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Introduction

Next we we formulate and study the partial differential equations
with a control and observation term.
Before we do so, we first reconsider the finite-dimensional case.
Let the ordinary differential equation be given

ÿ(t) + 4ẏ(t) + 8y(t) = −3u(t),

where u is the input, and y is the output of this system.

With the state x(t) =
(
y(t)
ẏ(t)

)
this ODE can be written in the state

space form

ẋ(t) =

(
0 1
−8 −4

)
x(t) +

(
0
−3

)
u(t)

y(t) =
(
1 0

)
x(t),
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ẏ(t)

)
this ODE can be written in the state

space form
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Introduction

We can rewrite the o.d.e. ÿ(t) + 4ẏ(t) + 8y(t) = −3u(t), as

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t).

It is well-known that this inhomogeneous state-space equation
possesses the unique solution given by

x(t) = eAtx0 +

∫ t

0
eA(t−τ)Bu(τ)dτ

y(t) = CeAtx0 +

∫ t

0
CeA(t−τ)Bu(τ)dτ,

where x0 is the initial condition.
Question: Can we do the same for p.d.e’s?
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Inputs

Similar as writing a homogeneous PDE into an abstract differential
equation, we can write an inhomogeneous PDE into an abstract
differential equation with an input term. We show this in an
example first.



Inputs, example

Example Consider the controlled p.d.e. on the spatial interval [0, 1]
in which c > 0

∂x

∂t
(ζ, t) = c

∂x

∂ζ
(ζ, t) + u(t)

x(1, t) = 0.

For u = 0, we have seen in that the p.d.e. can be written on the
state space X = L2(0, 1) as ẋ(t) = Ax(t) with

Ax = c
dx

dζ
,

D(A) =
{
x ∈ L2(0, 1) | x ∈ H1(0, 1) and x(1) = 0

}
.
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Inputs

So

∂x

∂t
(ζ, t)︸ ︷︷ ︸ = c

∂x

∂ζ
(ζ, t)︸ ︷︷ ︸+u(t)

ẋ(t) = Ax(t)

+Bu(t)

As for the transformation from o.d.e’s to state space equations,
the input is added to the right hand-side.
So Bu is defined as

(Bu)(ζ) = 1(ζ) · u,

where 1(ζ) is the function identically equal to one.
So B is the mapping, which maps the scalar u to the function
1(ζ) · u (u times the constant-one function).
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ẋ(t) = Ax(t) +Bu(t)

As for the transformation from o.d.e’s to state space equations,
the input is added to the right hand-side.

So Bu is defined as

(Bu)(ζ) = 1(ζ) · u,

where 1(ζ) is the function identically equal to one.
So B is the mapping, which maps the scalar u to the function
1(ζ) · u (u times the constant-one function).



Inputs

So

∂x

∂t
(ζ, t)︸ ︷︷ ︸ = c

∂x

∂ζ
(ζ, t)︸ ︷︷ ︸+u(t)
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Intermezzo

We already defined the class of bounded, linear operators from the
Hilbert space X to X. This set we denoted by L(X).

Defnition Let Z and W be Hilbert spaces, we define Q to be a
bounded, linear operator from Z to W if

I Linear: Q(αz1 + βz2) = αQz1 + βQz2 for all z1, z2 ∈ Z,
α, β ∈ R, and

I Bounded: There exists a q ≥ 0 such that for all z ∈ Z

‖Qz‖ ≤ q‖z‖.

Note that the first norm is the norm of W , whereas the second
norm is that of Z.
The set of all bounded, linear operators from Z to W is denoted
by L(Z,W ). �
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Bounded, linear B

Since the constant functions are elements of the state space X, we
see that B maps the scalar u ∈ R = U (the input values) into the
state space.

To see if B is in L(U,X) we have to check two conditions.

I Linear: For all u1, u2 ∈ U , α, β ∈ R, there holds

B(αu1 + βu2) = 1(ζ) · (αu1 + βu2)

= α1(ζ) · u1 + β 1(ζ) · u2 = αBu1 + βBu2.

I Bounded:

‖Bu‖2 =
∫ 1

0
[1(ζ) · u]2dζ = 1 · u2.

So B ∈ L(U,X) �
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Second example, inputs

Before we study existence of weak and classical solutions for the
inhomogeneous equation, we treat another example first.

Example Consider the freely hanging string with two distributed
forces working on it

∂2w

∂t2
(ζ, t) = c2

∂2w

∂ζ2
(ζ, t) + 1[ 1

8
, 3
8
](ζ)u1(t) + 1[ 4

7
, 6
7
](ζ)u2(t),

∂w

∂ζ
(0, t) = 0 =

∂w

∂ζ
(1, t), t ≥ 0,

w(ζ, 0) = w0(ζ),
∂w

∂t
(ζ, 0) = w1(ζ).

Here by 1[a,b] we mean the function which is identically one when
ζ ∈ [a, b] and zero elsewhere. So we can put a force onto the string
at two places. Namely, uniformly in the interval [18 ,

3
8 ] and

uniformly in the interval [47 ,
6
7 ]. This can be done independently of

each other.
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Second example, inputs

This is a port-Hamiltonian system with constant coefficients. As
state we choose

x(t) =

[∂w
∂t (·, t)
∂w
∂ζ (·, t)

]
.

ẋ(t) =
∂

∂t

[∂w
∂t (·, t)
∂w
∂ζ (·, t)

]
=

[
∂2w
∂t2

(·, t)
∂2w
∂t∂ζ (·, t)

]
=

[
c2 ∂

2w
∂ζ2

(·, t)
∂2w
∂ζ∂t(·, t)

]
+

[
1[ 1

8
, 3
8
](·)u1(t) + 1[ 4

7
, 6
7
](·)u2(t)

0

]

=

[
0 1
1 0

]
∂

∂ζ

([
1 0
0 c2

] [∂w
∂t (·, t)
∂w
∂ζ (·, t)

])
+[

1[ 1
8
, 3
8
](·)u1(t) + 1[ 4

7
, 6
7
](·)u2(t)

0

]
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Second example, inputs

So we can write the p.d.e. with inputs as:

ẋ(t) =

[
0 1
1 0

]
∂

∂ζ

([
1 0
0 c2

] [∂w
∂t (·, t)
∂w
∂ζ (·, t)

])
+[

1[ 1
8
, 3
8
](·)u1(t) + 1[ 4

7
, 6
7
](·)u2(t)

0

]
.

=

Ax(t)+??

with

Ax =

[
0 1
1 0

]
∂

∂ζ

([
1 0
0 c2

])
x

D(A) ={x ∈ L2((0, 1);R2) | x ∈ H1((0, 1);R2), x2(1) = 0 = x2(0)}.

We have two inputs. So if we define



Second example, inputs

So we can write the p.d.e. with inputs as:
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Second example, inputs

(Bu)(ζ) = b1(ζ)u1 + b2(ζ)u2,

with u = ( u1u2 ) ∈ R2, and b1(ζ) = 1[ 1
8
, 3
8
](ζ), b2(ζ) = 1[ 4

7
, 6
7
](ζ).

Then

ẋ(t) =

[
0 1
1 0

]
∂

∂ζ

([
1 0
0 c2

] [∂w
∂t (·, t)
∂w
∂ζ (·, t)

])
+[

1[ 1
8
, 3
8
](·)u1(t) + 1[ 4

7
, 6
7
](·)u2(t)

0

]
.

=Ax(t) +Bu(t).

It is not hard to show that B ∈ L(R2;X) where
X = L2((0, 1);R2). �
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Existence of solutions

The following theorem shows that if we have existence and
uniqueness of solutions when u = 0, i.e, the homogeneous
situation, then that implies existence and uniqueness for a very
large class of inputs.

By L1
loc([0,∞);U) we denote the set of all functions from [0,∞)

to U which satisfy
∫ t1
0 ‖u(t)‖dt <∞ for all t1 > 0. Finally, by

C1([0,∞);U) we denote the set of continuously differentiable
functions from [0,∞) to U .
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Existence of solutions

Theorem Consider on the state space X the inhomogeneous
abstract differential equation

ẋ(t) = Ax(t) +Bu(t), x(0) = x0. (1)

Assume that the following holds;

I The homogeneous equation ẋ(t) = Ax(t), x(0) = x0 has for
every x0 ∈ X a unique weak solution in X;

I For the input operator there holds B ∈ L(U,X).

Under these conditions the inhomogeneous equation(1) has for
every x0 ∈ X and every u ∈ L1

loc([0,∞);U) a unique weak
solution.
Furthermore, when u ∈ C1([0,∞);U) and x0 ∈ D(A), then this
weak solution is the unique classical solution of (1).



Remarks

The weak solution is given by

x(t) = T (t)x0 +

∫ t

0
T (t− s)Bu(s)ds

with T (t) the C0-semigroup associated to A,D(A).

In the examples in this part we applied a control within the spatial
domain. However, we could have applied a control at the
boundary. When doing so, we cannot rewrite this system in our
standard form ẋ(t) = Ax(t) +Bu(t).
This is general the case when controlling a p.d.e. via its boundary.
Thus systems with control at the boundary form a new class of
systems, and are introduced later. We first add outputs to the
input-state equation treated in this section.
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Outputs

In the previous part we have added an input function to our
system. Now additionally an output is added. As often, we begin
with an example. Therefore we take our vibrating string example
and add a measurement.

∂2w

∂t2
(ζ, t) = c2

∂2w

∂ζ2
(ζ, t) + 1[ 1

8
, 3
8
](ζ)u1(t) + 1[ 4

7
, 6
7
](ζ)u2(t),

∂w

∂ζ
(0, t) = 0 =

∂w

∂ζ
(1, t), t ≥ 0,

w(ζ, 0) = w0(ζ),
∂w

∂t
(ζ, t) = w1(ζ)

y(t) =

∫ 2
3

1
3

∂w

∂t
(ζ, t)dζ.

So we can apply a force on the string at two places and we
measure the average velocity on the interval [13 ,

2
3 ].
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Outputs, example

In this system the input space is R2 and the state space X equals
L2((0, 1);R2) and the state is

x(t) =

[∂w
∂t (·, t)
∂w
∂ζ (·, t)

]
.

The state space has the inner product

〈f, g〉 =
∫ 1

0
f1(ζ)g1(ζ) + f2(ζ)g2(ζ)dζ
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Outputs, example

Thus

〈f, x(t)〉 =
∫ 1

0
f1(ζ)

∂w

∂t
(ζ, t) + f2(ζ)
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(ζ, t)dζ

So

y(t) =

∫ 2
3

1
3

∂w

∂t
(ζ, t)dζ = 〈

[
1[ 1

3
, 2
3
](·)

0

]
, x(t)〉

=: Cx(t).

From this it follows easily that C ∈ L(X,R).
If the weak solution exists of the state-differential equation
ẋ(t) = Ax(t) +Bu(t), then x(t) ∈ X for every t ≥ 0, and thus the
output is well-defined.
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Theorem

Consider on the state space X, input space U and output space Y
the abstract system

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 (2)

y(t) = Cx(t) +Du(t). (3)

Assume that the following holds;

I The equation ẋ(t) = Ax(t) +Bu(t), x(0) = x0 has for the
given x0 ∈ X and input function u(t) ∈ L1

loc((0,∞);U) a
unique weak solution in X;

I The output operator C is in L(X,Y )

I The feedthrough operator D is in L(U, Y )

Under these conditions the output equation (3) is well-defined.



Theorem, continued

The solution is given as

y(t) = CT (t)x0 +

∫ t

0
CT (t− s)Bu(s)ds+Du(s).

If D = 0, then y(t) is a continuous function. �



Boundary control systems

We now consider p.d.e’s with control and observation at the
boundary.
We first explain the idea by means of the controlled transport
equation.

Consider the following system

∂x

∂t
(ζ, t) = c

∂x

∂ζ
(ζ, t), ζ ∈ [0, 1], t ≥ 0

x(ζ, 0) = x0(ζ), ζ ∈ [0, 1]

x(1, t) = u(t), t ≥ 0.

with an input u ∈ L1
loc(0,∞) and c > 0.

This cannot be written as ẋ(t) = Ax(t) +Bu(t) with a bounded
B.
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Boundary control systems, example

Let u(t) be smooth and let x(·, t) be a classical solution of

∂x

∂t
(ζ, t) = c

∂x

∂ζ
(ζ, t), x(1, t) = u(t).

For v(·, t) defined as

v(ζ, t) = x(ζ, t)− u(t),

we obtain the following p.d.e.

∂v

∂t
(ζ, t) = c

∂v

∂ζ
(ζ, t)− u̇(t), ζ ∈ [0, 1], t ≥ 0

v(1, t) = 0, t ≥ 0.

We have seen this p.d.e. (for v) can be written in the standard form

v̇(t) = Av(t) +Bũ(t)

for ũ = u̇. We know the existence of solutions of this one.
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Boundary control systems, example

Now we make this more abstract.

We take as state space X = L2(0, 1), and introduce the “almost
A-operator”

Af = c
df

dζ
,

with domain D(A) = {f ∈ X | ḟ ∈ X}. Furthermore, we define

Bf = f(1).

with D(B) = D(A).
With this the boundary control p.d.e. is formulated as

ẋ(t) = Ax(t), x(0) = x0,

Bx(t) = u(t).



Boundary control systems, example

Now we make this more abstract.
We take as state space X = L2(0, 1), and introduce the “almost
A-operator”

Af = c
df

dζ
,

with domain D(A) = {f ∈ X | ḟ ∈ X}.
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with domain D(A) = {f ∈ X | ḟ ∈ X}. Furthermore, we define

Bf = f(1).

with D(B) = D(A).

With this the boundary control p.d.e. is formulated as
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Boundary control systems, definition

Definition The abstract system

ẋ(t) = Ax(t), x(0) = x0,

Bx(t) = u(t).

with A : D(A) ⊂ X 7→ X, u(t) ∈ U , and B : D(A) ⊂ X 7→ U

is a
boundary control system if the following holds:

a. The abstract differential equation

ẋ(t) = Ax(t), x(0) = x0

has for all x0 ∈ X a unique weak solution in X. Here A is
defined as the operator A : D(A) 7→ X with
D(A) = D(A) ∩ ker(B)

Ax = Ax for x ∈ D(A).

b. There exists a B ∈ L(U,X) such that Bu ∈ D(A) for all
u ∈ U and

BBu = u, u ∈ U.
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b. There exists a B ∈ L(U,X) such that Bu ∈ D(A) for all
u ∈ U and

BBu = u, u ∈ U.



Boundary control systems, comments

Part b. of the definition is equivalent to the fact that the range of
the operator B equals U . So it allows us to choose every value in
U for u(t). In other words, the values of inputs are not restricted,
which is a logical condition for inputs.

Part a. of the definition guarantees that the system possesses a
unique solution when the input term is absent, i.e., when the input
is identically zero. In other words, the homogeneous equation is
well-posed. This is also a logical condition, since we would like
that the trivial input (u = 0) is possible.
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Boundary control systems, solutions

Definition We say that the function x(t) is a classical solution of
the boundary control system

ẋ(t) = Ax(t), x(0) = x0,

Bx(t) = u(t).

if x(t) is a continuously differentiable function, x(t) ∈ D(A) for all
t, and x(t) satisfies the equations for all t. �

For a general boundary control system, we can apply a similar trick
as the one applied in the example. This is the subject of the
following theorem.
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Boundary control systems, Theorem

Theorem Consider the boundary control system

ẋ(t) = Ax(t), x(0) = x0,
Bx(t) = u(t),

(4)

satisfying the conditions of the Definition and the abstract Cauchy
equation

v̇(t) = Av(t)−Bu̇(t) + ABu(t),

v(0) = v0.
(5)

Assume that u ∈ C2([0,∞);U).

If v0 = x0 −Bu(0) ∈ D(A), then
the classical solutions of (4) and (5) are related by

v(t) = x(t)−Bu(t).

Furthermore, the classical solution of (4) is unique. �
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Boundary control systems, Remark

Hence by applying a simple trick, we can reformulate a p.d.e. with
boundary control into a p.d.e. with internal control. The price we
have to pay is that u has to be smooth. So in particular, not an
arbitrary function in L1, but a more smooth function. Namely, it
should have its derivative in L1.

The proof is quite insightful.
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Boundary control systems, Proof

Suppose that v(t) is a classical solution of (5). Then
v(t) ∈ D(A) ⊂ D(A), Bu(t) ∈ D(B), and so

Bx(t) = B[v(t) +Bu(t)] = Bv(t) +BBu(t) = u(t),

where we have used that v(t) ∈ D(A) ⊂ kerB and equation
BBu = u.

Furthermore, we have

ẋ(t) = v̇(t) +Bu̇(t)

= Av(t)−Bu̇(t) + ABu(t) +Bu̇(t) by (5)

= Av(t) + ABu(t)

= A(v(t) +Bu(t)) = Ax(t).

Thus, if v(t) is a classical solution of (5), then x(t) = v(t) +Bu(t)
is a classical solution of (4).
The other implication is proved similarly. The uniqueness of the
classical solutions of (4) follows from the uniqueness of the
classical solutions of (5).
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Boundary control systems, boundary outputs

If for a boundary control system the output is given by

y(t) = Cx(t).

with C : D(A) 7→ Y , then this output is well-defined for classical
solutions.



Boundary inputs and outputs, example

Example Consider the system

∂x

∂t
(ζ, t) = c

∂x

∂ζ
(ζ, t), ζ ∈ [0, 1], t ≥ 0

u(t) = x(1, t), t ≥ 0,

with c > 0.

Now we add the output equation

y(t) = x(0, t).

We can write this in the form y(t) = Cx(t) with

Cf = f(0).

Since this is well-defined (and linear) on
D(A) = {f ∈ L2(0, 1) | f ∈ H1(0, 1)}, our previous results give
that the above system has well-defined (classical) solutions. �
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Boundary control pH-systems

The port-Hamiltonian system with control and observation is given
by

∂x

∂t
(ζ, t) = P1

∂

∂ζ
[H(ζ)x(ζ, t)] + P0[Hx(ζ, t)]

u(t) = WB,1

[
H(b)x(b, t)
H(a)x(a, t)

]
0 = WB,2

[
H(b)x(b, t)
H(a)x(a, t)

]
y(t) = WC

[
H(b)x(b, t)
H(a)x(a, t)

]
.

with P T1 = P1, invertible, P T0 = −P0, H(ζ)T = H(ζ),
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Boundary control pH-systems

I WB,1 is a m× 2n matrix. Hence there are m controls.

I WB :=
(
WB,1

WB,2

)
is a full rank real matrix of size n× 2n.

I WC is a k × 2n matrix. Hence there are k outputs.

I The matrix
[
WB
WC

]
has rank n+ k. Hence you don’t measure

quantities that are set to zero, or are inputs.

We will write this as a boundary control system.
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Boundary control pH-systems

As discussed we choose the weighted L2-space X = L2
H((a, b);Rn)

equipped with the inner product

〈f, g〉H :=
1

2

∫ b

a
f(ζ)TH(ζ)g(ζ) dζ

as our state space.

The input space U equals Rm, and the output space Y equals Rk
We are now in the position to show that this controlled
port-Hamiltonian system is indeed a boundary control system.
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Boundary control pH-systems

We write the controlled pH system in the abstract form

ẋ(t) = Ax(t), x(0) = x0,

Bx(t) = u(t),

y(t) = Cx(t),

with

Ax = P1
∂

∂ζ
[Hx] + P0[Hx],

D(A) =
{
x ∈ L2((a, b);Rn) | Hx ∈ H1((a, b);Rn),

WB,2

[
H(b)x(b)
H(a)x(a)

]
= 0

}
,

Bx = WB,1

[
H(b)x(b)
H(a)x(a)

]
, and

Cx = WC

[
H(b)x(b)
H(a)x(a)

]
.



Boundary control pH-systems

So we have written the controlled port-Hamiltonian system in the
language of a boundary control system. It remains to show that
the conditions of our definition are satisfied.

Theorem Let A and B be given on the previous slide. If

〈Ax, x〉+ 〈x,Ax〉 ≤ 0 for all x ∈ D(A) ∩ kerB,

then the pH system is a boundary control system on X.
Furthermore, for the input u identically zero, the energy of the
solution, i.e. ‖x(t)‖2H = H(t), will not increase.
Furthermore, for classical solutions of the boundary control
problem, the output y(t) is well-defined. �
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Boundary control pH-systems, power balance

So for smooth controls and initial conditions, satisfying the
boundary conditions, we know that solutions of the
port-Hamiltonian system exist. Since the energy/Hamiltonian plays
an important within this class of systems, it is useful to have a
relation between the change of energy (power) and the external
signals input and output. In many examples there exists such a
relation. When we have n inputs and n outputs, a general formula
can be derived expressing this relation.



Boundary control pH-systems, power balance

We assume that WB =WB,1 or equivalently WB,2 = 0.
Furthermore we assume that we have n measurements, and define

PWB ,WC
=
(
W T
B W T

C

)−1(P1 0
0 −P1

)(
WB

WC

)−1
.

Theorem Consider our input-output pH system with WB and WC

full rank n× 2n matrices such that
[
WB
WC

]
is invertible.

If the n× n right-lower submatrix of PWB ,WC
is non-positive, then

for every u ∈ C2((0,∞);Rn), Hx(0) ∈ H1((a, b);Rn), and

u(0) =WB

[
Hx(b,0)
Hx(a,0)

]
, the system has a unique (classical) solution,

with Hx(t) ∈ H1((a, b);Rn). The output y(·) is continuous, and
the following balance equation is satisfied:

d

dt
‖x(t)‖2H =

1

2

[
uT (t) yT (t)

]
PWB ,WC

[
u(t)
y(t)

]
.
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Boundary control pH-systems, example

As an example we once more study the controlled transport
equation.
Example We consider the system

∂x

∂t
(ζ, t) =

∂x

∂ζ
(ζ, t), ζ ∈ [0, 1], t ≥ 0

x(ζ, 0) = x0(ζ), ζ ∈ [0, 1].

This system can be written in the pH-form by choosing n = 1,
P0 = 0, P1 = 1 and H = 1.

Since n = 1, we can either apply one control. By using the
boundary variables, the control is written as,

u(t) =
[
α β

] [x(1, t)
x(0, t)

]
.

Note that WB = (α, β) has full rank if and only if α2 + β2 6= 0.
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Boundary control pH-systems, example

We have a boundary control system with contractive weak
solutions for u ≡ 0 if α2 ≥ β2.

Now we add the output equation

y(t) =
[
c d

] [x(1, t)
x(0, t)

]
.

Since WC = [c d ] must have full rank, we find that c2 + d2 6= 0.

Furthermore, since
[
WB
WC

]
must be invertible, we find that

αd− βc 6= 0.
The matrix PWB ,WC

is given by

PWB ,WC
=

1

(αd− βc)2

[
d −c
−β α

] [
1 0
0 −1

] [
d −β
−c α

]
=

1

(αd− βc)2

[
d2 − c2 −dβ + cα
−dβ + cα β2 − α2

]
.
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Boundary control pH-systems, example

For the particular choice α = 1, β = 0 i.e. u(t) = x(1, t) and
c = 0, d = 1, that is y(t) = x(0, t), we find PWB ,WC

=
[
1 0
0 −1

]
, or

equivalently
d

dt
‖x(t)‖2H =

1

2

(
u(t)2 − y(t)2

)
.

Thanks
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