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Introduction

As before, we write our p.d.e. as the abstract differential equation
on the state space X

ẋ(t) = Ax(t), x(0) = x0.

We assume that this equation has a unique weak solution for every
initial condition x0 ∈ X.
Definition The system ẋ(t) = Ax(t) is exponentially stable, if
there exists a M ≥ 1, ω < 0 such that for all x0 ∈ X the following
holds

‖x(t)‖ ≤Meωt‖x0‖, t ≥ 0.
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ẋ(t) = Ax(t), x(0) = x0.

We assume that this equation has a unique weak solution for every
initial condition x0 ∈ X.
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Definition The system ẋ(t) = Ax(t) is exponentially stable, if
there exists a M ≥ 1, ω < 0 such that for all x0 ∈ X the following
holds

‖x(t)‖ ≤Meωt‖x0‖, t ≥ 0.



Exponential stability for pH-systems

We return to our homogeneous pH system. That is, we consider

∂x

∂t
(ζ, t) = P1

∂

∂ζ
[H(ζ)x(ζ, t)] + P0 [H(ζ)x(ζ, t)] (1)

with the boundary condition

WB

[
(Hx) (b, t)
(Hx) (a, t)

]
= 0, (2)

As before/always we assume that the following hold:

I P1 is an invertible, symmetric real n× n matrix;

I P0 is an anti-symmetric real n× n matrix;

I For all ζ ∈ [a, b] the n× n matrix H(ζ) is real, symmetric,
and mI ≤ H(ζ) ≤MI, for some M,m > 0 independent of ζ;

I WB be a full rank real matrix of size n× 2n.



Exponential stability for pH-systems

Theorem Consider the operator A associated with (1) and (2).
Furthermore, we assume that next to the standard conditions the
following is satisfied;

I H is continuously differentiable on the interval [a, b].

Then, if for some positive constant k one of the following
conditions is satisfied for all x0 ∈ D(A)

〈Ax0, x0〉H + 〈x0, Ax0〉H ≤ −k‖(Hx0)(b)‖2 (3)

〈Ax0, x0〉H + 〈x0, Ax0〉H ≤ −k‖(Hx0)(a)‖2, (4)

the system is exponentially stable. �



Exponential stability for pH-systems

Since
Ḣ(t)|t=0 = 〈Ax0, x0〉H + 〈x0, Ax0〉H,

we can formulate the condition

〈Ax0, x0〉H + 〈x0, Ax0〉H ≤ −k‖(Hx0)(b)‖2

equivalently as

Ḣ(t)|t=0 ≤ −k‖(Hx0)(b)‖2,

for all initial conditions x0 ∈ D(A).
Similarly, the condition at ζ = a.
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Exponential stability for pH systems

Example: Damped wave equation
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∂2w

∂t2
(ζ, t) =

1

ρ(ζ)

∂

∂ζ

[
T (ζ)

∂w

∂ζ
(ζ, t)

]
∂w

∂t
(1, t) = −α · T (1)∂w

∂ζ
(1, t),

0 =
∂w

∂t
(0, t)

Here is α a positive constant.

We assume that ρ and T are
continuous differentiable.
We check the contraction property. The condition on P ’s , H, and
number of boundary conditions are satisfied (check) and so we
calculate the power balance (check)

Ḣ(t) = −α
[
T (1)

∂w

∂ζ
(1, t)

]2
≤ 0.

So we have a contractive solution for every initial condition in X.
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Exponential stability for pH systems

To conclude exponential stability, we need that

Ḣ(t) ≤ −k‖(Hx)(1, t)‖2 = −k

[(
T (1)

∂w

∂ζ
(1, t)

)2

+
∂w

∂t
(1, t)2

]

Since we have that ∂w
∂t (1, t) = −α · T (1)

∂w
∂ζ (1, t), we find that(

T (1)
∂w

∂ζ
(1, t)

)2

+
∂w

∂t
(1, t)2

=

(
T (1)

∂w

∂ζ
(1, t)

)2

+ α2

(
T (1)

∂w

∂ζ
(1, t)

)2

= (1 + α2)

(
T (1)

∂w

∂ζ
(1, t)

)2

.

Combining this with the result on the previous slide, gives
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Exponential stability for pH systems

Ḣ(t) = − α
[
T (1)

∂w

∂ζ
(1, t)

]2
= − α · 1

1 + α2

[(
T (1)

∂w

∂ζ
(1, t)

)2

+
∂w

∂ζ
(1, t)2

]
=
−α

1 + α2
‖(Hx)(1, t)‖2.

Thus we can conclude exponential stability. �


