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Introduction

In this first part we have seen models of physical systems, like that
of the vibrating string

∂2w

∂t2
(ζ, t) =

1

ρ(ζ)

∂

∂ζ

[
T (ζ)

∂w

∂ζ
(ζ, t)

]
.

In this part we investigate existence of solutions for (linear,
time-invariant) partial differential equations.
We begin by identifying the state and state space.



Introduction: state and state space

Idea behind the state: The state is that which you have to know
now to predict/know the future behaviour.

Example

The state for the mass-spring-damper system

Mÿ(t) +Dẏ(t) +Ky(t) = 0

is the position: y(t) and momentum Mẏ(t) (or velocity ẏ(t)).
So if we have one mass, then the state space equals X = R2. �

What is the state for vibrating string

∂2w

∂t2
(ζ, t) =

1

ρ(ζ)

∂

∂ζ

[
T (ζ)

∂w

∂ζ
(ζ, t)

]
?



Introduction: state and state space for p.d.e.

As state for the vibrating string we can take

w(ζ, t) and
∂w

∂t
(ζ, t), ζ ∈ (0, 1)

or
∂w

∂ζ
(ζ, t) and ρ(ζ)

∂w

∂t
(ζ, t) ζ ∈ (0, 1).

or . . . . . .
Important: The state becomes/is a function of the spatial variable.
Hence the state space is a space consisting out of functions. For
instance, X = L2((a, b);R2).

L2((a, b);Rn) =
{
f : (a, b) 7→ Rn |

∫ b

a
‖f(ζ)‖2dζ <∞

}
.



More on L2((a, b);Rn)

L2((a, b);Rn) is a Hilbert space. That is

I There exists an inner product 〈·, ·〉 given by

〈f, g〉 =
∫ b

a
g(ζ)>f(ζ)dζ.

An inner product is a mapping from X ×X to R satisfying
I 〈αf + βh, g〉 = α〈f, g〉+ β〈h, g〉, α, β ∈ R;
I 〈f, g〉 = 〈g, f〉;
I For f 6= 0, 〈f, f〉 > 0.

I The norm ‖ · ‖ on an inner product space is given as
‖f‖2 = 〈f, f〉.

I If ‖fn − fm‖ → 0 as n,m→∞, then there exists an f ∈ X
such that ‖f − fn‖ → 0 as n→∞.



States

t

ς
t

x(ς,t)



Abstract state formulation

So we have now the idea that the state is (at every time) a
function of the spatial variable, but how to write a p.d.e. in a state
space form with such a state.
We consider an example first.



Example (Transport equation)

On the spatial domain [0, 1] consider the p.d.e.

∂w

∂t
(ζ, t) =

∂w

∂ζ
(ζ, t), ζ ∈ [0, 1], t ≥ 0,

w(1, t) = 0,

w(ζ, 0) = w0(ζ) (given).

�

As state x(t) we choose w at the time t.

I So x(t) = w(·, t), or (x(t)) (ζ) = w(ζ, t).

I As state space we choose L2(0, 1).

I If we now introduce ẋ(t) = ∂w
∂t (·, t) and Ax(t) = ∂w

∂ζ (·, t),
then the p.d.e. becomes

ẋ(t) = Ax(t).



State differential equation

So the p.d.e.

∂w

∂t
(ζ, t) =

∂w

∂ζ
(ζ, t), ζ ∈ [0, 1], t ≥ 0,

w(1, t) = 0,

w(ζ, 0) = w0(ζ) (given).

can with x(t) = w(·, t), ẋ(t) = ∂w
∂t (·, t), and Ax(t) := ∂w

∂ζ (·, t), be
written as the abstract differential equation:

ẋ(t) = Ax(t).

Where is the boundary condition?
Another problem: The derivative does not exist for all
x(t) ∈ L2(0, 1).



More on A

We see that A is a mapping working for a fixed t, i.e., so for
f ∈ L2(0, 1) we can define Af as

(Af) (ζ) =
df

dζ
(ζ)

We want that A maps into X, and so we only take the derivative
of f ∈ X when the answer lies in X again. So

D(A) = {f ∈ X | df
dζ
∈ X, f(1) = 0}.

Since the boundary condition is an essential part of the p.d.e. and
since it is a condition in the spatial direction, It is added to the
domain of A.



Summary on A

So the p.d.e.

∂w

∂t
(ζ, t) =

∂w

∂ζ
(ζ, t), ζ ∈ [0, 1], t ≥ 0,

w(1, t) = 0

w(ζ, 0) = w0(ζ)

is written as the abstract differential equation:

ẋ(t) = Ax(t), x(0) = x0 = w0

with x(t) = w(·, t) ∈ X = L2(0, 1), and

(Af) (ζ) =
df

dζ
(ζ) with domain:

D(A) = {f ∈ X | df
dζ
∈ X, f(1) = 0}.



Solutions of p.d.e.’s

Consider a p.d.e. such as

∂w

∂t
(ζ, t) =

∂w

∂ζ
(ζ, t), ζ ∈ [0, 1], t ≥ 0,

with boundary condition w(1, t) = 0. We say that w(ζ, t) is a
classical solution if it is differentiable with respect to the time and
spatial variable, satisfies the p.d.e., and satisfies the boundary
condition.
However, to study general existence of (linear) p.d.e.’s this concept
is not sufficient.



Solutions of p.d.e.’s

Consider the p.d.e.

∂w

∂t
(ζ, t) =

∂w

∂ζ
(ζ, t), ζ ∈ [0, 1], t ≥ 0, w(1, t) = 0.

We take a smooth test function φ(ζ) and integrate over the spatial
domain.∫ 1

0
φ(ζ)

∂w

∂t
(ζ, t)dζ =

∫ 1

0
φ(ζ)

∂w

∂ζ
(ζ, t)dζ (p.d.e.)

(int. by parts) = [φ(ζ)w(ζ, t)]10 −
∫ 1

0
φ̇(ζ)w(ζ, t)dζ

(b.c.) = − φ(0)w(0, t)−
∫ 1

0
φ̇(ζ)w(ζ, t)dζ.

If we take test functions with φ(0) = 0, we find



Solutions of p.d.e.’s

d

dt

∫ 1

0
φ(ζ)w(ζ, t)dζ =

∫ 1

0
φ(ζ)

∂w

∂t
(ζ, t)dζ = −

∫ 1

0
φ̇(ζ)w(ζ, t)dζ.

Integrate this expression with respect to time∫ 1

0
φ(ζ)w(ζ, tf )dζ−

∫ 1

0
φ(ζ)w(ζ, 0)dζ = −

∫ tf

0

∫ 1

0
φ̇(ζ)w(ζ, t)dζ.

You see there are no derivatives of w taken anymore.
Now we call w(ζ, t) a weak or mild solution of the p.d.e. if the
above equation is satisfied for all smooth test functions φ
satisfying φ(0) = 0.



Weak and classical solutions of p.d.e.’s

It is easy to see that a classical solution is always a weak solution,
but the converse need not to hold.
We will now study when a p.d.e. has a weak solution.
Note there is a difference between knowing the existence of a
solution and having the form/expression of the solution. The
expression for the solution can be hard/impossible to find. So we
concentrate on existence.
We concentrate on solutions satisfying the additional property that

‖x(t)‖ ≤ ‖x0‖ ∀t > 0 (contraction)



Existence of solution, contractions

Theorem (Lumer-Phillips)

Let A be a densely defined operator, then ẋ(t) = Ax(t), x(0) = x0
has for every x0 ∈ X a unique weak solution satisfying
‖x(t)‖ ≤ ‖x0‖ for all t ≥ 0 if and only if

1. 〈Ax0, x0〉+ 〈x0, Ax0〉 ≤ 0 for all x0 ∈ D(A).

2. The range of A− I is the whole of X.

�



Existence of solution, contractions

Example

Consider on the state space X = L2(0, 1) the operator A which is
given as

Af =
df

dζ
, ζ ∈ [0, 1]

with the domain

D(A) =
{
f ∈ L2(0, 1) | f is absolutely continuous,

df

dζ
∈ L2(0, 1) and f(1) = 0

}
.

Let us check the properties:



Example: Contractive weak solution

I A is densely defined in L2(0, 1).

I

〈Ax0, x0〉+ 〈x0, Ax0〉

=

∫ 1

0

dx0
dζ

(ζ)x0(ζ)dζ +

∫ 1

0
x0(ζ)

dx0
dζ

(ζ)dζ

=

∫ 1

0

d

dζ

[
x0(ζ)x0(ζ)

]
dζ

= |x0(ζ)|2
∣∣1
0

= 0− |x0(0)|2 ≤ 0.

I To see if the range of (A− I) is everything, we have for every
f ∈ L2(0, 1) to solve (A− I)z = f .



Example: Contractive weak solution

Solving (A− I)z = f means solving

dz

dζ
(ζ)− z(ζ) = f(ζ), ζ ∈ (0, 1)

with boundary condition z(1) = 0. The solution of this differential
equation with the given boundary value is

z(ζ) = −
∫ 1

ζ
eζ−τf(τ)dτ.



Example

Conclusion: The abstract differential equation

ẋ(t) = Ax(t), x(0) = x0

with

Af =
df

dζ
, ζ ∈ [0, 1]

and domain

D(A) =

{
f ∈ L2(0, 1) | df

dζ
∈ L2(0, 1) and f(1) = 0

}
possesses for every x0 ∈ X = L2(0, 1) a unique weak solution in X
which is not growing in norm. �



Port-Hamiltonian Systems

Homogeneous equation



The wave equation

∂2w

∂t2
(ζ, t) =

1

ρ(ζ)

∂

∂ζ

[
T (ζ)

∂w

∂ζ
(ζ, t)

]
.

We want to write this p.d.e. as a state differential equation,
ẋ(t) = Ax(t). Therefor we need

I The state x

I The state space X.

I The “system” operator A with its domain D(A).

To answer the first two questions, we look at the energy associated
to vibrating string.



The wave equation, energy

∂2w

∂t2
(ζ, t) =

1

ρ(ζ)

∂

∂ζ

[
T (ζ)

∂w

∂ζ
(ζ, t)

]
.

The energy is given by

H(t) =
1

2

∫ 1

0
ρ(ζ)

(
∂w

∂t
(ζ, t)

)2

+ T (ζ)

(
∂w

∂ζ
(ζ, t)

)2

dζ

with ρ is the mass density, and T is Young’s modulus.
This looks like an L2((0, 1);R2)-norm (squared) in the variables
∂w
∂t and ∂w

∂ζ .
This indicates a choice for the state variables. We choose

x1 := ρ
∂w

∂t
(the momentum), x2 :=

∂w

∂ζ
(the strain).



The wave equation, state

With the choice x1 := ρ
∂w

∂t
(the momentum), x2 :=

∂w

∂ζ
(the

strain), the energy

H(t) =
1

2

∫ 1

0
ρ(ζ)

(
∂w

∂t
(ζ, t)

)2

+ T (ζ)

(
∂w

∂ζ
(ζ, t)

)2

becomes

H(t) =
1

2

∫ 1

0

[
x1(ζ, t)
x2(ζ, t)

]T [ 1
ρ(ζ) 0

0 T (ζ)

] [
x1(ζ, t)
x2(ζ, t)

]
dζ.



The wave equation, state and state space

Based on the (quadratic) expression of the energy

H(t) =
1

2

∫ 1

0

[
x1(ζ, t)
x2(ζ, t)

]T [ 1
ρ(ζ) 0

0 T (ζ)

] [
x1(ζ, t)
x2(ζ, t)

]
dζ,

we choose as state space

X = L2((0, 1);R2)

with inner product

〈f, g〉X =
1

2

∫ 1

0

[
f1(ζ)
f2(ζ)

]T [ 1
ρ(ζ) 0

0 T (ζ)

] [
g1(ζ)
g2(ζ)

]
dζ

=
1

2

∫ 1

0
f(ζ)>H(ζ)g(ζ)dζ.



The wave equation, state and state space

With the inner product

〈f, g〉X =
1

2

∫ 1

0
f(ζ)>H(ζ)g(ζ)dζ

we see that ‖f‖2X is precisely the energy.
So our state X is also called the energy space, i.e, the space
consisting of all states/shapes/· · · · · · with finite energy.
Next we rewrite the p.d.e. model of the vibrating string in our
state variables.



The wave equation, state differential equation

∂2w

∂t2
(ζ, t) =

1

ρ(ζ)

∂

∂ζ

[
T (ζ)

∂w

∂ζ
(ζ, t)

]

With the state variables x1 = ρ∂w∂t and x2 =
∂w
∂ζ we can write the

above p.d.e. as

∂

∂t

[
x1
x2

]
(ζ, t) =

[
ρ(ζ)∂

2w
∂t2

(ζ, t)

∂2w
∂t∂ζ (ζ, t)

]
=

[
∂
∂ζ

[
T (ζ)∂w∂ζ (ζ, t)

]
∂
∂ζ

[
∂w
∂t

]
(ζ, t)

]

=

[
0 1
1 0

]
∂

∂ζ


[ 1
ρ(ζ) 0

0 T (ζ)

]
︸ ︷︷ ︸

=H

x(ζ, t)

 .



The wave equation, state differential equation

With the state variables x1 = ρ∂w∂t and x2 =
∂w
∂ζ we can write the

above p.d.e. as

∂

∂t

[
x1
x2

]
(ζ, t) =

[
0 1
1 0

]
︸ ︷︷ ︸

=P1

∂

∂ζ


[ 1
ρ(ζ) 0

0 T (ζ)

]
︸ ︷︷ ︸

=H

x(ζ, t)

 .

We generalise this to our class of first order port-Hamiltonian
equations.



Port-Hamiltonian partial differential equations

Our model class are p.d.e.’s of the form

∂x

∂t
(ζ, t) =

(
P1

∂

∂ζ
+ P0

)
[Hx(ζ, t)]

with

I x(ζ, t) ∈ Rn, ζ ∈ [a, b], t ≥ 0

I P1 is an invertible, symmetric real n× n-matrix,

I P0 is a skew-symmetric real n× n-matrix,

I H(ζ) is a symmetric, invertible n× n-matrix with
mI ≤ H(ζ) ≤MI for some m,M > 0.

The energy/Hamiltonian is defined as

H(t) = H(x(·, t)) = 1

2

∫ b

a
x(ζ, t)TH(ζ)x(ζ, t)dζ.



Power balance

For the Port-Hamiltonian p.d.e. with energy/Hamiltonian

H(x(·, t)) = 1

2

∫ b

a
x(ζ, t)TH(ζ)x(ζ, t)dζ,

it is not hard to show that along solutions; homework

Ḣ(t) =
dH

dt
(x(·, t)) = 1

2

[
(Hx)T (ζ, t)P1 (Hx) (ζ, t)

]b
a

Thus the change of internal energy goes via the boundary of the
spatial domain, i.e. power balance.



Port-Hamiltonian partial differential equations

Given our port-Hamiltonian partial differential equation

∂x

∂t
(ζ, t) =

(
P1

∂

∂ζ
+ P0

)
[H(ζ)x(ζ, t)]

with the properties on P0, P1 and H.
We need to add boundary conditions to this p.d.e. That are
conditions in x(ζ, t) for ζ equal to a or b.
We write these boundary conditions as

WB

[
H(b)x(b, t)
H(a)x(a, t)

]
= 0.

with WB a matrix.
Question: Which boundary conditions lead to unique (weak)
solutions?
We answer this question only for the (important) contractive case.



Port-Hamiltonian p.d.e., state space

Given our port-Hamiltonian partial differential equation with
boundary conditions

∂x

∂t
(ζ, t) =

(
P1

∂

∂ζ
+ P0

)
[H(ζ)x(ζ, t)]

0 = WB

[
H(b)x(b, t)
H(a)x(a, t)

]
with the properties on P0, P1 and H.

I As state we choose x(t) = x(·, t).
I As state space we choose the energy space, i.e.,
X = L2((0, 1);Rn) with inner product

〈f, g〉X =
1

2

∫ b

a
f(ζ)>H(ζ)g(ζ)dζ.



Port-Hamiltonian p.d.e., state space formulation

With the state x(t) = x(·, t) and X = L2((0, 1);Rn) our
port-Hamiltonian p.d.e. with boundary conditions;

∂x

∂t
(ζ, t) =

(
P1

∂

∂ζ
+ P0

)
[H(ζ)x(ζ, t)]

0 = WB

[
H(b)x(b, t)
H(a)x(a, t)

]
becomes

ẋ(t) = Ax(t),

where

Ax =

(
P1

d

dζ
+ P0

)
[Hx]

with domain

D(A) =

{
x ∈ X | d

dζ
(Hx) ∈ X,WB

[
H(b)x(b)
H(a)x(a)

]
= 0

}
.



Port-Hamiltonian p.d.e., state space formulation

To check whether the abstract differential equation ẋ(t) = Ax(t)
has unique weak solution, we recall

Theorem (Lumer-Phillips)

Let A be a densely defined operator, then ẋ(t) = Ax(t), x(0) = x0
has for every x0 ∈ X a unique weak solution satisfying
‖x(t)‖ ≤ ‖x0‖, t ≥ 0 if and only if

1. 〈Ax0, x0〉+ 〈x0, Ax0〉 ≤ 0 for all x0 ∈ D(A).

2. The range of A− I is the whole of X.

�

For our class of port-Hamiltonian p.d.e.’s we now have



Port-Hamiltonian p.d.e., existence of solutions

Theorem (Le Gorrec, Maschke & Z. ’05, Jacob & Z. ’11)

Assume the (standard) conditions on P0, P1 and H. Assume
further that WB is a n× 2n matrix of full rank.
Then ẋ(t) = Ax(t), x(0) = x0 has for every x0 ∈ X a unique weak
solution satisfying ‖x(t)‖ ≤ ‖x0‖, t ≥ 0, if and only if

〈Ax0, x0〉+ 〈x0, Ax0〉 ≤ 0 for all x0 ∈ D(A).

The latter is equivalent to Ḣ(0) ≤ 0 for all x0 ∈ D(A).
Moreover, ẋ(t) = Ax(t), x(0) = x0 has for every x0 ∈ X a unique
weak solution satisfying ‖x(t)‖ = ‖x0‖, t ∈ R, if and only if

〈Ax0, x0〉X + 〈x0, Ax0〉 = 0 for all x0 ∈ D(A)

or (equivalently) Ḣ(0) = 0 for all x0 ∈ D(A).

Hence only the simple condition of L-P theorem needs to be
checked.



Example: the wave equation

∂2w

∂t2
(ζ, t) =

1

ρ(ζ)

∂

∂ζ

[
T (ζ)

∂w

∂ζ
(ζ, t)

]
∂w

∂t
(0, t) = T (1)

∂w

∂ζ
(1, t) = 0

We begin by writing the boundary conditions with the space
variable x1 = ρ∂w∂t , x2 =

∂w
∂ζ ,

[
0
0

]
=

[
T (1)∂w∂ζ (1, t)

∂w
∂t (0, t)

]
=

[
0 1 0 0
0 0 1 0

]
︸ ︷︷ ︸

=WB


∂w
∂t (1, t)

T (1)∂w∂ζ (1, t)
∂w
∂t (0, t)

T (0)∂w∂ζ (0, t)


=

[
0 1 0 0
0 0 1 0

] [
H(1)x(1, t)
H(0)x(0, t)

]
.



Example: the wave equation

Now we check the conditions.

I P1 =

[
0 1
1 0

]
is an invertible 2× 2 matrix (n = 2).

I P0 = 0, so skew-symmetric.

I If 0 < m ≤ T (ζ), ρ(ζ)−1 ≤M for all ζ, then

H(ζ) =
[
ρ(ζ)−1 0

0 T (ζ)

]
satisfy mI2 ≤ H(ζ) ≤MI2.

I WB has rank 2.

I Ḣ(0) = 0.

Thus our pH system ẋ(t) = Ax(t), x(0) = x0 has for every x0 ∈ X
a unique weak solution for t ∈ R with constant energy.



Solution operators

Beyond eAt.



Finite-dimensional

If we have a (finite-dimensional) abstract differential equation,
such as

ẋ(t) = Ax(t), x(0) = x0 ∈ Rn

with A a given n× n matrix, then we know that the solution is
given as

x(t) = eAtx0.

For example, if

A =

[
1 2
0 3

]
,

then

eAt =

[
et e3t − et
0 e3t

]
.

Question: Do we have something like this for our abstract
differential equation on a Hilbert space X?



Properties of eAt

We know that eAt has the following properties:

I eAt is linear. That is because αx0 + βx̃0 7→ αx(t) + βx̃(t).

I eA0 = I (the identity). Because x0 = x(0) = eA0x0.

I eA(t1+t2) = eAt1eAt2 , because of the time invariance of
ẋ(t) = Ax(t), any time may be chosen as initial time.

Two observations for the abstract differential equation
ẋ(t) = Ax(t), x(0) = x0 ∈ X;

I We have (under some conditions) a solution x(t), t ≥ 0,
satisfying x(0) = x0.

I The abstract differential equation is linear and time-invariant.

We introduce the solution map, that is the map from initial
condition to state at time t.



Semigroup

We denote the state space by X. Thus our solution map

X 3 x0 7→ x(t) = T (t)x0 ∈ X

What can we say about this mapping when the underlying
differential equation is linear and time-invariant?
Properties

I T (t) is linear. That is αx0 + βx̃0 7→ αx(t) + βx̃(t).

I T (0) = I (the identity)

I T (t1 + t2) = T (t1)T (t2), because of the time invariance, any
time may be chosen as initial time.

It turned out that an additional property is needed.



Bounded operators

We assume that X, our state space, is a Hilbert space with inner
product 〈·, ·〉 and norm ‖ · ‖ =

√
〈·, ·〉.

We introduce some notation. L(X) denotes the set of linear and
bounded operators from X to X.Thus if Q ∈ L(X), then

I Q(αx0 + βx̃0) = αQ(x0) + βQ(x̃0), for all x0, x̃0 ∈ X and
α, β ∈ R, and

I there exists a q ≥ 0 such that for all x0 ∈ X,

‖Q(x0)‖ ≤ q‖x0‖.

The norm of Q ∈ L(X) is given as

‖Q|| = sup
x0∈X,x0 6=0

‖Qx0‖
‖x0‖

.



Bounded operators, example

Example
Take X = L2(0,∞) and (Qf)(ζ) = f(2ζ + 1) + 3f(ζ).

I Linearity

(Q(αf+βg))(ζ) = (αf + βg)(2ζ + 1) + 3(αf + βg)(ζ)

= αf(2ζ + 1) + βg(2ζ + 1) + 3αf(ζ) + 3βg(ζ)

= α [f(2ζ + 1) + 3f(ζ)] + β [g(2ζ + 1) + 3g(ζ)]

= α(Q(f))(ζ) + β(Q(g))(ζ).

I Boundedness

‖Qf‖ =
√∫ ∞

0
(f(2ζ + 1) + 3f(ζ))2dζ



Bounded operators, example

We have

‖Qf‖ =
√∫ ∞

0
(f(2ζ + 1) + 3f(ζ))2dζ

≤
√∫ ∞

0
f(2ζ + 1)2dζ +

√∫ ∞
0

(3f(ζ))2dζ

=

√
1

2

∫ ∞
1

f(τ)2dτ + 3‖f‖

≤
[
3 +

1

2

√
2

]
‖f‖.

So Q ∈ L(X). With some more work we can show that

‖Q‖ = 3 +
1

2

√
2.



C0-semigroups

Definition
A strongly continuous semigroup (C0-semigroup) is an operator
valued function, (T (t))t≥0, from [0,∞) to L(X) which satisfies

I T (0) = I

I T (t)T (s) = T (t+ s), t, s ∈ [0,∞)

I For all x0 ∈ X there holds

lim
t↓0

T (t)x0 = x0.

�



Semigroup

So the only “unexpected” property is

T (t)x0 → x0 if t ↓ 0

This the strong continuity.
It tells that the solution becomes more and more the initial state
when time get smaller and smaller.



Contraction semigroup

In the previous we have shown existence of weak solutions with the
additional property that

‖x(t)‖ ≤ ‖x0‖ for all x0 ∈ X and t ≥ 0.

Using the semigroup T (t) this means that

‖T (t)x0‖ ≤ ‖x0‖ for all x0 ∈ X and t ≥ 0.

Or equivalently,
‖T (t)‖ ≤ 1 for all t ≥ 0.

These C0 semigroups have a special name.



Contraction semigroup

Definition
The C0-semigroup (T (t))t≥0 is contraction semigroup if

‖T (t)x0‖ ≤ ‖x0‖ for all t ≥ 0 and for all x0 ∈ X.

�

‖x0‖

‖T (t)x0‖

t →

↑

0
0



Summary: A and T (t)

Now we have of a p.d.e. two concepts

I (T (t))t≥0; solution map, i.e., x(t) = T (t)x0 is the solution,
and

I A; used to rewrite the p.d.e. into ẋ(t) = Ax(t).

Question: Can we find the one given the other?
Answer: From A to T (t) very hard/ impossible. That is why we
focus on existence.
To answer the other implication we look at the finite-dimensional
case once more.



Finding A

Let A be given as

A =

(
1 2
0 3

)
,

then

eAt =

(
et e3t − et
0 e3t

)
.

Problem: Suppose now that you know only eAt. How would you
find A back?
Answer Evaluate the derivative of the semigroup at t = 0.
Since d

dte
At = AeAt, we have

d

dt
eAt |t=0= A.



A and T (t)

Theorem
Assume that (T (t))t≥0 is the solution map of our p.d.e., then for
those x0 ∈ X for which the following limit exists

lim
t↓0

T (t)x0 − x0
t

,

we have that

Ax0 = lim
t↓0

T (t)x0 − x0
t

.

Furthermore, D(A) consists of precisely those x0 ∈ X for which
the limit exists.
A is named the infinitesimal generator of the C0-semigroup
(T (t))t≥0. �



A and T (t)

Lemma
If x0 ∈ D(A), then for t > 0, T (t)x0 is differentiable, and

d

dt
(T (t)x0) = AT (t)x0.

So x(t) := T (t)x0 is the solution (classical) of

ẋ(t) = Ax(t), x(0) = x0

For x0 ∈ X, T (t)x0 is the weak solution. �



Contraction semigroup

Definition
The C0-semigroup (T (t))t≥0 is contraction semigroup if

‖T (t)x0‖ ≤ ‖x0‖ for all t ≥ 0 and for all x0 ∈ X.

�

‖x0‖

‖T (t)x0‖

t →

↑

0
0

What can we say about the A’s of these semigroups?



Contraction semigroup

We known that

‖T (t)x0‖2 = 〈T (t)x0, T (t)x0〉.

For x0 ∈ D(A), we have that the derivative of T (t)x0 equals
AT (t)x0.
So if we differentiate ‖T (t)x0‖2, we find

d

dt
‖T (t)x0‖2 = 〈AT (t)x0, T (t)x0〉+ 〈T (t)x0, AT (t)x0〉.



Contraction semigroup

So we know:

d

dt
‖T (t)x0‖2 = 〈AT (t)x0, T (t)x0〉+ 〈T (t)x0, AT (t)x0〉.

Now we choose t = 0. We know that T (0)x0 = x0. Thus at time
equal to zero, we find

d

dt

(
‖T (t)x0‖2

)∣∣∣∣
t=0

= 〈Ax0, x0〉+ 〈x0, Ax0〉.

So if T (t) is a contraction semigroup, then

〈Ax0, x0〉+ 〈x0, Ax0〉 =
d

dt
‖T (t)x0‖2 |t=0≤ 0.

This has to hold for all x0 ∈ D(A).



Thanks for your attention!


