
Tutorial 1: Modeling

Finite dimensional Mass-spring system (MS): We consider the mass
spring of Figure (1).
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Figure 1: Mass spring system.

• What are the extensive variables characterizing this system ?

• Give the expression of the total energy as a function of the energy
variables.

• Write the balance equations associated to this system.

• Give the port Hamiltonian representation of this system considering
the external force at point 1 and the velocity at point 0 as inputs.
What are the conjugated output ?

Chain of MS: We consider now the interconnexion of two MS systems as
described in Figure 2.
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Figure 2: Interconnexion of MSD systems.

• Give the port Hamiltonian representation of each subsystem consider-
ing the same input/output than in the previous subsection.

• Write the interconnexion relations between the two subsystems.
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• Give the port Hamiltonian representation of the overall system.

• Extend this representation to a n-elements chain.

Finite dimensional Mass-spring damper system (MSD) : We con-
sider now that each element contains a viscous damping term.

• Give the port Hamiltonian representation of each subsystem consider-
ing the general form:

ẋ = [J(x)−R(x)]
∂H

∂x
(x) + [G(x)− P (x)]u

y = [G(x) + P (x)]>
∂H

∂x
(x) + [M(x) + S(x)]u

(1)

where the matrices J(x), M(x), R(x), P (x), S(x) satisfy the skew-
symmetry conditions J(x) = −J>(x), M(x) = −M>(x), and the non
negativity condition(

R(x) P (x)
P>(x) S(x)

)
≥ 0, x ∈ X (2)

• Write the corresponding energy balance equation.

• Give the port Hamiltonian representation of two interconnected sub
systems.

• Extend this representation to a n-elements chain.

Longitudinal vibration of a beam: We consider now the longitudinal
deformation of a beam of length L. u(z, t) represents the deformation of the
beam, with z the spatial variable, z ∈ [0, L]. The properties of the beam are
defined by the distributed mass ρ and the Young modulus E (A is the cross
section of the beam). The strain of the beam ε is defined by ε = ∂u

∂z (z, t). We
consider the stress σ(z, t) depends linearly to the strain σ(z, t) = Eε(z, t).
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Figure 3: Local description of a beam.

• By analogy with the previous subsections, define the extensive vari-
ables associated with this system.

• Give the expression of the total energy of this system.

• Define the co-energy variables and deduce from the balance equations
the port Hamiltonian representation of this system.

• Write the balance equation on the energy and the conditions associated
with the skew symmetry of the differential operator.
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