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Port-Hamiltonian control systems

Let us recall the state space model of a port-Hamiltonian control system
. oOH
%= (J(x) = R(0) 5o (0) + a(x)u,
OH
— a7
y=0" (05

where where x € R” is the state vector, u € R™, m < n, is the control action,

H:R" — R is the total stored energy, J(x) = —J(x) is the n x n natural
interconnection matrix, R(x) = R(x) T > 0 is the n x n damping matrix, g(x), is the
n x minput map and u,y € R™, are conjugated variables whose product has units of
power.

. +  OHT _b8H

H=u'y ox  ox’

H<uly,
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Example: pendulum (model)

The dynamic equations

Consider the pendulum with damping

T )
. : p
= —mgsin(q) — f—
p gsin(q) — f— +u
with state variables x = [p, g], with g the configuration and p the momentum.

The port Hamiltonian model is:

s(9)-(5 ) (#)

oHy
o (8)
op

with Hamiltonian : Hy (g, p) = mg(1 — cos q) + o p?

+
7N
- O
N——
<

@)

3o {
«Q
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Stabilization of passive systems

Let us consider systems arising from some physical energy model. We then usually
have

t t
H(t):H(t0)+/0 u(r)y(r)dr — /0 S(x(r))dr .

supplied energy  dissipated energy

So if H(x) qualifies as a Lyapunov function and S(x) vanishes at x = 0 (and only in
x = 0), then the system is asymptotically stable!

So why do we need the control then?
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Stabilization of passive systems

+ What if we want to increase the stability/rate of dissipation?: damping injection,

- What if we want to stabilize at some different equilibrium point/change the
performances, x = x*, x* # 0: Energy shaping,

+ What if S(x) vanishes for some x # 0 or S(x) = 0?: damping injection + Energy
shaping

LT cEs & 6/75
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Stabilization of PHS: Damping injection

Consider the energy balance equation of a passive system:

t t
H(t):H(to)-i-/O u(r)y(r)dr— /OS(x(T))dT .

supplied energy dissipated energy

And assume that H(x) qualifies as a Lyapunov function candidate. If we select the
input u = —Ky, with K a positive definite constant matrix, then the energy balance
equation becomes:

t t
H(t) = Hito) —K /0 y2(r)dr /O S(x(r))dr

controller dissipated energy

H(t) = H(to) — /Ot (K2(r)dr + S(x(r))) or.

dissipated energy
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Control by interconnection

A controlled system may be viewed as a plant system interconnected with a control
system exchanging energy

u
() plant

The interconnection is power continuous if

u=v-—ye, and uc=y+ve, vt
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Control by interconnection

Assume that the plant and the controller are PHS

=10~ RONS () + g()u

> xeXx
y =702 x)
€ ~1Ue() — Aol 2 (6) + 0eE)ue
Yo oH e Xe
e =01 (52

Booth are passive systems, so a power preserving interconnection, u = —y¢, y = U,
yields a passive closed-loop system.
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Control by interconnection

The closed-loop systems looks

- oo 8- nt |

Joi(x,€) Rei(x,€)

AR

el

With total energy function

| Ha(x,€) = H(X) + He(¢)

We may equivalently write the closed-loop system as

. OH, OH,
W:(JCI_RC/)ijz QCT/ BVI;j

with w = [x &].

femto-st
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Control by interconnection

We would like to get an energy function in terms of x only: Hy = Hy(x), so that we can
assign the minimum at a desired point and characterize it in terms of the plant system.

In order achieve this, we must restrict the dynamics to a submanifold of the (x;, &)
space parametrized by x. This means that we are looking for a submanifold

|90 = (x,6) : 6= F(x) - C|

which is dynamically invariant, i.e.,

T .
% _ @F g> )
x =Fi(x)-C

femto-st 1/75
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Control by interconnection

Casimir functions

Let us look for structural invariants that relates each state of the controller with the
states of the plant:

Ci(x, &) = Fi(x) = &
In order to relate all the states of the controller with the state of the plant we define
F(x) = [F1(x), Fa(x), ..., Fa,(x)], and define the following Casimir function

C=> (F(x)—&) =>_Cix4&)
i=1 i=1

C is an invariant of the system, hence

. acT acT OH
C=— w=— [/ ) =0
ow i ow ( “ow )

But furthermore, C is a structural invariant, so it should be invariant with respect to the

structure of the system:

Joy=0
ow cl
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Control by interconnection

Casimir functions

Let us look for structural invariants that relates each state of the controller with the

states of the plant:
n

C=> G(x&) =Y (F(x)-¢&)
=1

i=1
we obtain the following matching condition

T J) = R() —a(0gk©) 1 [H(
(570 1] [getg () oty B H‘%(f)}

Matching condition

+ Only the term in blue is considered in the matching condition because we want the
Casimir functions to be structural invariants of the system: not depend on

Hd(xv f)
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Control by interconnection

The condition for existence of Casimir functions for the closed loop system

. JX)—R(x)  —g(x)gl©) ] _
% 0 -1 {gc(é)gT(X) Jc(s)—f%c(f)}’

may be written out as

Matching equations

—
(U2 (0= e(®)
8F N
F{(x)a(x) =0 Dissipation obstacle!
Rc(g) =0
oF T

== (0)J(x) = ge(€)g " (%)
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Control by interconnection

The closed-loop dynamic then takes the form

X = [J(x) = R(x)] Z—Z(x) - 9(x)9¢

OHc
56 ©
Using the second and fourth M.C. we get

k= [0 - ] (51 00+ 5 005 E @)

ox

Since £ = F(x) — C, we use the chain-rule for differentiation to establish

OHc 8Hc

() (5) L (F)=0)
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Control by interconnection

Hence we obtain:

k= [0 - ] (51004 (F 00 - 0))

Or equivalently

OHy

(x)

X = [J(x) R(x)]

With closed-loop energy Hqy(x) = H(x) + Hc(F(x) — C).
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Pendulum (extended Casimir functions)
0o 1 Gl 0
-2 ) (B)-(2):
op

dHy
y=(0 1) <aﬁ_‘]0>:
op

Recall: we look for Casimir functions such as:

(©)

C(q, p, Xc) = F(q, p) — Xc

Using the M.C.s.

+ From physical considerations we know that we only need to shape the q
coordinate: F is only one scalar function.

» Then, from M.E.1. we obtain that J; = 0, and from M.E.3 that R = 0.
- Finally from M.E.4 we have that ‘g—g =1.

hence a generating function is: F(q, p) = q

femto.st
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Pendulum (control)

For the controller design we choose a function Hg(x¢) such that

Ha (x) = Ho (x) + He(F(x))
has a minimum at the desired equilibrium x.. = (x;°,0). The simplest choice is given by

1
Ho(xc) = —mg(1 - cos xe) + jamg(xe - x;)?
The control is finally (with damping injection) :
OH, . X
U=—ye—dp=—" Z(x) |y,_q — dp = mgsing — amg(q - x;') — dp
C

which is the well-known as proportional plus gravity compensation control.
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Stability and stabilization of BCS

u(t,z)

We are now interested in stability of BCS. We consider:
+ Asymptotic stability
+ Exponential stability
in the case of
- Static boundary feedback
+ Dynamic boundary feedback

We shalle also see how to design dynamic controllers in order to shape the closed loop
energy function by using structural invariants.

19/75
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Stability

We are interested in (exponential) stability of abstract systems of the form
x(t) = Ax(t), t >0, x(0) =xp

i.e. when the solution tends to zero (exponentially) fast as t — 0.

Definition

The Co semigroup (T(t)):>0 on X is exponentially stable if there exist positives
constants M and « such that

IT(D)] < Me=<! fort >0

femto-st
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Stability

Suppose that A is the infinitesimal generator of a Cy semigroup (7 (t));>0 on X. The
following are equivalent

1. (T(1))t>0 is exponentially stable
2. There exists a positive operator P € £(X) such that

(Ax, Px) + (Px, Ax) = —(x, x) for all x € D(A) (4)
3. There exists a positive operator P € £(X) such that
(Ax, Px) + (Px, Ax) < —(x, x) for all x € D(A)

Equation (4) is called Lyapunov equation.

-_é!nto-st 21/75
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Stability

When there exists a positive operator P € £(X) such that
(Ax, Px) + (Px, Ax) < 0 for all x € D(A)

one has to prove that there exists an invariant set and that this invariant set reduces to
zero.
Lassale’s invariant principle
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Boundary controlled port Hamiltonian systems

Boundary controlled port Hamiltonian systems

Let W be a n x 2n real matrix. If W has full rank and satisfies W W™ > 0, then the
system 2 = P; 2 (L(2)x)(t, 2)) + (Po — Go)L(2)x(t, z)with input

s0-wlbel]

is a BCS on X. The operator Ax = P;1(8/9z)(Lx) + (Po — Go)Lx with domain

{fa’“(t)} € ker W}

D(A) = {Cx €H'(a bR || cx(t)

generates a contraction semigroup on X.

femto-st 23/75
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Boundary controlled port Hamiltonian systems

Boundary controlled port Hamiltonian systems

Let W be a full rank matrix of size n x 2n with [%] invertible and let P,,, , be given by

1 .
b _ (W) _[wswT wswT]™
ww =\ W W T \WwwT  WswT| -
Define the output of the system as the linear mapping C : £~ "H(a, b;R") — R”",
fB,U(t)] )

€a,cx(t)

y =Cx(t) := W[

Then for u € C2(0, 00; RK), £x(0) € H'(a, b; R"), and u(0) = W [;zvixx‘(%))] the

Bl mae]

femto-st 24/75
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Closed loop control with static feedback

Impedance passive case

As it has been pointed out in [Villegas, 2007], if the matrices W and W are selected
such that P, 7, = [9 /] = £, then the BCS fulfills

1d

5 2 XN < uT (OO

r U i=g0 y
—= O () 7(5) k= gex
1 r=(weaw) ()
7 f,
()
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Asymptotic stability

Lemma

Assume that (A —.A)~" : X — X is a compact operator for A > 0. Then the system
described by:

X:JL:X
r=(w+aw) (L)
_w( T

y—W( e

with r = 0 and « > 0 is asymptotically stable.

Sketch of poof

We use the energy as Lyapunov function and Lassale’s invariant principle. First the
closed loop system is a BCS with infinitesimal generator of a contraction semigroup as

soonasa > 0. Ifu=0, % = —yTay
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Exponential stability

Consider a BCS such that W% WJ > 0 with u(t) = 0, for all £ > 0. Then the energy of
the system E(t) = (1/2)||x(t)||2£ satisfies for 7 large enough

E(r) < c(r) /O "It b)Edt, and E(r) < c() /0 "Xt a)2at,

Theorem : exponential stability.

BCS is exponentially stable if the energy of the system satisfies
(dE/dt) < —K||(£x)(t, b)|% or (dE/dt) < —kl|(Lx)(t, @)l

where k is a positive real constant.
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Example : Timoshenko beam

As state variables we choose

= ¢ shear displacement,

o= p2. transverse momentum distribution,
X3 = g2 . angular displacement,

X4 = lp% : angular momentum distribution.

Then the model of the beam can be rewritten as

Xi 01 0 0 ’f X4 0 0 0 —1
Ol e |_|1 00 08| 3% | 000 O
at | x3 ~ 10 0 0 1 |pz El x3 0 0 O 0
X4 0 0 1 0 L xy 10 0 O
IP
—
Py Po
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Velocity feedback

One can define the boundary port variables:

(r~ " x2)(b) — (p~"x2)(a)
(Kx1)(b) — (Kxi)(a)

(I, " xa)(b) — (I, "xa)(a)
[?] _ 1 —M X _ X3 — (Elx3)(a
(f )_ 1 [P P }((zz)w))_ 1 (Elxs)(b) — (Elx3)(a)
N (£x)(a) V2 (Kx1)(b) + (Kxq)(a)

(r~ " %)(b) + (p~"x2)(a)
(Elxs)(b) + (Elxs)(a)

(I, " xa)(b) + (I, " xa) ()

(5)

Let us consider stabilization by applying velocity feedback i.e. following BC:
1 _ 1 _
@ x2(a) =0, W)Q(a) =0,

K(b)xi (b, 1) = —ar S xa(b, 1), EI(b)xa(b, 1) = ~aa -ty xa(b)
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Velocity feedback
Input mapping:
-1 0 0
1 0 0 -1
Wer = V2| ar 1 0
0 0 (%)
then
0 O
0 0
WyzW] =2 o 0
0 O
As output we can choose
—K(a)x(a)
—(EN)(a)xs(a) — 1
= 1 , with W=—
Y p(1b) X2(b) \/é
%M(b)

- O OO

o —=-00

o —+00

[oNeNe)

a2

[eNe N

- OO0 o

- O OO

[N N e)

o =0

a2

[eN oo

o =00

|
co-—=o

- OO0 o
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Velocity feedback

Then

Energy balance:

S ) = 21X = (D), YD)~ (ay(0), ()
where
(@0, y(0)z = al(p™ 52)(b, ) + a2l(1~"x2) (b, D
Then
IExO) B = () (B)R + (o~ ) (B + [(Ehs)(B)E + [ xs) (D)2

=|
= (of + Dl(p~ "x2)(b, f)|2 + (a3 + DI, x) (D)2
< rlay(t), y()r = —r GE(D)

=- Exponential stability
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Dynamic boundary feedback

Consider a strictly passive linear finite dimensional system
\./:Acv-‘chUc, Ye = CcV-‘r D(;Uc.

with storage function Ec(t) = 1(v()Qev(t))gm, Qc = Q] >0 € R™ x R™.

Theorem [Villegas, 2007]

Let the open-loop BCS satisfy § & 9 |x(8)]|% = u(t)y(t). Consider a LTl strictly passive finite

dimensional system with storage function Ec(t) = % (v(t), Qcv(t))zm. Then the power preserving
feedback interconnection

u=r-—ye, Y = U,

with r € R” the new input of the system is a BCS on the extended state space ¥ € X = X x V with
inner product (X1, X2) 5 = (X1, X2) £ + (v1, QeVa) v. Furthermore, the operator A, defined by

fa,cx
. X , .
Ak = [gcé /?J [ﬂ , D(Ag) = { [ﬂ E [V] ‘Lx € HN(a, b; ]R”), |:eafx:| € ker WD}

where . 5
Wp = [(W+ D.W  Cc)]

generates a contraction semigroup on X.

femto-st
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Dynamic boundary feedback

Ye 1= (J. — R)Qev + Beue,| M€
Ye = BZQCU B
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Asymptotic stability

Finite dimensional port Hamiltonian controller
V= (Jc cs Rc)OcV aF BcUc, Ye = B;r C?(:V7 Ec(t) = %V(t)TQcV(f)

where we assume that Qc = QJ >0, Jo = —JJ , Rc = R} > 0 and B; are real
constant matrices of proper dimensions. Furthermore, the controller is assumed to be
exponentially stable, i.e., Ac := (Joc — Rc)Qc is Hurwitz.

Theorem

Consider the above controller connected to the impedance passive system through
u=r—yeUc=Yy. Then the operator .4, described in the previous theorem has
compact resolvant.

Theorem

Consider the feedback system u = r — y;¢, uc = y where the controller is chosen
satisfying the condition above. Then the closed loop system such that r = 0 is globally
asymptotically stable.
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Sketch of proof

* Let first consider that w(0) € D (.Ae). By the aforementioned Theorem
[Villegas, 2007], Ae generates a contraction semigroup.

* Let now consider the energy as Lyapunov function E¢(t) = %(w(t),w(i)))?. Since
w(0) € D(Ae) and:
dEc(t)

2 = @1, w(0)x = (Aew(D). ()5 = —v7 Qgv ©

where Qg > 0. Since (A — Ae)*1 is compact and the semigroup is a contraction
it follows from LaSalle’s invariance principle that all solutions asymptotically tend

to the maximal invariant set O¢ = {f( e X|E: = 0}.

+ Let & be the largest invariant subset of O.. We can prove that £ = {0}. From
E.(t) = 0 and (6) we have v(t) = 0 and then ¥(t) = 0. Let ; < n be the rank of
ker(Bc). Form the controller structure y. = 0 and n — n > 0 components of uc
equal 0. It follows that O reduces to the solution of a first order PDE of dimension
n with 2n — n boundary variables set to zero. It follows from Holmgren’s Theorem
that X(t) = 0, hence the asymptotic stability. The same hold for w(0) € X by using
denseness argument.
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Energy shaping

Yc

T=JLx
(0 7 e

-

0= (Je — Re)Qcv + Beue,|

Ye = BZQCU

Uc
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Energy shaping

Use the total energy as Lyapunov function candidate

From the power preserving interconnection:

E(x,v) = E(x) + Ec(v)

We are looking for Casimir functions (structural invariants = € = 0) on the form:

C(x,v)=v—F(x)
then
v—F(x)=«k
And ~
E(x,v) = E(x) + Ec(F(x) + k)
It remains to choose E; and to add dissipation such that:

9E dE

a(x*) =0, and E(X) <0

39/75



Casimir

Let consider the structural invariants of the closed loop system i.e. Casimirs, of the
form:

Cix(t), v(t)) = T Tv(t) +/b\IIT(z)x(t,z)dz )
with T € R™, W(z) € R"and W (2)x(t,z) € H'(a, b;R™).

Computation of Casimir functions

Let consider the previously defined boundary controlled port Hamiltonian system with
r = 0. Then (7) is a Casimir function for the closed loop system if and only if:

P W(2) + (P + Go)¥(2) = O, ®
(Jo + Re)T + BsWR mgﬂ -0, ©)

BIT + WR mgﬂ —o. (10)
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Energy shaping

Sketch of the proof

C(xe(t)) is a Casimir function if and only if % = 0 independently to the energy

function,
= <§—XCe,AeHeXe>L2 (12)
_ <A;§—Z,’H6Xe>l—2 % (13)
(14)
femto-st
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Energy shaping

Proposition [Macchelli et al., 2017]

Under the hypothesis that the Casimir functions exist, the closed-loop dynamics (when
u=yc+ U)is given by :

S (0.0 = Pr o SPE(0)(Q) + (Po — Go) 2 (K(0)(0)

s-wa((90)

(%e(0) (a)
in which § denotes the varlatlonal derivative, while T

c/(X(t))—*HX(f I3+ 5 (/ T (O)x(t, C)dz) X

xt1Q f*T/b\TJ(C)Tx(t Q)dz (16)
C b
a

and W' is a n x 2n full rank, real matrix s.t. WXW’T > 0. Asymptotic stability is
ensured by damping injection.

femto-st 42/75
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Extension to systems with dissipation

Proposition [Macchelli et al., 2017]

The feedback law u = 8(x) + u’, with v’ an auxiliary boundary input, maps the original
system into the target dynamical system

2 (t,2)= P2 2B (x(0)(2) + (o ~ Go) 22 (x(1)(2)

oty (17)

) <;‘HX (x(1)) (b)

(%e(x) (@

with Hy(x) = H(x) + Ha(x), provided that
P28 () 4 (Py — Go) S 2(x) = 0 (18)
SH,
(%(x)) (b)

B(x)+ WR | %X — (1) 19
(%) ((tgé.;,f(x)) (a)) (19)
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Main results

- System without dissipation (immersion reduction method)

- Computation of the Casimir invariants: I, 7 (z)
+ Implementation of the control: Q; — Hy
+ Stabilization using damping injection.

- System with dissipation (direct state feedback)

+ Direct computation of H, and 8(x)
- Stabilization using damping injection.

« In the two cases we can prove asymptotic stability
[Villegas et al., 2009, Ramirez et al., 2014, Macchelli et al., 2017].

» Not so many degrees of freedom but the closed loop energy function can be
partially shaped.

(R CEs & 44/75




Example: longitudinal (axial) vibration of a beam

S(z)

0 Q(2) L

State variables : deformation and linear momentum density
7]
(60 = 5260, P(C) = pSOVLQ) (20)

Material’s deformation is considered linear (Hooke’s law) :

0505200 = 2 [£80921.0)] - D%t crac

The energy is given by (klnet|c+potent|al)

H(p(t,¢),e / [ S(C) ) 4 Es)t, C)]
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Example: longitudinal (axial) vibration of a beam

From:
PA(t,¢)

2
25(0) + ES(Qe(t, Q)| d

H(p(t,¢),e(t,¢)) = %/OL {

We define the co-energy variables:

os(t.¢) = ﬁ(e(t ¢) = ES(Q)=(t.¢) = S(Q)o(t.)

v(t.0) = () = Be8) = Sr0)
Then:
~ 9 ( s 2 c)) _ 0 [ES(c)a—‘p(t c)} ~022(1,¢)
ETAURIPTAS ac ac’ ot
with

5 (Feo) =2 (Feo)
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o
Example: longitudinal (axial) vibration of a beam
The port-Hamiltonian formulation of the system is then
g(s(t,o) _ (0 &) (ES©O 0 (e(t,O)
at \p(t,0)) “\ & -bJ\ 0  gg) \p(tQ)
which is in the form :
X(1,0) = Py (HIOX(1,)) + (Py — Go)HIOX(1,) @)
e
with Py = 0 and
(0 1) _(o o) _(ES(C) 0 )
Py = Go = H) =
L (1 0 °={o b ©) 0 45
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®
Input and output
The boundary port variables are
v(L) —v(0)
<f6) _ 1 [os(L)—os(0)
€s V2 | os(L) + os(0)
v(L) + v(0)
The boundary input and output are selected as
_ V(tao) _ _O'S(t)o)
w0 = (o) o= (ol (@2
which can be derived choosing W and W such that:
1 /-1 0 0 1 - 1 /0 1 -1 0
W:ﬁ(o 11 o) W:ﬁ(1 0 0 1)

The energy balance is then :

L
TO=- [ DAy 0un <y (0ue).
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Lossless case : Approach based on structural invariants

We consider a dynamic controller with ng =2, Rg =0, B =/ and

0 I
JC:(—/ o)’

which implies that the closed-loop system is characterized by the following Casimir
functions:

L
Ci(&n(t),e(t,)) = & (8) — /0 S(1,0)dC

L
Caléalt).p(t. ) = €a(0) ~ [ p(t.O)ac.
The controller Hamiltonian is chosen such that

: 1 1
Ae(&1,6) = 551512 + 55255

(23)
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Approach based on structural invariants

The closed loop energy function is:

B 1 L p2 5
Hole.p) = /0 [ps( 5+ ES(Oe ] ac+

and the control is of the form

— L
= —GusHe— — (2 _o) Jo pd¢
e (0 = <foLedC

LT cEs & 50/75
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System with dissipation

Due to the dissipation D # 0, the energy-Casimir method cannot be applied. The
closed loop energy function cannot be shaped in the p coordinate.

Admissible H : ]
Faler, &) = ;=18 + 2 %28
with .
&=t ) = [ =(to)ac
% (25)
&(e(t ). p(t, ) = /0 [D(L — 2)=(t,0) + p(t, )] ¢
Leadingto  ,_ _ (zz 0 ) Jo (L= 2)e(t,¢) + p(t, O} d¢
0 = Jred¢
51/75



Achievable performances

We consider now that D = 0, all parameters equal 1 (simulations are provided
considering a finite volume approximation)

- ()~ () - () - ()

and we plot the position at the end point of the system.

Amplitude

. | . | I
3 80 100 120 140 160 180 200
. time (seconds)
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Simulation

We first consider the static feedback case i.e. when pure dissipation is added at the

boundary:

1

time (seconds)

Figure: Step response of the closed loop system with pure dissipation term.

53/75




Simulation

to a pure dissipation term:
U= —ke (Xo2 — Xo1) — KgXzo

In a second instance we consider the control law devoted to energy shaping in addition

Amplitude

08

004 0.06
time (seconds)

Figure: Step response of the closed loop system with state feedback.
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General case: class of systems

Consider systems of two conservation laws

g )=(5 8) (e )+(7)s v=co ()

where x1, X2 € Lp([a, b],R"), £1(¢) > 0and L2(¢) >0

o o? o
G=Go+Gi— + G- g*:GOT—GIaC

8
.
5 e +G

2 02 8(2

with Go, Gy, G € R(™" and G* is the formal adjoint of G. This formulation allows to
model a large class of systems:

+ The 1D wave equation: n=1, Gy =0,Gy =1,G> = 0.

+ The Euler Bernouilli beam equation. Inthiscase n=1, Gy =0,G; =0,G> = 1.

* The Timoshenko beam equation. In this case n = 2 and

0 O 1 0
Go=(_1 O>,G1:(o 1),C1‘2=02,2
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®
Distributed control
We consider the system is connected to the infinite dimensional controller
OX,
(TIC = 0.QcXc + Bole (26)
Ye = Bc* QcXe + Dol (27)

where Q¢ > 0 € R"™ ", B. a differential operator operator of the form:

7] 82
Be = Beo + By a? + 80237(2
with Bgg, Bs1, Beo € R™ " and Dy = I;—; through the power preserving
interconnection :

(7)=(% ) (%) @

The energy of the controller is given by:

1 b
He(xc) = 5/ XchXch
a
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Distributed control

BC(a) BC(b).
— System -

ATATATA A d

gl o000 gos

SRR
Distributed
Control
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Distributed control

Due to the power preserving interconnection
Hei(X, Xe) = H(x) + He(xc)

We look for closed loop structural invariants C(x, x¢) to shape the closed loop energy
function i.e. e

—(x, =0, in closed loo
at (%, xc) | p

If these Casimir functions exist and can be written in the form
b
C(xxe) = [ (e + Fx)) o =
a

it is possible to relate the state of the controller x; with the state of the system x. By
choosing the controller energy function, it is then possible to shape the closed loop
energy function as
Hei(x, xc) = H(x) + He(Xc)
= H(x) + He(s — F(x))

= cl(x)

W™
ZLeLe
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Distributed control case

The closed loop system is given by:

x4
o 0 G 0 Lax
t
e _ aixte - ¢+ -D. -B: LoXo 32)
ot % 0 B O Qexe

Ae

The closed loop system (32) admits structural invariants of the form
b
Ko = C(Xe) = / W xedC (33)
a

with W = (1)1, 2, 9¢) if and only if
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®
Distributed control case
— G2(¢) = 0 = —Bca(¢) (34)
G*1(¢) — Dgvpa(C) + Bzpa(¢) = 0 (35)
0 Gy 0 ¥1(¢)
-G] 0 By 2 (€) =0 (36)
0 B o0 ¥s(Q) /[,
0 -G 0 ¥1(¢)
Gl -1 -Be ¥2(¢) =0 (37)
0 BIZ—Z 0 T/JB(C) a,b
0 -G 0 gL(Q)
( GI I B ) &2 (¢) =0 (38)
0 B O 920 )|,
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Control design

Control design

Choosing B; = G and appropriate initial conditions the closed loop system (32) admits
as structural invariants the function C(xe) defined by (33) and

W= (\U1,0,7\U1)
i.e. Xe = X1

The dynamic controller we consider at the end is of the form

% = 0.0% + Guc (39)
Ye = G*Qcxe — Delc (40)
with xz(¢,0) = x1(¢,0) and D¢ = /(%22-

femto-st 62/75
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Control design

The closed loop system is equivalent to the system

}%‘ 0 ¢ o0 Lixq
2 [=| -9 D —G* LoXo (41)
% 0 g 0 QcXe

+ The operator 7, defined on

D(Ja) = {xe(@:t) € H" ((a,b),R2"") | ( o ) € ker We, xe(¢,0) = xi (¢, 0)}

€5.e

with WeT): We > 0 generates a contraction semigroup.
+ Choosing the initial conditions such that x¢(¢,0) = x¢(¢,0)

V(o ¢ (L1 + Qo)
P |\ —-G* —D¢ LoXo
ot
with boundary conditions 0 = W, ( ;‘Z’e ) with x;(a) = x1(a, t), xe(b, t) = x4(b, t) is
,e
asymptotically stable.
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Example: 1D wave propagation of sound in a wave guide

The state variables are the kinetic momentum (¢, t) of the air and its volumetric
expansion (¢, t) defined on ¢ € [0, L]. The total energy of the system is given by:

b 1
Heon =5 [ (Lo + L e ) de
2Ja \Ho Xs
with 1o the average mass density and x s the adiabatic compressibility factor. The
co-state variables are
( e ): N (e :( v(¢, 1) )
e SAI(SL)) P, 1)

namely the velocity v(¢, t) and the pressure P(¢, t). The resulting model is given by:
o (rN_( o -& Sl 0
m(¢>_<—§ 0 o +(1)u (42)
ir
y=(0 1) ¥4 (43)
Ho

This model fits with the general port Hamiltonian formulation (56) with

1 1
Py=0,P1=1,Po=0,L1=—,L2 = —
Ho Xs

T

T3]
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®
Example: 1D wave propagation of sound in a wave guide
The controller defined by
OXe %
Bt = 0L+ S (44)
a(L &
yo = -2 .- 02 U0%) ¢ 5)

allows to transform the original system into

2

od
E(Cv )= DT@(CJ)

by using the power preserving interconnection u = —ye, uc = y.
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Example sl

Figure: Open loop time response to initial conditions on x, with reflective boundary conditions.
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Example

Figure: Closed loop time response to initial conditions on x, with reflective boundary conditions
(with the dynamic feedback (44)).

&mto-st
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Example

Figure: Time response to boundary input on x> with reflective boundary condition at point L in open
loop.
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Example %

Figure: Time response to boundary input on x, with reflective boundary condition at point L in open
loop (with the dynamic feedback (44)).
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Example %

N N

Figure: Time response to boundary input on x> with reflective boundary condition at point L in
closed loop with a 10% (top) and 200% (bottom) variation of £4.
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Example

The control strategy is now applied to the boundary control of the 2D wave equation

Clouer |
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Conclusion and future work

Conclusion

In this talk we have:

Given an overview on control design by energy shaping.

Discussed the control design using structural invariants in the boundary control
case.

.

Discussed the distributed control design using structural invariants in the linear
infinite dimensional case.

Applied it to the 1D wave equation and checked the performances on the 2D wave
equation.
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Conclusion and future work

Conclusion

In this talk we have:

+ Given an overview on control design by energy shaping.

Discussed the control design using structural invariants in the boundary control
case.

.

Discussed the distributed control design using structural invariants in the linear
infinite dimensional case.

Applied it to the 1D wave equation and checked the performances on the 2D wave
equation.

Ongoing and future work

» Extension to the under actuated case.
» Use of observers to get rid of initialisation issues.
« Link with backstepping approaches.
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Thank you for your attention !
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