Tutorial 2

1. Consider the following p.d.e.

$$
\begin{equation*}
\frac{\partial w}{\partial t}(\zeta, t)=c \frac{\partial w}{\partial \zeta}(\zeta, t), \quad \zeta \in[0, \ell], \quad t \geq 0 \tag{1}
\end{equation*}
$$

with boundary conditions

$$
\begin{equation*}
w(0, t)=0 \quad t \geq 0 \tag{2}
\end{equation*}
$$

We take as units for t, ζ and w, seconds, meter, and meter, respectively.
(a) Determine the dimension of c.
(b) Write the p.d.e. (1) with boundary condition (2) as the abstract differential equation $\dot{x}(t)=A x(t)$. Determine A and its domain $D(A)$.
As state space you may take $X=L^{2}(0, \ell)$.
(c) We assume that $c<0$. Show that your abstract differential equation possesses a unique solution for every initial condition $w_{0}(\zeta) \in L^{2}(0, L)$. The solution is contractive, i.e., $\|x(t)\| \leq\left\|w_{0}\right\|$.
(d) Show that $w(\zeta, t)=f(\zeta+c t)$ satisfies (1). Here f is a smooth function.
May we add ζ and $c t$?
(e) How must we choose f such that the initial and the boundary condition are satisfied?
(f) What will be your weak solution?
2. Show that for a pH system the following power balance equation holds:

$$
\dot{H}(t)=\frac{1}{2}\left[(\mathcal{H} x)^{T}(\zeta, t) P_{1}(\mathcal{H} x)(\zeta, t)\right]_{a}^{b}
$$

3. Consider once more the p.d.e. (1). We add now the following boundary condition

$$
\begin{equation*}
\alpha w(0, t)+\beta w(\ell, t)=0 \quad t \geq 0 \tag{3}
\end{equation*}
$$

with $\alpha, \beta \in \mathbb{R}$.
(a) Show that (1), (3) is a port-Hamiltonian system.
(b) Determine all pairs $(\alpha, \beta) \in \mathbb{R}^{2}$ for which there exists a unique weak solution not increasing in the energy.
(c) Determine all pairs $(\alpha, \beta) \in \mathbb{R}^{2}$ for which there exists a unique weak solution with constant energy.
4. We consider the model of the vibrating string and study the d'Alembert solution. Not to complicate things further, we take $\zeta \in \mathbb{R}$ and so there are no boundary conditions. Thus we consider

$$
\begin{equation*}
\frac{\partial^{2} w}{\partial t^{2}}(\zeta, t)=c^{2} \frac{\partial^{2} w}{\partial \zeta^{2}}(\zeta, t), \quad \zeta \in \mathbb{R}, \quad t \geq 0 \tag{4}
\end{equation*}
$$

(a) Show that

$$
\begin{equation*}
w(\zeta, t)=f(\zeta+c t)+g(\zeta-c t) \tag{5}
\end{equation*}
$$

is a solution of (4). Here f and g are arbitrary smooth functions.
(b) How are f and g related to the initial conditions, $w(\zeta, 0)$ and $\frac{\partial w}{\partial t}(\zeta, 0) ?$
(c) Assume that $\frac{\partial w}{\partial t}(\zeta, 0)=0$ for all ζ and $w(\zeta, 0)=\cos (\zeta)$ for $\zeta \in$ $[-\pi / 2, \pi / 2]$ and zero elsewhere. Sketch the solution (5) for a $t>0$.

