
MDL: A Mission Description Language

Imane Cherfa1 and Salah Sadou2

1 University of Of Blida, Algeria
Imane.Cherfa@irisa.fr

2 University of South Brittany and IRISA, France
Salah.Sadou@irisa.fr

Abstract

The concept of System of Systems (SoS) is widespread in the domain of system engi-
neering. Its use in the field of software engineering serves to increase the level of reuse
(from component to system). However, the volatility of the systems compared to compo-
nents, calls into question the stability of the SoS’s architecture. Indeed, the latter must
perpetually adapt to changes in the environment of the SoS. Thus, it is no longer possible
to rely on the architecture to manage changes required by the SoS. However, a SoS exists
to fulfill a certain mission. And the definition of the latter is relatively stable compared to
the architecture that implements the SoS.

We propose a Mission Description Language (MDL) that formalizes the definition of
the mission. This way of defining the mission of a SoS has a twofold objective: provide
engineers with a stable documentation of the SoS in order to manage its evolutions and
give the ability to automatically generate its architecture. This last point also solves the
problem of constantly adapting the architecture of the SoS to changes in its environment.
The construction of MDL led us to collect concepts covering the notion of mission through
different research fields. The meta-model of MDL represents the synthesis of the concepts
we had found.

1 Introduction

To respond to the need of reducing the costs of the software development and maintenance,
the principle of reuse has been widely used untill now. Several concepts have been used for
this purpose, such as function, class and component. But with the abundance of systems in
the life of every day, the temptation is great to reuse these existing systems to construct a new
one. The latter is called System of systems (SoS). This will provide new possibilities, such as
opportunistic construction of systems: build a system to meet an ephemeral need by reusing
available systems at the time.

In the domain of system engineering, SoS is a concept that exists for a while and was widely
used in the military application domain. In the latter, the construction of a SoS is guided by a
strong concept: the mission. Thus, the SoS exists to meet the needs of a mission.

To achieve a mission, autonomous, distributed and heterogeneous subsystems chosen for
their capabilities are used to interact during a time frame [7, 3]. This interaction in an
open and non deterministic environments leads to the emergence of behaviours with wanted or
unwanted properties that can affect or favour the fulfilment of the SoS’s mission [3].

Let us consider the classical model of development for the construction of a SoS. In this
classical approach, the architecture is considered as the backbone of the system and its most
stable part. But with the dynamicity which is inherent to the environment of the SoS, the
architecture should be automatically adaptable in order to enable service availability. This led
several research works to target the dynamic reconfiguration of architectures.

We believe that the military vision of SoS is transposable to the software domain. Indeed,
considering the environment of a SoS, mission becomes the most stable element. Therefore,



any changes must be based on the definition of the mission. In this case, a rigorous definition
of the mission becomes a necessity. And with a formal definition of the mission architecture
can be generated automatically. With this possibility, the problem of dynamic adaptation of
the architecture will be reduced to a regeneration of the architecture.

To be able to describe a SoS through its mission, we need first to identify all the concepts, and
their relationships, necessary to the mission definition. This is the work we had undertaken and
this paper presents the obtained result. Thus, we propose a mission description language, called
MDL. This language is presented through its meta-model (abstract language) that describes
the involved concepts and their relationships.

The remainder of this paper is organized as follows: Section 2 introduces the collect of
concepts related to SoS mission. Section 3 goes into detail of MDL by the presentation of its
meta-model. Section 4 presents concluding remarks and directions for future research.

2 Concepts Related to Mission

In SoS domain, we noticed a lack of papers related to mission concept. Furthermore, there is
no common base vocabulary for SoS mission, consequently no established definition. In return,
we noticed that the mission concept appears in several domains under different definitions: set
of goals to reach, set of activities or operations to be executed in a predefined order.

This observation was made after a literature review on domains easily transposable to that of
the SoS: Software Engineering and System Engineering. The majority of the works concerned
requirement and goal specification [10, 9, 15, 2, 14, 5] or behaviour specification [10, 9, 8,
2]. To collect concepts related to mission, we focused on the following fields from the above
sited domains: System specification, Multi Agents Systems, Resilient Distributed Systems,
Dynamically Adaptive Systems, Real-Time Systems, Architectural Frameworks. Applications
from these fields share some characteristics with SoS as illustred in Figure 1.

The identified concepts are in bold in the text describing the language/framework where
they are well defined.

Figure 1: Context Of Mission Description Language



2.1 System specification

In any Software System, it is important to ensure that software satisfies stakeholders require-
ments. Thus many languages are dedicated to specify goals. As we are interested in describing
SoS mission which is similar to the concept of goal, we analyze the most well known languages.

The Keep All Object Satisfied (KAOS) method [14] is a well established method for captur-
ing and analyzing system requirements in form of goals, assumptions, and domain properties.
The premise is to decompose the abstract high-level goals into more concrete sub-goals up to
the level where goals represent requirements that can be handled by individual system agents.

The Unified Modelling Language (UML) [1] is the de jure standard industry language for
specifying and designing software systems. UML addresses the modelling of requirments and
activities by providing language constructs for describing uses cases, inclusions and extensions
between uses cases, actors, activities, interactions, sequencing and control flow of activ-
ities .

2.2 Multi Agents Systems

Multi Agents Systems (MAS) share with SoS the caracteristic that sub-systems are often re-
quired to be autonomous. Moreover, like SoS subsystems, distributed agents have to cooperate
with each other to achieve shared goals.

The Tropos methodology [2] is a similar approach to KAOS. Goals, actors, plans,
ressources, capabilities and dependencies are modeled and analyzed from the perspec-
tive of the autonomous agents. In [12] authors extend the Tropos methodology to support high
variability design by including alternatives, and revising the capability modeling. The authors
aim at capturing both aspects of ability and opportunity to model the agent capability,
based on the philosophical idea from [11] that can implies both ability and opportunity.

ADELFE [13] propose a methodology to develop adaptive MAS by focusing on coopera-
tive behaviour. The main concept of ADELFE is the cooperative agent which has skills,
aptitudes, characteristics, communications and a social attitude named cooperation.

2.3 Resilient Distributed Systems

Resilient Distributed Systems (RDS) share with SoS the characteristic of service availability
while challenges occur.

The Invariant Refinement Method (IRM) [5] was proposed for systematical derivation of
resilient distributed systems (RDS) architecture from high-level requirements. The main con-
cepts supported by the method are: component, invariant, process invariant, change invariant,
assumption, knowledge dependency, knowledge flow, computation activity.

2.4 Dynamically Adaptive Systems

In Dynamically Adaptive Systems (DASs) field, like in SoS one, self-adaptive systems have
the ability to autonomously modify their behaviour at run-time to reach goals, when there is
changes in their environment.

Relax [15] is a requirements language including explicit constructs for specifying and deal-
ing with the uncertainty inherent in self-adaptive systems. It enables analysts to identify
requirements that may be relaxed at run time when the environment changes.

The Software Component Ensemble Language (SCEL) [8] language is a kernel language that
provides programmers with a set of linguistic abstractions for describing autonomic systems



in terms of Behaviors (processes, activities and targets), Knowledge, and Aggregations by
complying with specific Policies.

2.5 Real-Time Systems

In Real-Time Systems (RTS) field, timing constraints is an important property for the accom-
plishment of the mission.

The UML Timed Sequence Diagram (TSD) [4] is an extension of UML Sequence Diagram
to specify the real-time behaviour. TSD introduce loops and suggest a graphical notation. In
[13] the author consider Timed Sequence Diagrams as requirement specifications which should
be satisfied by other dynamic models of the system that are closer to the implementation.

The Timed Property Sequence Chart (TPSC) [6, 16] is an extended graphical notation
of a subset of UML 2.0 sequence diagrams. TPSC provides a completely graphical front-end
for software designers. It include timed constructs to specify timing properties of real-
time systems. The main concepts holded by this laguage are: component instances, messages,
constraints, Clocks and operators (loop, synchronisation).

2.6 Architectural Frameworks

Architecture frameworks provide a roadmap for describing the architecture of a system. This
descriptions are necessarily done from multiple view-points. we selected those that are more
suited to SoS.

The Department of Defense Architecture Framework (DoDAF) [10] is an architecture frame-
work for the United States Department of Defence. In the DoDAF framework, there is several
views, each of which is broken down into products and data: operational view, systems and
services view, etc. The mission is described by a concept of operations and is organized by
capabilities. capabilities are described by threads, and threads are described by activities
executed in serial or parallel.

The Ministry of Defence Architecture Framework (MoDAF) [9] is an architecture framework
for the UK Ministry of Defence. Similar to DoDAF, MoDAF provides a set of views that
provide a standard notation to capture information about a business in order to identify ways
to improve it. There is several views: strategic, operational, service orientated, etc. The main
concepts supported by MoDAF meta-model are: mission, capability, operational activity,
capability constraints, capability dependency, task, location and process.

3 MDL meta-model

The concepts identified in the previous Section are presented, in this Section, in an adequate
manner with their relationships. In order to make our language evolutive, we defined its ab-
stract syntax as a meta-model. In the following, we describe the core of MDL in more detail.For
reason of clarity, we define two sub-meta-models, which share the mission concept that alto-
gether form the MDL meta-model: i) the mission within the System of Systems part contains
the main building blocks of a SoS and thus includes concepts like subsystems, Mission, Syner-
gism, Capability, Role, or Environment. ii) the second part concerns concepts related to the
refinement of the mission.



3.1 Mission within the System of Systems

The sub-meta-model given in Figure 2 contains the main building blocks of a SoS. Hardware/-
Software systems, or humans are considered as subsystems. A subsystem can cooperate with
another one. A set of cooperation leads to a synergism that is represented as several behaviours.

Mission accomplishment can be favoured by desirable behaviour, or negatively affected by
undesirable behaviour, resulting from cooperation. It can be also affected by environment as-
sumptions.

A mission is considered as part of Role. The concept of Role is needed to represent set
of capabilities of the same context assigned to one or several subsystems. Each subsystem has
one or more capability that is related to its ability to do something, and to the existence or
no of the opportunity to do it. By the concept of opportunity we mean that the environment
assumptions are sufficient to the success of the mission accomplishment.

Figure 2: MDL meta-model

3.2 The Mission refinement

The part of the MDL meta-model concerning the mission refinement is shown in Figure 3.
There is two sub-metaclasses of mission metaclass. A critical mission represent the mission
that must be achieved even if there is an emergency situation while a mission can be temporary
delayed.

A trigger is an event that launch the execution of the mission, if a condition is verified under
a timing constraints. The existence of a condition or timing constraints is not mandatory.

A mission may be refined into submissions using decomposition (AND/OR/XOR). To define
a mission, the decomposition are not sufficient. We added operators allowing execution ordering



between submissions. These operators are either simple or composite. The Loop operator means
that a mission execution must reiterate. The Synchronization operator signify that there is one
or more missions that must be achieved before executing the current mission. The Parallel
operator imply that the missions have to be executed in parallel. The Sequential operator
means that the missions have to be executed sequentially. The Neutralisation operator indicate
that the achievement of one mission imply the abandonment of the specified mission. The
Conflict operator is used when a mission may negatively affect another mission.

Finally, a mission is associated to an activity satisfying a precondition, maintaining an
invariant in the execution, and comprising operations.

Figure 3: MDL meta-model

4 Conclusion

This paper presents a Mission description Language that defines an abstract syntax for mod-
elling the mission. This language has a twofold objective: provide engineers with a stable
documentation of the SoS in order to manage its evolutions and give the ability to automati-
cally generate its architecture. This last point also solves the problem of constantly adapting
the architecture of the SoS to changes in its environment.

Our future work concerns the definition of a formal semantic for MDL. This will allow us to
check some properties like timing. This will also allow us to verify, validate a mission description
and then automatically generate its corresponding architecture.

References

[1] Grady Booch, James Rumbaugh, and Ivar Jacobson. Unified Modeling Language User Guide, The
(2Nd Edition) (Addison-Wesley Object Technology Series). Addison-Wesley Professional, 2005.



[2] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and John Mylopoulos. Tro-
pos: An agent-oriented software development methodology. Autonomous Agents and Multi-Agent
Systems, 8(3):203–236, may 2004.

[3] Vincent Chapurlat and Nicolas Daclin. Risks and Resilience of Collaborative Networks: 16th
IFIP WG 5.5 Working Conference on Virtual Enterprises, PRO-VE 2015, Albi, France,, October
5-7, 2015, Proceedings, chapter System of Systems Architecting: A Behavioural and Properties
Based Approach for SoS “–ilities” Modelling and Analysis, pages 591–603. Springer International
Publishing, Cham, 2015.

[4] Thomas Firley, Michaela Huhn, Karsten Diethers, Thomas Gehrke, and Ursula Goltz. Timed
sequence diagrams and tool-based analysis: A case study. In Proceedings of the 2Nd International
Conference on The Unified Modeling Language: Beyond the Standard, UML’99, pages 645–660,
Berlin, Heidelberg, 1999. Springer-Verlag.

[5] Jaroslav Keznikl, Tomas Bures, Frantisek Plasil, Ilias Gerostathopoulos, Petr Hnetynka, and Nick-
las Hoch. Design of ensemble-based component systems by invariant refinement. In Proceedings of
the 16th International ACM Sigsoft Symposium on Component-based Software Engineering, CBSE
’13, pages 91–100, New York, NY, USA, 2013. ACM.

[6] W. Li and P. Zhang. On the semantics of scenario-based specification based on timed compu-
tational tree logic. In 2013 22nd Australian Software Engineering Conference, pages 1–10, June
2013.

[7] Mark W. Maier. Architecting principles for systems-of-systems. Systems Engineering, 1(4):267–
284, 1998.

[8] Rocco De Nicola, Michele Loreti, Rosario Pugliese, and Francesco Tiezzi. A formal approach to
autonomic systems programming: The scel language. ACM Trans. Auton. Adapt. Syst., 9(2):7:1–
7:29, July 2014.

[9] UK Ministry of Defence. Modaf. gov.uk/guidance/mod-architecture-framework.

[10] U.S. Department of Defense. Dodaf. dodcio.defense.gov/Portals/0/Documents/DODAF.

[11] Lin Padgham and Patrick Lambrix. Formalisations of capabilities for bdi-agents. Autonomous
Agents and Multi-Agent Systems, 10(3):249–271, 2005.

[12] Loris Penserini, Anna Perini, Angelo Susi, and John Mylopoulos. High variability design for
software agents: Extending tropos. ACM Trans. Auton. Adapt. Syst., 2(4), november 2007.

[13] Gauthier Picard and Marie-Pierre Gleizes. Methodologies and Software Engineering for Agent Sys-
tems: The Agent-Oriented Software Engineering Handbook, chapter The ADELFE Methodology,
pages 157–175. Springer US, Boston, MA, 2004.

[14] Axel van Lamsweerde. Requirements engineering: From craft to discipline. In Proceedings of
the 16th ACM SIGSOFT International Symposium on Foundations of Software Engineering, SIG-
SOFT ’08/FSE-16, pages 238–249, New York, NY, USA, 2008. ACM.

[15] J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Cheng, and J. M. Bruel. Relax: Incorporating
uncertainty into the specification of self-adaptive systems. In 2009 17th IEEE International Re-
quirements Engineering Conference, pages 79–88, Aug 2009.

[16] P. Zhang, B. Li, and M. Sun. A timed extension of property sequence chart. In High Assurance
Systems Engineering Symposium, 2008. HASE 2008. 11th IEEE, pages 197–206, Dec 2008.

gov.uk/guidance/mod-architecture-framework
dodcio.defense.gov/Portals/0/Documents/DODAF

	Introduction
	Concepts Related to Mission
	System specification
	Multi Agents Systems
	Resilient Distributed Systems
	Dynamically Adaptive Systems
	Real-Time Systems
	Architectural Frameworks

	MDL meta-model
	Mission within the System of Systems
	The Mission refinement

	Conclusion

