system:

Boundary control system with
the associated semigroup

a contraction

S SR = lu()? -
Impedance passive system
Boundary control system with
the associated semigroup
unltary

3 alIx@IR = ut)Ty(t)

ly(@®)I2.
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Back to the vibrating string

The PDE is given by:

g( ¢ )7 ( 0 1 ) N T(2)e
at\p )~ 10 0z TP ) a=p
f P
1 e

The boundary port variables are defined by:

pb) _ p(a)
w(b)  p(a
( fs ) _ 1 ( Py —P; ) ( e(b) ) _ 1 | T(b)e(b) - T(a)e(a)
es V2 / / e(a) 5 T(a);((«:)) + L—((lﬁ)E(b)
w@ t u)

By using the transformation

o
OO = =
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Back to the vibrating string

One can also choose:

()03 7)) -5

T

Tz m o
el
m~.»°‘

m o
23

=

T

js

o ‘E

=G
N——

_ _ 1 ( T(b)e(b) _ v
V=I|= U_\/§( T(a)e(a)) and y_\/§<

E
&)

aH(t) _
gt .V(t)TU(t)
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Systems with dissipation

Let now consider systems with dissipation:

%(t, z) =(J — GrSGR)Lx(t,2), x(0,2) = xo(2),

i

(2)=2(s)-(35 %)(a)

with ep = Sfp where S is a coercive operator

( ,; ) EI,( o ) €&and € = F = Ly((a b),R") x Lo((a, b), R")
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Systems with dissipation

From geometrical point of view:
foe = Je€e

Je is formally skew symmetric and can be parametrized by:
~_onp S k+1BT
NACED®) Pkge with P, = (=1)*t1P]

In this case ﬁN is not full rank and the bilinear product is defined on quotient space.
The extended boundary port variables are defined by:

(%)-%(9 )% %) (&)

M spanning the column of @, @; = M7 QM and Mq = (M™ M)~ M with

P, P, .- Py

- —P; -P; -~ 0
Q= ,

(-N-1"Py 0 - 0
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BCS

Let W be full rank such that W= WT > 0,

dx
o (D) = Tex(D)

wo-w( )

is a boundary control system. The operator Aexc = Je With domain

ono={(2)=(HEYEI(L )} 1o

generates a contraction semigroup.

with input
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Balance equation

Let W be full rank such that ( g ) invertible. Let define C : HN((a, b), R2") — R2N
ast,
i [ feo(t)
cx(t)y =Ww( &° ) 16
x(t) =W (Lot (16)
and the output as
y(t) = Cx(1), (17)
then for u € C2((0, c0); R2™), x(0) € HN((a, b), R2"), and Bx(0) = u(0) :
1d 2 1 T T ( u(t) )
- — P
5O =5 CuT@ "0 ) Pww (e ) (18)
where T -
[ WEWT WsW
PWJ/”V’( Wsw™ WzwT ) (19)
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Dissipative operator

Now the feedback is closed i.e.
f=Je—GrSGre,

The port variables become :
e(b)
(—SQ;;e)(b)

N 1
dzN 7 (b)
(60 )= | “atio
’ e(a)

(=S9ze)(a)

aN—1(_sgte)
—r—r—(a)

(20)
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®
Dissipative operator
Consider the operator
A= (J — GrSGR)
with domain

D(A) = {e € H"((a,b); R") | Sgpe € HY((a, b);R"), 21)
gf,a 22
<geya)€kerW}. (22)

If W has full rank and satisfies W W7 > 0, then A generates a contraction semigroup.
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®
BCS
Let W be full rank and satisfies W W7 > 0, then
ax N
— (0 =(7 —GaSaE)x(D) (23)
with input
9r,0(1) )
H=Bx(t)=W ’ 24
utt) = ey = w (o4l (24
is a boundary control system. Furthermore, the operator A = (J — GrSGg) with
domain
D(A) = {e € H((a, b);R") | SGre € H'((a, b);R"), (25)
91,6
’ ker W . 26
( o0 ) € ker } (26)

generates a contraction semigroup.
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®
Dissipative operator
= Wy . . ) . .
Let W be full rank such that W ) invertible. Define the linear mapping
C : HN((a, b), R2") — R2"N gs,
— gy 9ro(l) )
Cx(t) =W ’ 27
0= W (G @)
and the output as
y(t) = Cx(d), (28)

then for u € C?((0, c0); R?"™N), x(0) € HV((a, b), R?"), and Bx(0) = u(0) the following
balance equation is satisfied:

SO <3 (7O ) P (45 ) 9)

where .
1 _( wswT wzwT’ )

wir =\ WrwT WrwT (50)
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Chemical reactor

Let consider a chemical tubular reactor z € [a, b] with reaction A — B

oc 0 ( oc
0z

— = —Ds— + vC) — ko C + Boundary conditions
ot 0z

where Dy > 0 and v is a positive constant.
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Chemical reactor

Let consider a chemical tubular reactor z € [a, b] with reaction A — B

oC 0 ( ocC

B = a2 Daa— + VC) — kC + Boundary conditions

where D, > 0 and v is a positive constant. By choosing

o 0 k 0 k D,
= —— = — [ S =
J 8z’ G Bz+ D;’ g 8z+ D;’ v
B B K
o oz 2z T\ D2 vC
t )7\ a_ /& 0 e
o9z [
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Boundary port variables

1 vC(a)

1 1 vC(b
0 ) ( Da-Z C(b) — v/DakC(b) )
0
1 Da-2 C(a) — vDakC(a)

/N
8L
o Q
N—
Il
‘_.
N

—

|

-

00 =
|

-

vC(a) — vO(b) + Da ( £:C(b) ~ £:C(a)) ~ VDK (C(b) — C(a))
( oo ) 1 v (C(b) — C(a))
7 v (C(b) + C(a))
Da (ZC(b) + 2C(a) — VDak (C(b) + C(a))
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Dankwert conditions

Usually the boundary conditions for tubular reactors are chosen as Dankwert Boundary

Conditions:

+ input total flow is imposed,

- output dispersive flow is equal to zero.
Dankwert conditions can be written as :

oC
vC(t,a) — DaE(t, a) = vCiy(t),
-

vCiy _
(75 )=w(
koDa
1/t
114/l

9.0 )
Je,6
1—/%els

=3

ocC
D= =
and aaz(t’ b) =0,

(31)
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Conclusion

One can check that
wsw’ >0
iif
KDa _
"4

N =

It means that he system is a Boundary Control System with associated C, semigroup
unitary or a contraction if and only if the condition is satisfied.

Otherwise it is not a contraction semigroup.
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Conclusion

In this first part we have:

shown that PDEs are obtained from balances equation on extensives variables
and can be related to power exchanges within the system through geometric
considerations,
in the 1D case defined:

+ the boundary port variables associated to the differential operator ;7

« Dirac structures on real Hilbert spaces
parametrized all the boundary port variables for a large class of differential
operators.
provided some simple conditions (matrix ones) to prove existence of solutions.

defined BCS.

In what follows we discuss stability and stabilization of boundary controlled port
Halmiltonian systems.
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Thank you for your attention !
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