

Avec vols, en réseau

Micro et mini cogénération

Point d'avancement sur le marché Français

Enjeux énergétiques 2013-2020

Cadre politique

Objectif européen 3 x 20

Directive européenne Efficacité Energétique

Réglementation et incitation (RT2012 et labels de performance énergétique)

Vers + d'Efficacité Energétique Vers une baisse des besoins

Tendances de fond

Décentralisation des systèmes énergétiques (EE et sécurisation du réseau électrique)

Réappropriation de la question énergétique par le consommateur final (smart grids)

Electrification croissante tous secteurs

Evolution prix des énergies

Changements sur la forme et les fonctionnalités des systèmes énergétiques

Familles et technologies de cogénération

Micro cogénération : P < 36 kWe

Mini cogénération : 36 kWe < P < 250 kWe

Ecogénérateur Moteur Stirling

Production 1kWe

Cible: clients individuels

Module micro/mini cogénération

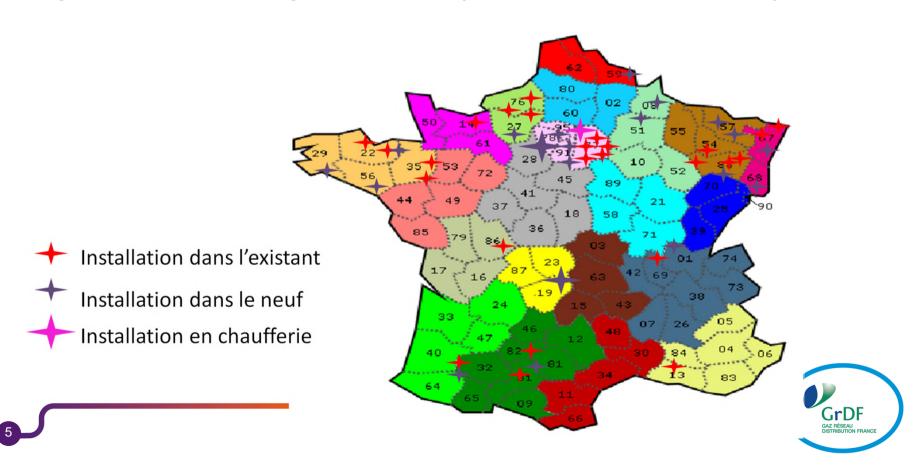
Moteur combustion interne Production 5 kWe - 250 kWe Cible: chaufferies collectives

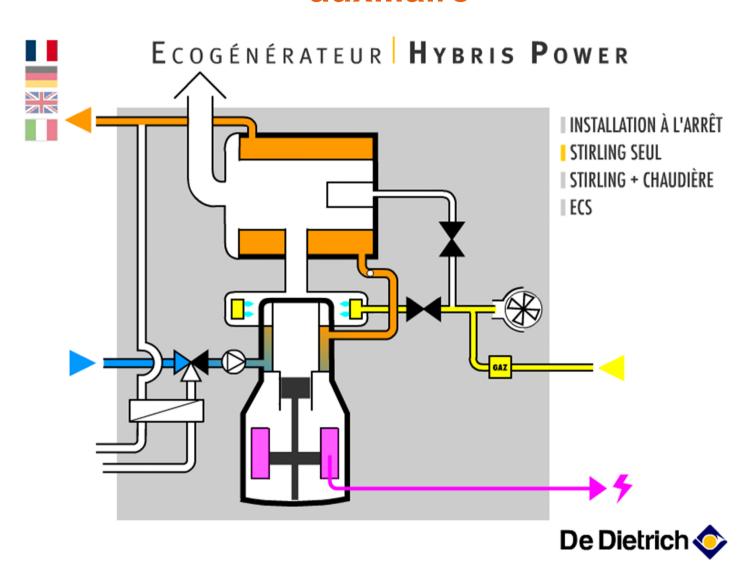
Grosse cogénération

MAG ou TAG Production > 1 MWe Cibles: RDC, industries, gros sites

Puissance électrique

Ecogénérateur


Conclusion du FT et enseignements pour la commercialisation


Rappel des données du Field test

Field test réalisé de 2010 à 2012 sur ~ 100 machines De Dietrich et Chappée

Depuis 2010, 6 machines ont fait l'objet d'une instrumentation détaillée par le CRIGEN et 20 par le COSTIC (convention GrDF – ADEME)

Couplage du Stirling et d'un brûleur auxiliaire

Caractéristiques produits

Exemple du produit Hybris Power

Modèle	MCE	24/28 MI	24
Puissance thermique utile à 80/60°C	kW	23,7	23,7
Puissance thermique utile à 50/30°C	kW	26,3	26,3
Puissance électrique nominale du moteur	kWe	1	1
Rendement global à 50/30°C	%	107	107
Rendement thermique à 100% de charge (Temp. moy. 70°C)	%	95,3	95,3
Rendement thermique à 30% de charge (Temp. moy. 33°C)	%	92,5	92,5
Rendement électrique sur un cycle de 30 min (Temp. Moy. 40°C)	%	16,4	16,4
Ratio électricité / chaleur		0,17	0,17
Hauteur mano. disponible sortie chauffage	mbar	550	489
Emissions NOx	mg/kWh	<35	<35
Conteance en eau	I	1,7	1,7
Débit spécifique à DT = 30K (selon EN 13203-1)	I/min	12,5	-
Pression de service mini / maxi (Chauffage)	bar	0,8 - 3	0,8 - 3
Pression de service maxi (ECS)	bar	8	8
Pression disponible à la sortie chaudière (Fumées)	Pa	115	115
Niveau de pression sonore à 1m	dB(A)	47	47
Pertes à l'arrêt (Delta T = 30K)	W	93	93
Poids net	kg	120	110

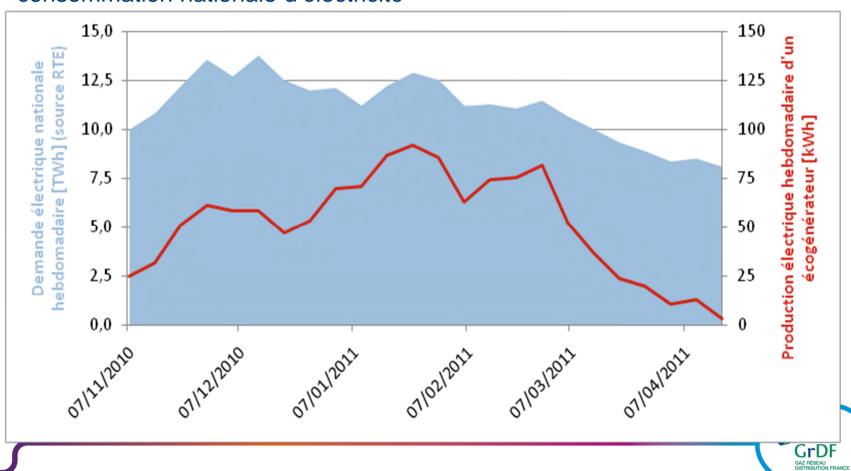
Quelques ratios de fonctionnement

Fonctionnement moyen du moteur Stirling :

Dans l'existant :

- 1500h à 3000h de fonctionnement du moteur Stirling
 - > Soit environ 50% de la durée de la saison de chauffe
- 1500 à 3000 kWh de production électrique
 - > correspond environ de 50 à 80 % des besoins électriques annuels d'un logement
 - ➤ là-dessus environ 70% d'autoconsommation
- 12500 à 15000 kWh de production thermique
 - > couvre environ 2/3 des besoins thermiques pour un logement moyen
 - le reste est couvert par le brûleur auxiliaire

Dans le neuf:

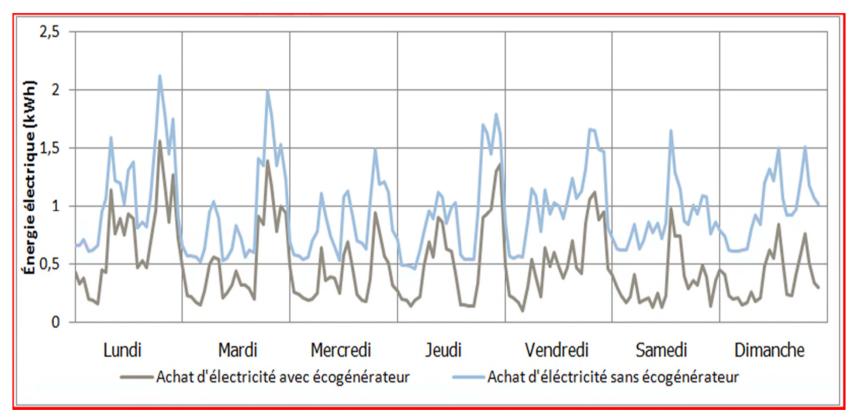

le moteur Stirling à tendance à fonctionner beaucoup moins longtemps et à cycler plus

⇒ Privilégier les maisons de grande taille

Profil de production

HIVER 2010 – 2011 : Production du parc instrumenté

La production des écogénérateurs accompagne naturellement la consommation nationale d'électricité

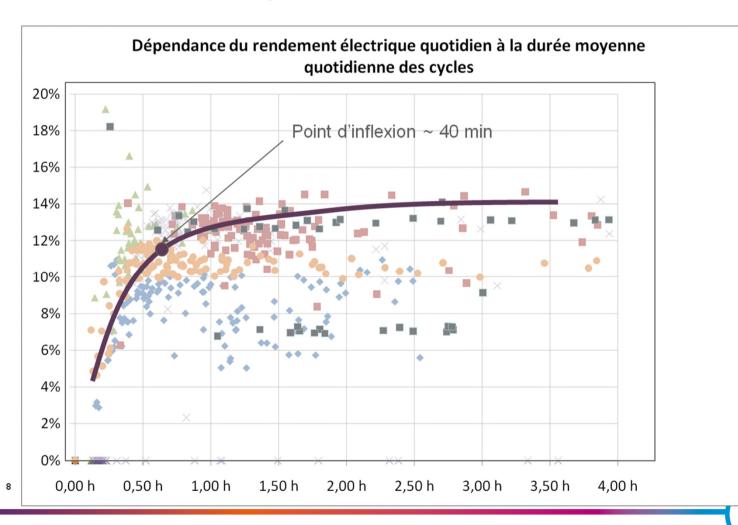


Thématique Grands Comptes

18 octobre 2012

Soutien du réseau électrique

Diminution de la pointe électrique locale en hiver



Puissance moyenne (sur le panel mesuré) soutirée au du réseau, fin janvier 2011

Sensiblité à la durée des cycles

Rendement électrique

GrdF GAZ RÉSEAU DISTRIBUTION FRAI

Synthèse des résultats

Les résultats qui confirment les atouts majeurs du produit...

- Très bon rendement électrique moyen en hiver (14 %)
- Forte autoconsommation électrique (70 %)
- La pointe de consommation électrique est réduite en hiver
- La production de l'écogénérateur suit la tendance de la consommation électrique française
- ...mais aussi quelques optimisations nécessaires
- Régulation lors de la production d'ECS : démarrage inadapté du brûleur auxiliaire
- Les courts-cycles induits par de faibles besoins de chauffage dégradent le rendement électrique : Optimisation des schémas hydrauliques et de la régulation
- Effort à faire sur la formation de la filière (installation, SAV) qui ne maîtrise pas encore assez la technologie
- La phase de Field Tests est validée pour GrDF : niveau de maturité compatible avec une introduction commerciale

Du FT à la commercialisation

• Offre disponible en 2013

De Dietrich Hybris Power

Janvier 2013

Viessmann Vitotwin

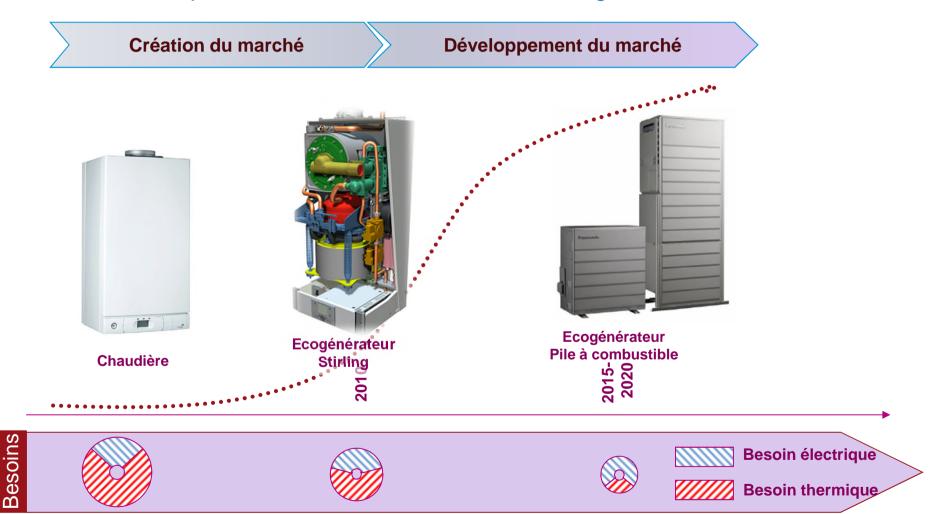
Mi-2013

➤ Les fabricants proposent une offre packagée : accessoires hydrauliques, MES, extension de garantie, formation obligatoire installation et SAV

Le marché cible (1/2)

- Les atouts majeurs de l'écogénérateur résident dans :
 - la performance énergétique et son positionnement RT induit : outil pour aller chercher des labels de performance énergétique dans le neuf comme dans l'existant
 - > Son innovation
 - > Sa facilité de mise en œuvre et d'entretien
- En revanche, dans le contexte tarifaire actuel, le produit est difficilement rentable dans une approche classique de « temps de retour »
 - ➤ Coût d'investissement élevé (malgré le Cl dans l'existant)
 - > Différentiel de prix élec-gaz peu favorable en France
 - ➤ Tarif de rachat faible et coûts du compteur d'injection (installation + abonnement annuel)
 - > Faibles incitations / autres pays européens

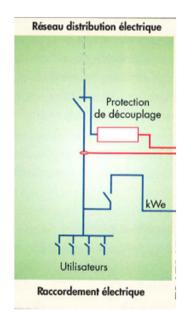
Le marché cible (2/2)

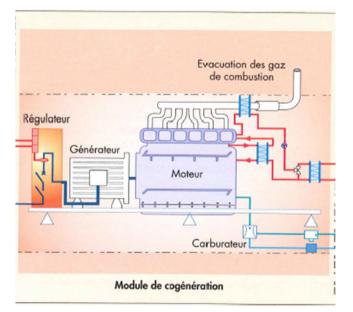

- Les marchés initiaux pour l'introduction du produit :
 - Maison neuve : limites techniques lié à la puissance thermique du Stirling -> plutôt adapté aux grandes maisons
 - ⇒ Maison d'architecte (20% du marché de la MI dans le diffus)
 - ⇒ Réalisation exemplaires de CMI, promoteurs, bailleurs (différenciation)
 - > Maison existante : cible prioritaire du produit
 - ⇒ Rénovation très performante (BBC réno)
 - ⇒ Particuliers technophiles
- Marchés sont limités en volumes, mais compatibles avec une phase d'introduction (2012/2013): l'année 2013 sera un année de montée en puissance et de test du marché
- A moyen terme, les conditions peuvent s'améliorer pour offrir un marché plus grand
 - > Evolution du prix des énergies, des coûts de la revente et des incitations
 - Intégration de nouvelles approches de type « smart grid »

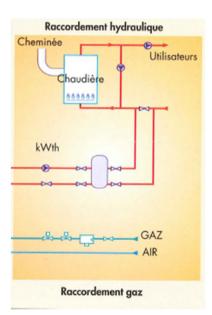
Aujourd'hui l'écogénérateur Stirling...

...Demain l'écogénérateur Pile à Combustible

Une réponse à l'évolution des besoins des logements


Micro/mini-cogénération en chaufferie




Principe

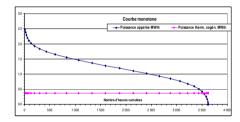
Enceinte compacte, monobloc, insonorisée, plug-and-play, intégrant les éléments nécessaires pour :

- Produire de l'électricité (courant alternatif triphasé BT 400V-50Hz) autoconsommée et/ou revendue au réseau
- Récupérer l'énergie thermique (max eau chaude 90° C) pour chauffage et/ou ECS
- Réguler le fonctionnement du groupe (modulation de 50% à 100%)

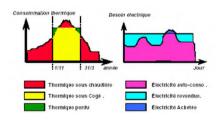
Source Cegibat – Guide Modules de cogénération

Principes de dimensionnement

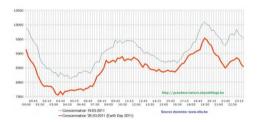
Trois postulats de base


- 1. Utiliser la cogénération en base avec chaudière(s) en appoint thermique et réseau en appoint électrique
- 2. Valoriser toute la thermique (proscrire le recours à un aéroréfrigérant)
- 3. Dimensionner en fonction du choix de valorisation de l'électricité

Lien entre dimensionnement et mode de valorisation de l'électricité


Revente C01

Dimensionner sur la monotone thermique pour un fonctionnement hivernal 3600 h (=> entre 10-30% de la puissance max appelée)


Revente + autoconso (< 36 kVA)

Même principe que pour la revente C01. L'électricité sera prioritairement autoconsommée.

Autoconsommation

Dimensionner sur 2 x Pmini elec appelée tout en assurant qu'on ne soit pas en surproduction thermique par rapport aux besoins (=> préférable de connaître les point 10 min d'appel électrique)

Revente marché

Déterminer son Cout Marginal de Production. Activer le fonctionnement de la cogé lorsque le prix élec marché dépasse ce CMP

Marchés cibles

Scénarios de valorisation électrique

Neuf Rénovation Revente C01 mensionner sur la monotone **Programmes importants** thermique pour un fonctionnement hivernal 3600 h (=> entre 10-30% de la puissance max appelée) Résidentiel > 200 logements collectif Objectif Cep << Cepmax Recherche de labels HPE, THPE, BEPOS Autoconsommation Contrats de performance **Tertiaire** Revente + autoconso (< 36 kVA) énergétique Revente marché Petite et moyenne industrie Industrie avec besoins constants électricité et chaleur Ecoquartiers > 50.000 m2 Aménagement

Smart Grids

L'activité en 2013

• Une offre qui s'étoffe

CogenGreen

Viessman ESS

De Dietrich DX Power

Etc...

- Des premières références à faire sur tous les marchés cibles
- Une filière à re-dynamiser sur cette technologie
- Au-delà du buzz, continuer à travailler sur les mécanismes adaptés pour un déploiement de cette technologie sur le marché français

Avec vous, en réseau

Merci pour votre attention

