## Tutorial 4

1. Consider the following p.d.e.

$$
\begin{equation*}
\frac{\partial w}{\partial t}(\zeta, t)=-c \frac{\partial w}{\partial \zeta}(\zeta, t), \quad \zeta \in[0, \ell], \quad t \geq 0 \tag{1}
\end{equation*}
$$

with $c>0$ and boundary control

$$
\begin{equation*}
w(0, t)-w(\ell, t)=u(t) \quad t \geq 0 \tag{2}
\end{equation*}
$$

and boundary measurement

$$
\begin{equation*}
w(\ell, t)=y(t) \quad t \geq 0 \tag{3}
\end{equation*}
$$

(a) Determine the transfer function.
(b) Is the transfer function positive real?
2. Consider a vibrating string of length $\ell$ meters whose position is fixed at the left end. The velocity is measured at at the right end at which there is also a force applied. The model is given as

$$
\begin{align*}
\rho \frac{\partial^{2} w}{\partial t^{2}}(\zeta, t) & =T \frac{\partial^{2} w}{\partial \zeta^{2}}(\zeta, t) \\
w(\zeta, 0) & =w_{0}(\zeta), \quad \frac{\partial w}{\partial t}(\zeta, 0)=w_{1}(\zeta)  \tag{4}\\
\frac{\partial w}{\partial t}(0, t) & =0, \quad \frac{\partial w}{\partial t}(\ell, t)=y(t), \quad \frac{\partial w}{\partial \zeta}(\ell, t)=u(t) .
\end{align*}
$$

$w(\zeta, t)$ represents the deviation from the rest position at spatial point $\zeta \in[0,1]$ and time $t \geq 0, w_{0}(\zeta)$ the initial profile and $w_{1}(\zeta)$ is the initial velocity. Furthermore, $\rho$ is the positive constant mass density and $T$ is the constant Young's modulus.
(a) Determine the transfer function of (4).
(b) Functions like $\exp$, sin and cos can only work on unit-free variables. Check that this happens in the expression of your transfer function.
(c) Determine the unit of the transfer function in two ways.

